
Implementing Graphblas Primitives on
Distributed-Memory Systems

SIAM CSE’21
Minisymposium on GraphBLAS

Benjamin Brock, Aydın Buluç, and Katherine Yelick
March 1, 2021

Implementing Graphblas Primitives on
Distributed-Memory Systems

SIAM CSE’21
Minisymposium on GraphBLAS

Benjamin Brock, Aydın Buluç, and Katherine Yelick
March 1, 2021

Using RDMA!

Background

Background

- GraphBLAS API allows graph
algorithms to be expressed using
linear algebra primitives

- Instead of optimizing each graph algorithm individually,
optimize only a few sparse linear algebra operations

- Center around matrix multiplication: SpMM, SpGEMM, SpMV

What is “Distributed”?

- A collection of nodes,
connected by a network.

How to program distributed?

- Message Passing - bulk synchronous
collectives (OR matching send/receives)

- RDMA - directly read/write to remote memory

- Message Passing - bulk synchronous
collectives (OR matching send/receives)

- RDMA - directly read/write to remote memory

Node
0

Node
1

Send
MSG(0)

Receive
MSG(0)

How to program distributed?

Node
0

Node
1

Send
MSG(0)

Receive
MSG(0)

Node
0

Node
1

Write 12 -> 0x8f

RDMA Availability Backup Slides

How to program distributed?

- Message Passing - bulk synchronous
collectives (OR matching send/receives)

- RDMA - directly read/write to remote memory

#

Distributed Matrices

Distributed Matrices

- Matrix is split up across a tile grid
(composed of tiles or blocks)

Distributed Matrices

- Matrix is split up across a tile grid
(composed of tiles or blocks)

- Tiles are assigned to processes
using some strategy

P0

P2

P1

P3

We wish to compute C = AB

Let’s compute one block of the output, C.

Distributed Matrix Multiplication Overview

CA

B

× =
Row Block of A

Column Block of B

Block of C

We wish to compute C = AB

In practice, compute one block at a time

Distributed Matrix Multiplication Overview

CA

B

× =
Row Block of A

Column Block of B

Block of C

We wish to compute C = AB

In practice, compute one block at a time

C[i, j] += A[i, k] * B[k, j] for all k

Distributed Matrix Multiplication Overview

CA

B

×+=
C[i, j] A[i, 0] B[0, j]

We wish to compute C = AB

In practice, compute one block at a time

C[i, j] += A[i, k] * B[k, j] for all k

Distributed Matrix Multiplication Overview

CA

B

×+=
C[i, j] A[i, 1] B[1, j]

We wish to compute C = AB

In practice, compute one block at a time

C[i, j] += A[i, k] * B[k, j] for all k

Distributed Matrix Multiplication Overview

CA

B

×+=
C[i, j] A[i, 2] B[2, j]

We wish to compute C = AB

In practice, compute one block at a time

C[i, j] += A[i, k] * B[k, j] for all k

Distributed Matrix Multiplication Overview

CA

B

×+=
C[i, j] A[i, 3] B[3, j]

In SUMMA, row and column broadcasts
distribute tiles

for k in K:

 broadcast in row of A -> local_a

 broadcast in column of B -> local_b

 local_c += local_a*local_b

Methods of Moving Tiles

CA

B

In SUMMA, row and column broadcasts
distribute tiles

for k in K:

 broadcast in row of A -> local_a

 broadcast in column of B -> local_b

 local_c += local_a*local_b

Methods of Moving Tiles

CA

B

Explicit barrier!

An Issue with Bulk Synchronous Distributed MM

- In bulk synchronous algorithms, load
balancing problems can occur

- With local sparse operations, each
operation may have differing amounts of
work

- This leads to time wasted waiting for
slower processes to finish Hypothetical Execution Timeline

RDMA-Based Algorithms

- RDMA provides put and get
operations

- Put writes to a remote node’s
memory, get reads

- We can use RDMA to
implement distributed matmul

Node 0 Node 1

Shared
Segment

RDMA-Based Matrix Data Structure

- Each process has a remote pointer it can
use to get / put to a tile

- In the dense matrix case, single pointer

- In the sparse case, pointers to CSR data
structure

Remote
Pointer Table

.

.

.

We wish to compute C = AB

i, j = my_block(C)

for k in K:

 local_a = A[i, k].get()

 local_b = B[k, j].get()

 local_c += local_a*local_b

Distributed Matrix Multiplication Overview

CA

B

×+=
C[i, j] A[i, 0] B[0, j]

Distributed Matrix Multiplication Overview

CA

B

We wish to compute C = AB

i, j = my_block(C)

for k in K:

 local_a = A[i, k].get()

 local_b = B[k, j].get()

 local_c += local_a*local_b

×+=
C[i, j] A[i, 1] B[1, j]

Distributed Matrix Multiplication Overview

CA

B

We wish to compute C = AB

i, j = my_block(C)

for k in K:

 local_a = A[i, k].get()

 local_b = B[k, j].get()

 local_c += local_a*local_b

×+=
C[i, j] A[i, 2] B[2, j]

Distributed Matrix Multiplication Overview

CA

B

We wish to compute C = AB

i, j = my_block(C)

for k in K:

 local_a = A[i, k].get()

 local_b = B[k, j].get()

 local_c += local_a*local_b

×+=
C[i, j] A[i, 3] B[3, j]

Distributed Matrix Multiplication Overview

CA

B

We wish to compute C = AB

i, j = my_block(C)

for k in K:

 local_a = A[i, k].get()

 local_b = B[k, j].get()

 local_c += local_a*local_b

×+=
C[i, j] A[i, 3] B[3, j]

No Barrier!

Important Optimizations

CA

B

We wish to compute C = AB

i, j = my_block(C)

for k_ in K:

 k = (k_ + k_offset) % K

 local_a = A[i, k].get()

 local_b = B[k, j].get()

 local_c += local_a*local_b

1) Iteration offset

Important Optimizations

CA

B

We wish to compute C = AB

i, j = my_block(C)

for k_ in K:

 k = (k_ + k_offset) % K

 local_a = buf_a.get()

 local_b = buf_b.get()

 if k_ + 1 < K:

 buf_a = A[i, k+1].async_get()

 buf_b = B[k+1, j].async_get()

 local_c += local_a*local_b

1) Iteration offset
2) Pre-fetching, for overlap

Stationary A, B, and C Implementations

- It should be noted that thus far, we’ve implied a
stationary C implementation

- With stationary C, C remains in place, while A
and B must be communicated

- We’ve also implemented RDMA stationary A&B

Performance Results

Performance Implementations

- We implemented dense and sparse matrix data structures on
using BCL, for both distributed CPU and GPU

- Results presented today are for SpMM GPU, using NVSHMEM,
an extension of OpenSHMEM that provides direct GPU-to-GPU
communication

- cuSPARSE used for local sparse matrix operations

SpMM (Sparse times Dense) RDMA, C Stationary

RDMA, A Stationary

Bulk Synchronous, C Stationary

Bulk Synchronous, A Stationary

Bulk Synchronous, 1.5D A Stationary

- Bulk synchronous implementations
(top 3 lines) use CUDA-aware MPI

- Asynchronous implementations
(bottom 2 lines) use NVSHMEM

- All implementations use
CuSPARSE for local computation.

*All experiments run on OLCF’s Summit. y-axis is runtime, x-axis is number of Tesla V100 GPUs.

Conclusions

1. RDMA-based implementations of distributed matrix multiply
decouple inner loop iterations and are truly asynchronous

2. They perform favorably compared to bulk synchronous
implementations

3. As with many sparse operations, can be difficult to scale if not
enough work

Limitations

1. Many graph algorithms require custom semirings
a. CuSPARSE does not currently support custom semirings
b. Currently evaluating GE-SpMM and CUSP

2. Still experimenting with tile partitioning algorithms

3. RDMA-based Stationary A,B algorithms can be less memory
efficient than bulk synchronous implementations

Suboptimal Tile Partition

Backup Slides

Berkeley Container Library

- A series of data structures built
on global pointers

- Processes can directly read and
write from each others’
memories

- Executed in RDMA

Node 0 Node 1

Shared
Segment

Berkeley Container Library Philosophy

- Use RDMA for all principal data structure operations

1) Executed efficiently in hardware

2) No need to interrupt remote CPU

3) Maps well to familiar data structure operations

BCL Data Structures

‘a’,‘b’

Bloom filters Queues Suffix arrays Hash tables

b a n a n a s

7 6 4 2 1 5 3 ‘a’,‘b’,‘c’ ‘a’,‘b’,‘c’

. . .

Drawings / Content

An Issue with Bulk Synchronous Distributed MM

P0

P1

P2

P3

Local Matrix
Operation Barrier

In Cannon’s algorithm, a redistribution step,
followed by passing matrices right and
below

for k in K:

 send A tile to the right

 send B tile below

 receive A, receive B

 local_c += A*B

Methods of Moving Tiles

CA

B

In Cannon’s algorithm, a redistribution step,
followed by passing matrices right and
below

for k in K:

 send A tile to the right

 send B tile below

 receive A, receive B

 local_c += A*B

Methods of Moving Tiles

CA

B

Implicit barrier!

