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Background



Background

- GraphBLAS API allows graph
algorithms to be expressed using
linear algebra primitives

- Instead of optimizing each graph algorithm individually, 
optimize only a few sparse linear algebra operations

- Center around matrix multiplication: SpMM, SpGEMM, SpMV



What is “Distributed”?

- A collection of nodes,
connected by a network.



How to program distributed?

- Message Passing - bulk synchronous
collectives (OR matching send/receives)

- RDMA - directly read/write to remote memory
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Distributed Matrices

- Matrix is split up across a tile grid 
(composed of tiles or blocks)



Distributed Matrices

- Matrix is split up across a tile grid 
(composed of tiles or blocks)

- Tiles are assigned to processes 
using some strategy
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We wish to compute C = AB

Let’s compute one block of the output, C.

Distributed Matrix Multiplication Overview
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We wish to compute C = AB

In practice, compute one block at a time

C[i, j] += A[i, k] * B[k, j] for all k

Distributed Matrix Multiplication Overview
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We wish to compute C = AB

In practice, compute one block at a time
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We wish to compute C = AB

In practice, compute one block at a time

C[i, j] += A[i, k] * B[k, j] for all k

Distributed Matrix Multiplication Overview
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In SUMMA, row and column broadcasts 
distribute tiles

for k in K:

  broadcast in row of A -> local_a

  broadcast in column of B -> local_b

  local_c += local_a*local_b

Methods of Moving Tiles
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Explicit barrier!



An Issue with Bulk Synchronous Distributed MM

- In bulk synchronous algorithms, load 
balancing problems can occur

- With local sparse operations, each 
operation may have differing amounts of 
work

- This leads to time wasted waiting for 
slower processes to finish Hypothetical Execution Timeline



RDMA-Based Algorithms

- RDMA provides put and get 
operations

- Put writes to a remote node’s 
memory, get reads

- We can use RDMA to 
implement distributed matmul

Node 0 Node 1

Shared 
Segment



RDMA-Based Matrix Data Structure

- Each process has a remote pointer it can 
use to get / put to a tile

- In the dense matrix case, single pointer

- In the sparse case, pointers to CSR data 
structure

Remote
Pointer Table

.

.

.



We wish to compute C = AB

i, j = my_block(C)

for k in K:

  local_a = A[i, k].get()

  local_b = B[k, j].get()

  local_c += local_a*local_b

Distributed Matrix Multiplication Overview
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Distributed Matrix Multiplication Overview
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We wish to compute C = AB

i, j = my_block(C)

for k in K:

  local_a = A[i, k].get()

  local_b = B[k, j].get()

  local_c += local_a*local_b

×+=
C[i, j] A[i, 3] B[3, j]

No Barrier!



Important Optimizations
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We wish to compute C = AB

i, j = my_block(C)

for k_ in K:

  k = (k_ + k_offset) % K

  local_a = A[i, k].get()

  local_b = B[k, j].get()

  local_c += local_a*local_b

1) Iteration offset



Important Optimizations
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We wish to compute C = AB

i, j = my_block(C)

for k_ in K:

  k = (k_ + k_offset) % K

  local_a = buf_a.get()

  local_b = buf_b.get()

  if k_ + 1 < K:

    buf_a = A[i, k+1].async_get()

    buf_b = B[k+1, j].async_get()

  local_c += local_a*local_b

1) Iteration offset
2) Pre-fetching, for overlap



Stationary A, B, and C Implementations

- It should be noted that thus far, we’ve implied a 
stationary C implementation

- With stationary C, C remains in place, while A 
and B must be communicated

- We’ve also implemented RDMA stationary A&B
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Performance Implementations

- We implemented dense and sparse matrix data structures on 
using BCL, for both distributed CPU and GPU

- Results presented today are for SpMM GPU, using NVSHMEM, 
an extension of OpenSHMEM that provides direct GPU-to-GPU 
communication

- cuSPARSE used for local sparse matrix operations



SpMM (Sparse times Dense) RDMA, C Stationary

RDMA, A Stationary

Bulk Synchronous, C Stationary

Bulk Synchronous, A Stationary

Bulk Synchronous, 1.5D A Stationary

- Bulk synchronous implementations 
(top 3 lines) use CUDA-aware MPI

- Asynchronous implementations 
(bottom 2 lines) use NVSHMEM

- All implementations use 
CuSPARSE for local computation.

*All experiments run on OLCF’s Summit.  y-axis is runtime, x-axis is number of Tesla V100 GPUs.



Conclusions

1. RDMA-based implementations of distributed matrix multiply 
decouple inner loop iterations and are truly asynchronous

2. They perform favorably compared to bulk synchronous 
implementations

3. As with many sparse operations, can be difficult to scale if not 
enough work



Limitations

1. Many graph algorithms require custom semirings
a. CuSPARSE does not currently support custom semirings
b. Currently evaluating GE-SpMM and CUSP

2. Still experimenting with tile partitioning algorithms

3. RDMA-based Stationary A,B algorithms can be less memory 
efficient than bulk synchronous implementations

Suboptimal Tile Partition
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Berkeley Container Library

- A series of data structures built 
on global pointers

- Processes can directly read and 
write from each others’ 
memories

- Executed in RDMA

Node 0 Node 1

Shared 
Segment



Berkeley Container Library Philosophy

- Use RDMA for all principal data structure operations

1) Executed efficiently in hardware

2) No need to interrupt remote CPU

3) Maps well to familiar data structure operations



BCL Data Structures

‘a’,‘b’

Bloom filters          Queues     Suffix arrays  Hash tables

b a n a n a s

7 6 4 2 1 5 3 ‘a’,‘b’,‘c’ ‘a’,‘b’,‘c’

. . .
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An Issue with Bulk Synchronous Distributed MM
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Local Matrix 
Operation Barrier



In Cannon’s algorithm, a redistribution step, 
followed by passing matrices right and 
below

for k in K:

  send A tile to the right

  send B tile below

  receive A, receive B

  local_c += A*B

Methods of Moving Tiles

CA
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