Implementing Graphblas Primitives on Distributed-Memory Systems

SIAM CSE’21
Minisymposium on GraphBLAS

Benjamin Brock, Aydın Buluç, and Katherine Yelick
March 1, 2021
Implementing Graphblas Primitives on Distributed-Memory Systems

Using RDMA!

SIAM CSE’21
Minisymposium on GraphBLAS

Benjamin Brock, Aydın Buluç, and Katherine Yelick
March 1, 2021
Background
Background

- **GraphBLAS API** allows graph algorithms to be expressed using linear algebra primitives

- Instead of optimizing *each graph algorithm individually*, **optimize only a few** sparse linear algebra operations

- Center around **matrix multiplication**: SpMM, SpGEMM, SpMV
What is “Distributed”?
- A collection of nodes, connected by a network.
How to program distributed?

- **Message Passing** - bulk synchronous collectives (OR matching send/receives)

- **RDMA** - directly read/write to **remote memory**
How to program distributed?

- **Message Passing** - bulk synchronous collectives (OR matching send/receives)

- **RDMA** - directly read/write to **remote memory**
How to program distributed?

- **Message Passing** - bulk synchronous collectives (OR matching send/receives)

- **RDMA** - directly read/write to remote memory
Distributed Matrices
Distributed Matrices

- Matrix is split up across a **tile grid** (composed of **tiles** or **blocks**)

![Diagram of a tile grid]
Distributed Matrices

- Matrix is split up across a tile grid (composed of tiles or blocks)

- Tiles are assigned to processes using some strategy
We wish to compute $C = AB$

Let's compute **one block of the output, C**.
Distributed Matrix Multiplication Overview

We wish to compute $C = AB$

In practice, compute **one block at a time**
We wish to compute $C = AB$

In practice, compute **one block at a time**

$C[i, j] += A[i, k] \times B[k, j] \text{ for all } k$
Distributed Matrix Multiplication Overview

We wish to compute $C = AB$

In practice, compute **one block at a time**

$C[i, j] += A[i, k] \times B[k, j]$ for all k
Distributed Matrix Multiplication Overview

We wish to compute \(C = AB \)

In practice, compute \textbf{one block at a time}

\(C[i, j] += A[i, k] \times B[k, j] \) for all \(k \)
Distributed Matrix Multiplication Overview

We wish to compute $C = AB$

In practice, compute **one block at a time**

$C[i, j] += A[i, k] \times B[k, j]$ for all k

Diagram:
- $C[i, j]$: purple
- $A[i, k]$: blue
- $B[k, j]$: red

Equation:
Methods of Moving Tiles

In SUMMA, row and column broadcasts distribute tiles

for k in K:
 broadcast in row of A -> local_a
 broadcast in column of B -> local_b
 local_c += local_a*local_b
Methods of Moving Tiles

In **SUMMA**, row and column broadcasts distribute tiles

```
for k in K:
    broadcast in row of A -> local_a
    broadcast in column of B -> local_b
    local_c += local_a*local_b
```

Explicit barrier!
An Issue with Bulk Synchronous Distributed MM

- In **bulk synchronous algorithms**, load balancing problems can occur.

- With **local sparse operations**, each **operation** may have differing amounts of work.

- This leads to **time wasted** waiting for slower processes to finish.
 RDMA-Based Algorithms

- RDMA provides **put** and **get** operations

- **Put** writes to a remote node’s memory, **get** reads

- We can use **RDMA** to implement **distributed matmul**
RDMA-Based Matrix Data Structure

- Each process has a **remote pointer** it can use to **get** / **put** to a tile

- In the **dense matrix** case, single pointer

- In the **sparse case**, pointers to **CSR data structure**
We wish to compute $C = AB$

$i, j = \text{my_block}(C)$

for k in K:

local$_a = A[i, k].get()$

local$_b = B[k, j].get()$

local$_c \leftarrow local_a * local_b$
Distributed Matrix Multiplication Overview

We wish to compute $C = AB$

$$i, j = my_block(C)$$

for k in K:

local$_a = A[i, k].get()$

local$_b = B[k, j].get()$

local$_c += local_a*local_b$
Distributed Matrix Multiplication Overview

We wish to compute \(C = AB \)

\[
i, j = \text{my_block}(C) \\
\text{for } k \text{ in } K:
 \text{local}_a = A[i, k].\text{get}() \\
 \text{local}_b = B[k, j].\text{get}() \\
 \text{local}_c += \text{local}_a \times \text{local}_b
\]
Distributed Matrix Multiplication Overview

We wish to compute $\mathbf{C} = \mathbf{A} \mathbf{B}$

\[
\begin{align*}
&i, j = \text{my_block}(\mathbf{C}) \\
&\text{for } k \text{ in } K: \\
&\quad \text{local}_a = \mathbf{A}[i, k].\text{get}() \\
&\quad \text{local}_b = \mathbf{B}[k, j].\text{get}() \\
&\quad \text{local}_c \text{ += local}_a*\text{local}_b
\end{align*}
\]
Distributed Matrix Multiplication Overview

We wish to compute $\mathbf{C} = \mathbf{A}\mathbf{B}$

$i, j = \text{my_block}(\mathbf{C})$

for k in K:

- $\text{local}_a = \mathbf{A}[i, k].\text{get}()$
- $\text{local}_b = \mathbf{B}[k, j].\text{get}()$
- $\text{local}_c += \text{local}_a \times \text{local}_b$

No Barrier!
Important Optimizations

We wish to compute $C = AB$

```python
i, j = my_block(C)
for k_ in K:
    k = (k_ + k_offset) % K
    local_a = A[i, k].get()
    local_b = B[k, j].get()
    local_c += local_a * local_b
```

1) Iteration offset
Important Optimizations

We wish to compute $C = AB$

\[
i, j = \text{my_block}(C)\\
\text{for } k__ \text{ in } K:\n\quad k = (k__ + k_\text{offset}) \mod K\\
\quad \text{local_a} = \text{buf_a.get()}\\
\quad \text{local_b} = \text{buf_b.get()}\\
\quad \text{if } k__ + 1 < K:\n\quad \quad \text{buf_a} = A[i, k+1].\text{async_get()}\\
\quad \quad \text{buf_b} = B[k+1, j].\text{async_get()}\\
\quad \text{local_c} += \text{local_a} \times \text{local_b}
\]

1) Iteration offset
2) Pre-fetching, for overlap
Stationary A, B, and C Implementations

- It should be noted that thus far, we’ve implied a stationary C implementation

- With stationary C, C remains in place, while A and B must be communicated

- We’ve also implemented RDMA stationary A&B
Performance Results
Performance Implementations

- We implemented **dense and sparse matrix data structures** on using BCL, for both distributed **CPU** and **GPU**

- Results presented today are for SpMM GPU, using **NVSHMEM**, an **extension of OpenSHMEM** that provides direct GPU-to-GPU communication

- **cuSPARSE** used for local sparse matrix operations
SpMM (Sparse times Dense)

- Bulk synchronous implementations (top 3 lines) use CUDA-aware MPI

- Asynchronous implementations (bottom 2 lines) use NVSHMEM

- All implementations use CuSPARSE for local computation.

*All experiments run on OLCF's Summit. y-axis is runtime, x-axis is number of Tesla V100 GPUs.
Conclusions

1. RDMA-based implementations of distributed matrix multiply decouple inner loop iterations and are truly asynchronous

2. They perform favorably compared to bulk synchronous implementations

3. As with many sparse operations, can be difficult to scale if not enough work
Limitations

1. Many graph algorithms require **custom semirings**
 a. **CuSPARSE** does not currently support custom semirings
 b. Currently evaluating **GE-SpMM** and **CUSP**

2. Still experimenting with **tile partitioning** algorithms

3. RDMA-based Stationary A,B algorithms can be **less memory efficient** than bulk synchronous implementations
Backup Slides
Berkeley Container Library

- A series of data structures built on **global pointers**

- Processes can directly **read and write** from each others’ memories

- Executed in **RDMA**
Berkeley Container Library Philosophy

- Use **RDMA** for all principal data structure operations

1) Executed efficiently in **hardware**

2) No need to **interrupt** remote CPU

3) Maps well to familiar data structure operations
BCL Data Structures

Bloom filters

Queues

Suffix arrays

Hash tables
Drawings / Content
An Issue with Bulk Synchronous Distributed MM

![Diagram showing local matrix operations and barriers for processes P0, P1, P2, P3]
Methods of Moving Tiles

In Cannon’s algorithm, a redistribution step, followed by passing matrices right and below

for k in K:
 send A tile to the right
 send B tile below
 receive A, receive B
 local_c += A*B
Methods of Moving Tiles

In Cannon’s algorithm, a redistribution step, followed by passing matrices right and below

for k in K:
 send A tile to the right
 send B tile below
 receive A, receive B
 local_c += A*B

Implicit barrier!