Tim Davis, Texas A&M University

Graph algorithms in the language of linear algebra

Talk given at SIAM CSE21, March 2021

SuiteSparse:GraphBLAS, a Parallel Implementation of the GraphBLAS API

function name	description	GraphBLAS notation
GrB_mxm	matrix-matrix mult.	$C\langle M \rangle = C \odot AB$
GrB_vxm	vector-matrix mult.	$\mathbf{w}' \langle \mathbf{m}' \rangle = \mathbf{w}' \odot \mathbf{u}' \mathbf{A}$
GrB_mxv	matrix-vector mult.	$\mathbf{w}\langle \mathbf{m} \rangle = \mathbf{w} \odot \mathbf{A}\mathbf{u}$
GrB_eWiseMult	element-wise,	$C\langle M \rangle = C \odot (A \otimes B)$
	set-intersection	$\mathbf{w} \langle \mathbf{m} \rangle = \mathbf{w} \odot (\mathbf{u} \otimes \mathbf{v})$
GrB_eWiseAdd	element-wise,	$\mathbf{C}\langle \mathbf{M}\rangle = \mathbf{C}\odot(\mathbf{A}\oplus\mathbf{B})$
	set-union	$\mathbf{w}\langle \mathbf{m} \rangle = \mathbf{w} \odot (\mathbf{u} \oplus \mathbf{v})$
GrB_extract	extract submatrix	$C\langle M \rangle = C \odot A(i, j)$
		$\mathbf{w}\langle \mathbf{m} \rangle = \mathbf{w} \odot \mathbf{u}(\mathbf{i})$
GrB_assign	assign submatrix	$C\langle M \rangle(i,j) = C(i,j) \odot A$
		$\mathbf{w}\langle \mathbf{m} \rangle(\mathbf{i}) = \mathbf{w}(\mathbf{i}) \odot \mathbf{u}$
GxB_subassign	assign submatrix	$C(i, j)\langle M \rangle = C(i, j) \odot A$
		$\mathbf{w}(\mathbf{i})\langle \mathbf{m} \rangle = \mathbf{w}(\mathbf{i}) \odot \mathbf{u}$
GrB_apply	apply unary op.	$\mathbf{C}\langle \mathbf{M} \rangle = \mathbf{C} \odot f(\mathbf{A})$
		$\mathbf{w}\langle \mathbf{m} \rangle = \mathbf{w} \odot f(\mathbf{u})$
GxB_select	apply select op.	$\mathbf{C}\langle \mathbf{M} \rangle = \mathbf{C} \odot f(\mathbf{A}, \mathbf{k})$
		$\mathbf{w}\langle \mathbf{m} \rangle = \mathbf{w} \odot f(\mathbf{u}, \mathbf{k})$
GrB_reduce	reduce to vector	$\mathbf{w}\langle \mathbf{m} \rangle = \mathbf{w} \odot [\oplus_j \mathbf{A}(:,j)]$
	reduce to scalar	$s = s \odot [\bigoplus_{ij} \mathbf{A}(i,j)]$
GrB_transpose	transpose	$C\langle M \rangle = C \odot A'$
GxB_kron	Kronecker product	$C\langle M \rangle = C \odot kron(A, B)$

caveat: GraphBLAS notation under revision

GrB Matrix and Vector: opaque data structures

8 internal formats: 4 formats, each held by row or column:

sparse: compressed sparse vector, like MATLAB. a matrix is a dense vector of n sparse vectors good general-purpose format

hypersparse: a sparse vector of sparse vectors can support huge graphs (n = 2^{60}). also good for extracting subgraphs.

bitmap: a dense matrix for the values, with an extra dense boolean matrix to describe the pattern. good for vectors and tall-and-thin matrices.

full: just like LAPACK, but also int, bool, user-defined...

Parallel algorithms via OpenMP (CUDA in progress): highly specialized, depending on the data structures. $C < M > = A^*B$: 79 different parallel algorithms, for each of 1,498 built-in semirings, plus a generic one for user-defined operators. 79*1499 = over 118 thousand C=A*B kernels.

So what can you do with these parallel kernels? Lots!

Breadth-first-search (initialization):

 $q = \{source\}$; parent = [size n, all zero] parent (source) = source

Traditional BFS:

while (q not empty)

(q not empty) while $q < \neg parent > = A' * q$ parent < q > = q

SECONDI multiplier: $z = A(i,k)^*q(k) = k$, the parent node id additive operator: ANY function: any(x,y) = x or y, arbitrary choice $\begin{bmatrix} x & y & y \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x & y & y \\ 0 &$

for each i in frontier q for each edge (i, j) if (j not yet seen) add j to next q parent (j) = i flag j as seen

GraphBLAS BFS: using the ANY-SECONDI semiring masked parallel matvec masked parallel assignment

Parallel matrix-matrix multiply

- masked dot product: C<M>=A' *B
- - \blacksquare all four tasks in any C = A * B

A*B all variants: total 9K lines of code, not including 320K lines of generated code for 1,499 semirings

References: Nagasaka, Matsuoka, Azad, Buluç, "High Performance Sparse matrix-matrix products on Intel KNL and multicore architectures", ICPP'18. Gustavson, Two Fast Algorithms for Sparse Matrices: Multiplication and Permuted Transposition, ACM TOMS, 1978.

• unmasked dot product: C=A' *B or $C < \neg M > A' *B$ • saxpy-style, C=A*B, C<M>=A*B, or $C<\neg M>=A*B$. Mix of 4 kinds of tasks: **\square coarse Gustavson:** C(:,j1:j2) = A*B(:,j1:j2) with O(n) workspace fine Gustavson: C(:,j) = A*B(:,j) with many threads, atomics and shared O(n) workspace • coarse Hash: C(:,j1:j2) = A*B(:,j1:j2) with O(f) workspace, f = max "flops" for any C(:,j)fine Hash: C(:,j) = A*B(:,j) with many threads, uses atomics and shared O(f) hash space

M(i,j)=1 Ciinct seen NOSK 1140

X(i) initialized

Each thread given a range il:i2 of rows of B:

C(:,j)+=A*B(i1:i2,j)

Each hash entry contains a row index i and 2-bit atomic state.

Fine Hash tasks: Phase1: scatter M into hash Phase2: numerical work Phase3/4: count C(:,1:m) Phase5: gather from hash

initial State M(i, j) = 0

2 Cij seen X (i) initialized

Parallel assignment: C<M>(i,j)=A C<M>(i,j)+= A

• A blizzard of combinations:

- omask: present or not, complemented or not, structural or not o replace option: true or false
- o accumulator: present or not
- o A: matrix or scalar
- S: constructed or not
- C, M, A: sparse/hypersparse/bitmap/full, by row/col
- Algorithms:
- \circ some use S = C(i,j), symbolic extraction. Given C(I,J)=A where I and J are vectors of indices. $\circ C(I(2),J(3)) = A(2,3)$, then S(2,3) = position of C(I(2),J(3)) in the data structure for C. \circ Allows for C [S(x,y)] = A(x,y) assignment for some row x and column y. o some algorithms do not use S and thus do not construct it.

Parallel assignment: C<M>(I,J)=A, using S

About 40 different algorithms. Most are 2-pass. For example: C<M>(I,J)=A, with S:

• sort I and J index lists, if needed, and remove duplicates; permute A if changed • S = C(I,J), a parallel structural extraction, does not use the mask M. • Symbolic analysis: construct parallel tasks for 1st and 2nd passes • First pass: Iterate through all of set union of (A,S), like A+S. • For each entry found in set union A+S, lookup M. If false, skip it. Otherwise: \circ if both A and S present: assign C[S(i,j)] = A (i,j), updating the existing value \circ if A present but not S: C[S(i,j)] = A(i,j) must be added to C as a new entry: pending tuple (count them) \circ if S present but not A: C[S(i,j)] must be deleted: mark it for deletion (a zombie) • Middle pass: cumulative sum of all pending tuple counts, for all tasks • Second pass: repeat the algorithm, but only insert pending tuples into the pile

Intel® Xeon® E5-2698 v4 CPU with 20 cores and 40 threads, with gcc 5.4.0. Caveat: MATLAB R2018a, I need to upgrade.

MATLAB: native sparse r @GrB advantages

@GrB: any semirin MATLAB: just pluscaveat: Tim D wrot

Same syntax, more int16, ..., single cor

MATLAB: too big @GrB: no problem

MATLAB mask: sai much faster

natrices vs	
s / limitations	OGGMAT
ng, any mask -times te both	Up tc
e types: sparse int8, omplex,	2x to
n; hypersparse	
me syntax, @GrB	MATI Grap 100,(

)GrB objects

rB speedup relative to **FLAB native on 20 cores**

 $\mathbf{30X}$

1000x

LAB: > one week + hBLAS: 7 seconds, 000x speedup

Performance of BFS:

SuiteSparse 32.7

GAP, by Scott Beamer: 6 parallel kernels, fastest method in most cases; but difficult code to write, not a user library. SuiteSparse:GraphBLAS: also parallel, simple to write, sometimes faster; easy code to write, able to write "any" algorithm

time in seconds, NVIDIA DGX Station (Intel Xeon, 20 hardware cores, 40 threads)

Kron	Twitter
31.5	10.8
23.6	9.25

Performance of PageRank: time in seconds, NVIDIA DGX Station (Intel Xeon, 20 hardware cores, 40 threads)

Performance of Triangle Counting:

GAP: about tied with GraphBLAS for PageRank. About 3x faster than GraphBLAS for TC. SuiteSparse: not yet fully exploiting non-blocking mode, so L=tril(A); C<L>=L'*L; nt=sum(C) constructs C then sums it up.

Kron	Twitter
374.1	79.6
918.0	239.6

Web	Road
5.1	1.0
9.3	1.3

Performance of Connected Components: time in seconds, NVIDIA DGX Station (Intel Xeon, 20 hardware cores, 40 threads)

Performance of Single-Source Shortest Paths:

SuiteSparse: parallel code, easy to write, but typically 3x to 4x slower than the GAP, still worse for the Road graph, for Connected Components and Single-Source-Shortest-Paths.

GxB select (&L, ... GxB TRIL, A, ...); GxB select (&U, ... GxB TRIU, A, ...); GrB mxm (C, L, NULL, GxB PLUS PAIR INT64, L, U, GrB DESC ST1) ; // C<L>=L*U' GrB reduce (s, NULL, GrB PLUS INT64 MONOID, C, NULL) ; // s=sum(C) as GrB Scalar GrB free (&C) ; GrB free (&L) ; GrB free (&U) ; // C, L, U now known to be temporary GrB extractElement (&ntriangles, s) ; // ntriangles as int64 t

• no need to form L, U, and C

GraphBLAS non-blocking mode

non-blocking API allows intermediate matrices to not be instantiated allows for dependency DAG with fusion and lazy evaluation not yet exploited in SuiteSparse:GraphBLAS. In progress.

opaque objects

ntriangles

user visible value (int64 t)

// L=tril(A, -1) // U=triu(A,1)

Matrix-based API vs Vertex-centered API

GRAPHBLAS

export

See Roger Pearce's talk, this session

matrix-based API end user can write their own parallel vertex/edge-based code, or use a vertex/edge-centered library

it's not *either-or*, it's *both-and*

Strengths:

- SuiteSparse:GraphBLAS:

Limitations:

- be possible to extend the API

In summary: GraphBLAS strengths & limitations

• avoids "for all j in Adj(i) ..." loops; akin to triply-nested loops vs C=A*B • simple high-level API; bulk operations give lots of power to underlying implementation • typically simple algorithms; most parallel graph algorithms can be expressed in linear algebra • non-blocking mode in API: can fuse kernels and skip instantiating intermediate results

o some asynchronous features can be expressed (ANY monoid) o no loss of performance in Python vs C API; nearly same in MATLAB o parallel performance can rival or even beat highly-tuned graph libraries

•no "for all j in Adj(i) ..." loops, but can work side-by-side with vertex-centered libraries • some algorithms hard to express (Depth-First-Search, Afforest CC, ...) • SuiteSparse:GraphBLAS: non-blocking mode: just zombies, pending tuples, & lazy sort so far • fully asynchronous methods hard to express (PageRank with Gauss-Seidel, for example) ... but might

Graph algorithms in the language of linear algebra

Tim Davis, Texas A&M University

