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Introduction

• Graph analytics
– betweenness centrality, clustering coefficients, triangle counting, 

colored intersection search

• Scientific computing
– algebraic multigrid, linear solvers

• Machine learning
– dimensionality reduction (e.g. NMF, PCA), spectral clustering and 

Markov clustering

Sparse General Matrix-Matrix Multiplication (SpGEMM)

A key kernel in GraphBLAS with many applications
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Questions and Contributions 

• Given two input matrices (A and B) and a given processor
– What is best possible performance attained by any algorithm?
– What is the best possible performance that a given algorithm can attain?
– We consider a Roofline model for SpGEMM to answer these questions

• Given the observed performance from an algorithm
– Can we explain why the best possible performance may or may not be

achieved under a performance model?
– We explain based on bandwidth utilization 

• Can we develop an algorithm that always achieves the 
performance predicted by the Roofline model?
– PB-SpGEMM: Predictable performance by saturating memory bandwidth
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Toward A Performance Model for SpGEMM Algorithms
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Goal: Find arithmetic Intensity (AI) of SpGEMM
- flops/bytes moved.

Compression factor (cf) = flops/nnz(C)
Assume b bytes (including indices) per nonzero

-./0 123-4 ≤ 5 67
8 , assuming a memory-bound operation  

Is this a good bound? 
Think random ER matrices: cf =1, let b=16 bytes, bandwidth 50GB/s
Best Attainable FLOPS : 3.1 GFLOPS. 
Actual performance is much worse.  

Best case: All matrices are accessed exactly once

Matrices are accessed more than once
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Case1: Column SpGEMM

Matrix Access Pattern
Access of B Stream
Access of A Non-Stream, Accessed multiple times
Access of C Stream

Merge: Hash/Heap/SPA
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Case1: Column SpGEMM
Access-pattern-specific Performance Bounds

Merge: Hash/Heap/SPA
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In the worst case, each column of A is accessed from memory 



Case2: Outer-Product SpGEMM
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Case2: Outer-Product SpGEMM
Access-pattern-specific Performance Bounds
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Roofline Performance Model for SpGEMM Algorithms

Using roofline model[1] to estimate performance when multiplying two Erdos-
Renyi matrices on an Intel Skylake machine (single socket)

!" #$% &'()** ≥ ,
-.

!" /0123 &pGEMM ≥ ,
.8

Assuming bandwidth(:) = 50GB/s

[1] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: an insightful visual performance model for multicore architectures
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Consider Erdos-Renyi model (cf≈1) and using tuple
(rowid, colid, val) to represent non-zeros (b=16 bytes)



Can Existing Algorithms Achieve Performance Predicted by this model?

• Column SpGEMM:
– Prediction for ER matrices

Why? 

Expecting !"#$% &'( %)*+,, =
- ∗ /0 &'( %)*+,, ≈ 1 GFLOPS

Getting… !"#$% &'( %)*+,, ≈
0.5 *!"#$% or less 

• Random memory access -> huge latency overhead.
• It may not be possible to avoid the irregular data access problem in Column 

SpGEMM
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New Algorithm: PB-SpGEMM

Based on the Expand-Sort-Merge strategy

How do we expand?
Outer product formation. Streaming accesses of input matrices

How do we organize intermediate results?
Propagation blocking (Beamer et al. IPDPS 2017 for PageRank, Azad and 

Buluç IPDPS 2017 for SpMSpV)



Propagation Blocking with Outer Product
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Assuming:
• Cache Line = 64 bytes
• Each Tuple = 16 bytes

C(CSR)



What is Propagation Blocking?

[1] Beamer, Asanović, Patterson: Reducing PageRank communication via propagation blocking [IPDPS 2017]
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Ø Propagation-blocking[1]: partition the data transfers during multiplication
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Assuming:
• Cache Line = 64 bytes
• Each Tuple = 16 bytes

C(CSR)



Figure: An example of PB-SpGEMM multiplying two 4×4 matrices with two bins
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A full example of PB-SpGEMM

3 Steps in PB-SPGEMM

Number of bins is set such that each bin fits in L1/L2 cache

Sort: in cache
In-place radix sort
• Concatenate rowid and colid into an 8-byte integer key
• Adjust number of bins to make sure sorting in cache

Compress (sorted indices): in cache



Figure: An example of PB-SpGEMM multiplying two 4×4 matrices with two bins
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PB-SpGEMM performance model
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The design of PB-SpGEMM ensures exact bound on AI



Performance Evaluation (ER matrices on Skylake)
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24 cores (1 socket)

50GB/s bandwidth

PB-SpGEMM approximately achieves 

the predicted performance 

HeapSpGEMM, HashSpGEMM, HashVecSpGEMM

Column SpGEMM

Nagasaka et al. Parallel Computing, 2019



Performance Evaluation (RMAT matrices on Skylake)
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24 cores (1 socket)
50GB/s bandwidth

PB-SpGEMM approximately achieves 
the predicted performance
(worse than ER) 



Performance Evaluation (IBM Power9)
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20 cores (1 socket)
125GB/s bandwidth



Performance Evaluation

Real metrices (from the SuiteSparse Matrix Collection)
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PB-SpGEMM approximately achieves  the predicted performance 
for matrices with low compression factors

1        1.1     1.6    1.6      2      2     2.1    2.3      3       3      15     16cf



Limitations

High compression factor: The expanded matrix gets bigger.
PB-SpGEMM still obtains predictable but poor performance.
ü When squaring matrices, more 90% matrices in the 
SuiteSparse Matrix Collection have a compress factor of four or less 

Dual socket performance: falls well behind the model 
even for matrices with low compression ratio 

Inter-socket bandwidth contention 



Summary

Ø We can estimate the arithmetic intensity (AI) of an SpGEMM

algorithm based on the compression factor of the multiplication 

and number of bytes needed to store each nonzero

Ø The peak performance (!*AI) can only be attained if the 

algorithm fully utilizes the memory bandwidth

Ø Column SpGEMM algorithms do not achieve the predicted 

performance because of irregular data accesses

Ø PB-SpGEMM approximately saturates the memory bandwidth 
in all of its three phases and attains performance as predicted by 

the Roofline model.

Ø PB-SpGEMM does not perform well when the compression factor 

is large (Hash-SpGEMM performs better in that case)


