LCOV - code coverage report
Current view: top level - experimental/algorithm - LAGraph_BF_full.c (source / functions) Hit Total Coverage
Test: LAGraph code coverage report. Commit id: 3b461aa. Current time (UTC): 2024-01-25T16:04:32Z Lines: 89 89 100.0 %
Date: 2024-01-25 16:05:28 Functions: 4 4 100.0 %

          Line data    Source code
       1             : //------------------------------------------------------------------------------
       2             : // LAGraph_BF_full.c: Bellman-Ford single-source shortest paths, returns tree
       3             : //------------------------------------------------------------------------------
       4             : 
       5             : // LAGraph, (c) 2019-2022 by The LAGraph Contributors, All Rights Reserved.
       6             : // SPDX-License-Identifier: BSD-2-Clause
       7             : //
       8             : // For additional details (including references to third party source code and
       9             : // other files) see the LICENSE file or contact permission@sei.cmu.edu. See
      10             : // Contributors.txt for a full list of contributors. Created, in part, with
      11             : // funding and support from the U.S. Government (see Acknowledgments.txt file).
      12             : // DM22-0790
      13             : 
      14             : // Contributed by Jinhao Chen and Timothy A. Davis, Texas A&M University
      15             : 
      16             : //------------------------------------------------------------------------------
      17             : 
      18             : // LAGraph_BF_full: Bellman-Ford single source shortest paths, returning both
      19             : // the path lengths and the shortest-path tree.
      20             : 
      21             : // LAGraph_BF_full performs a Bellman-Ford to find out shortest path, parent
      22             : // nodes along the path and the hops (number of edges) in the path from given
      23             : // source vertex s in the range of [0, n) on graph given as matrix A with size
      24             : // n*n. The sparse matrix A has entry A(i, j) if there is an edge from vertex i
      25             : // to vertex j with weight w, then A(i, j) = w. Furthermore, LAGraph_BF_full
      26             : // requires A(i, i) = 0 for all 0 <= i < n.
      27             : 
      28             : // LAGraph_BF_full returns GrB_SUCCESS if successful, and GrB_NO_VALUE if it
      29             : // detects the existence of negative- weight cycle. The GrB_Vector d(k), pi(k)
      30             : // and h(k)  (i.e., *pd_output, *ppi_output and *ph_output respectively) will
      31             : // be NULL when negative-weight cycle detected. Otherwise, the vector d has
      32             : // d(k) as the shortest distance from s to k. pi(k) = p+1, where p is the
      33             : // parent node of k-th node in the shortest path. In particular, pi(s) = 0.
      34             : // h(k) = hop(s, k), the number of edges from s to k in the shortest path.
      35             : 
      36             : //------------------------------------------------------------------------------
      37             : 
      38             : #define LG_FREE_ALL                    \
      39             : {                                      \
      40             :     GrB_free(&d);                      \
      41             :     GrB_free(&dtmp);                   \
      42             :     GrB_free(&Atmp);                   \
      43             :     GrB_free(&BF_Tuple3);              \
      44             :     GrB_free(&BF_lMIN_Tuple3);         \
      45             :     GrB_free(&BF_PLUSrhs_Tuple3);      \
      46             :     GrB_free(&BF_EQ_Tuple3);           \
      47             :     GrB_free(&BF_lMIN_Tuple3_Monoid);  \
      48             :     GrB_free(&BF_lMIN_PLUSrhs_Tuple3); \
      49             :     LAGraph_Free ((void**)&I, NULL);   \
      50             :     LAGraph_Free ((void**)&J, NULL);   \
      51             :     LAGraph_Free ((void**)&w, NULL);   \
      52             :     LAGraph_Free ((void**)&W, NULL);   \
      53             :     LAGraph_Free ((void**)&h, NULL);   \
      54             :     LAGraph_Free ((void**)&pi, NULL);  \
      55             : }
      56             : 
      57             : #include <LAGraph.h>
      58             : #include <LAGraphX.h>
      59             : #include <LG_internal.h>  // from src/utility
      60             : 
      61             : typedef void (*LAGraph_binary_function) (void *, const void *, const void *) ;
      62             : 
      63             : //------------------------------------------------------------------------------
      64             : // data type for each entry of the adjacent matrix A and "distance" vector d;
      65             : // <INFINITY,INFINITY,INFINITY> corresponds to nonexistence of a path, and
      66             : // the value  <0, 0, NULL> corresponds to a path from a vertex to itself
      67             : //------------------------------------------------------------------------------
      68             : typedef struct
      69             : {
      70             :     double w;    // w  corresponds to a path weight.
      71             :     GrB_Index h; // h  corresponds to a path size or number of hops.
      72             :     GrB_Index pi;// pi corresponds to the penultimate vertex along a path.
      73             :                  // vertex indexed as 1, 2, 3, ... , V, and pi = 0 (as nil)
      74             :                  // for u=v, and pi = UINT64_MAX (as inf) for (u,v) not in E
      75             : }
      76             : BF_Tuple3_struct;
      77             : 
      78             : //------------------------------------------------------------------------------
      79             : // 2 binary functions, z=f(x,y), where Tuple3xTuple3 -> Tuple3
      80             : //------------------------------------------------------------------------------
      81             : 
      82       20297 : void BF_lMIN
      83             : (
      84             :     BF_Tuple3_struct *z,
      85             :     const BF_Tuple3_struct *x,
      86             :     const BF_Tuple3_struct *y
      87             : )
      88             : {
      89       20297 :     if (x->w < y->w
      90        5788 :         || (x->w == y->w && x->h < y->h)
      91        5788 :         || (x->w == y->w && x->h == y->h && x->pi < y->pi))
      92             :     {
      93       14565 :         if (z != x) { *z = *x; }
      94             :     }
      95             :     else
      96             :     {
      97        5732 :         *z = *y;
      98             :     }
      99       20297 : }
     100             : 
     101       25194 : void BF_PLUSrhs
     102             : (
     103             :     BF_Tuple3_struct *z,
     104             :     const BF_Tuple3_struct *x,
     105             :     const BF_Tuple3_struct *y
     106             : )
     107             : {
     108       25194 :     z->w = x->w + y->w ;
     109       25194 :     z->h = x->h + y->h ;
     110       25194 :     z->pi = (x->pi != UINT64_MAX && y->pi != 0) ?  y->pi : x->pi ;
     111       25194 : }
     112             : 
     113        4424 : void BF_EQ
     114             : (
     115             :     bool *z,
     116             :     const BF_Tuple3_struct *x,
     117             :     const BF_Tuple3_struct *y
     118             : )
     119             : {
     120        4424 :     (*z) = (x->w == y->w && x->h == y->h && x->pi == y->pi) ;
     121        4424 : }
     122             : 
     123             : // Given a n-by-n adjacency matrix A and a source vertex s.
     124             : // If there is no negative-weight cycle reachable from s, return the distances
     125             : // of shortest paths from s and parents along the paths as vector d. Otherwise,
     126             : // returns d=NULL if there is a negtive-weight cycle.
     127             : // pd_output is pointer to a GrB_Vector, where the i-th entry is d(s,i), the
     128             : //   sum of edges length in the shortest path
     129             : // ppi_output is pointer to a GrB_Vector, where the i-th entry is pi(i), the
     130             : //   parent of i-th vertex in the shortest path
     131             : // ph_output is pointer to a GrB_Vector, where the i-th entry is h(s,i), the
     132             : //   number of edges from s to i in the shortest path
     133             : // A has zeros on diagonal and weights on corresponding entries of edges
     134             : // s is given index for source vertex
     135           5 : GrB_Info LAGraph_BF_full
     136             : (
     137             :     GrB_Vector *pd_output,      //the pointer to the vector of distance
     138             :     GrB_Vector *ppi_output,     //the pointer to the vector of parent
     139             :     GrB_Vector *ph_output,       //the pointer to the vector of hops
     140             :     const GrB_Matrix A,         //matrix for the graph
     141             :     const GrB_Index s           //given index of the source
     142             : )
     143             : {
     144             :     GrB_Info info;
     145           5 :     char *msg = NULL ;
     146             :     // tmp vector to store distance vector after n (i.e., V) loops
     147           5 :     GrB_Vector d = NULL, dtmp = NULL;
     148           5 :     GrB_Matrix Atmp = NULL;
     149             :     GrB_Type BF_Tuple3;
     150             : 
     151             :     GrB_BinaryOp BF_lMIN_Tuple3;
     152             :     GrB_BinaryOp BF_PLUSrhs_Tuple3;
     153             :     GrB_BinaryOp BF_EQ_Tuple3;
     154             : 
     155             :     GrB_Monoid BF_lMIN_Tuple3_Monoid;
     156             :     GrB_Semiring BF_lMIN_PLUSrhs_Tuple3;
     157             : 
     158             :     GrB_Index nrows, ncols, n, nz;  // n = # of row/col, nz = # of nnz in graph
     159           5 :     GrB_Index *I = NULL, *J = NULL; // for col/row indices of entries from A
     160           5 :     GrB_Index *h = NULL, *pi = NULL;
     161           5 :     double *w = NULL;
     162           5 :     BF_Tuple3_struct *W = NULL;
     163             : 
     164           5 :     LG_ASSERT (A != NULL && pd_output != NULL &&
     165             :         ppi_output != NULL && ph_output != NULL, GrB_NULL_POINTER) ;
     166             : 
     167           5 :     *pd_output  = NULL;
     168           5 :     *ppi_output = NULL;
     169           5 :     *ph_output  = NULL;
     170           5 :     GRB_TRY (GrB_Matrix_nrows (&nrows, A)) ;
     171           5 :     GRB_TRY (GrB_Matrix_ncols (&ncols, A)) ;
     172           5 :     GRB_TRY (GrB_Matrix_nvals (&nz, A));
     173           5 :     LG_ASSERT_MSG (nrows == ncols, -1002, "A must be square") ;
     174           5 :     n = nrows;
     175           5 :     LG_ASSERT_MSG (s < n, GrB_INVALID_INDEX, "invalid source node") ;
     176             : 
     177             :     //--------------------------------------------------------------------------
     178             :     // create all GrB_Type GrB_BinaryOp GrB_Monoid and GrB_Semiring
     179             :     //--------------------------------------------------------------------------
     180             :     // GrB_Type
     181           5 :     GRB_TRY (GrB_Type_new(&BF_Tuple3, sizeof(BF_Tuple3_struct)));
     182             : 
     183             :     // GrB_BinaryOp
     184           5 :     GRB_TRY (GrB_BinaryOp_new(&BF_EQ_Tuple3,
     185             :         (LAGraph_binary_function) (&BF_EQ), GrB_BOOL, BF_Tuple3, BF_Tuple3));
     186           5 :     GRB_TRY (GrB_BinaryOp_new(&BF_lMIN_Tuple3,
     187             :         (LAGraph_binary_function) (&BF_lMIN), BF_Tuple3, BF_Tuple3, BF_Tuple3));
     188           5 :     GRB_TRY (GrB_BinaryOp_new(&BF_PLUSrhs_Tuple3,
     189             :         (LAGraph_binary_function)(&BF_PLUSrhs),
     190             :         BF_Tuple3, BF_Tuple3, BF_Tuple3));
     191             : 
     192             :     // GrB_Monoid
     193           5 :     BF_Tuple3_struct BF_identity = (BF_Tuple3_struct) { .w = INFINITY,
     194             :         .h = UINT64_MAX, .pi = UINT64_MAX };
     195           5 :     GRB_TRY (GrB_Monoid_new_UDT(&BF_lMIN_Tuple3_Monoid, BF_lMIN_Tuple3,
     196             :         &BF_identity));
     197             : 
     198             :     //GrB_Semiring
     199           5 :     GRB_TRY (GrB_Semiring_new(&BF_lMIN_PLUSrhs_Tuple3,
     200             :         BF_lMIN_Tuple3_Monoid, BF_PLUSrhs_Tuple3));
     201             : 
     202             :     //--------------------------------------------------------------------------
     203             :     // allocate arrays used for tuplets
     204             :     //--------------------------------------------------------------------------
     205             : 
     206           5 :     LAGRAPH_TRY (LAGraph_Malloc ((void **) &I, nz, sizeof(GrB_Index), msg)) ;
     207           5 :     LAGRAPH_TRY (LAGraph_Malloc ((void **) &J, nz, sizeof(GrB_Index), msg)) ;
     208           5 :     LAGRAPH_TRY (LAGraph_Malloc ((void **) &w, nz, sizeof(double), msg)) ;
     209           5 :     LAGRAPH_TRY (LAGraph_Malloc ((void **) &W, nz, sizeof(BF_Tuple3_struct),
     210             :         msg)) ;
     211             : 
     212             :     //--------------------------------------------------------------------------
     213             :     // create matrix Atmp based on A, while its entries become BF_Tuple3 type
     214             :     //--------------------------------------------------------------------------
     215             : 
     216           5 :     GRB_TRY (GrB_Matrix_extractTuples_FP64(I, J, w, &nz, A));
     217             :     int nthreads, nthreads_outer, nthreads_inner ;
     218           5 :     LG_TRY (LAGraph_GetNumThreads (&nthreads_outer, &nthreads_inner, msg)) ;
     219           5 :     nthreads = nthreads_outer * nthreads_inner ;
     220           5 :     printf ("nthreads %d\n", nthreads) ;
     221             :     int64_t k;
     222             :     #pragma omp parallel for num_threads(nthreads) schedule(static)
     223         951 :     for (k = 0; k < nz; k++)
     224             :     {
     225         946 :         if (w[k] == 0)             //diagonal entries
     226             :         {
     227         184 :             W[k] = (BF_Tuple3_struct) { .w = 0, .h = 0, .pi = 0 };
     228             :         }
     229             :         else
     230             :         {
     231         762 :             W[k] = (BF_Tuple3_struct) { .w = w[k], .h = 1, .pi = I[k] + 1 };
     232             :         }
     233             :     }
     234           5 :     GRB_TRY (GrB_Matrix_new(&Atmp, BF_Tuple3, n, n));
     235           5 :     GRB_TRY (GrB_Matrix_build_UDT(Atmp, I, J, W, nz, BF_lMIN_Tuple3));
     236             : 
     237             :     //--------------------------------------------------------------------------
     238             :     // create and initialize "distance" vector d
     239             :     //--------------------------------------------------------------------------
     240           5 :     GRB_TRY (GrB_Vector_new(&d, BF_Tuple3, n));
     241             :     // initial distance from s to itself
     242           5 :     BF_Tuple3_struct d0 = (BF_Tuple3_struct) { .w = 0, .h = 0, .pi = 0 };
     243           5 :     GRB_TRY (GrB_Vector_setElement_UDT(d, &d0, s));
     244             : 
     245             :     //--------------------------------------------------------------------------
     246             :     // start the Bellman Ford process
     247             :     //--------------------------------------------------------------------------
     248             :     // copy d to dtmp in order to create a same size of vector
     249           5 :     GRB_TRY (GrB_Vector_dup(&dtmp, d));
     250           5 :     bool same= false;          // variable indicating if d == dtmp
     251           5 :     int64_t iter = 0;          // number of iterations
     252             : 
     253             :     // terminate when no new path is found or more than V-1 loops
     254          93 :     while (!same && iter < n - 1)
     255             :     {
     256             :         // execute semiring on d and A, and save the result to dtmp
     257          88 :         GRB_TRY (GrB_vxm(dtmp, GrB_NULL, GrB_NULL, BF_lMIN_PLUSrhs_Tuple3,
     258             :             d, Atmp, GrB_NULL));
     259             : 
     260          88 :         LG_TRY (LAGraph_Vector_IsEqualOp (&same, dtmp, d, BF_EQ_Tuple3, NULL));
     261          88 :         if (!same)
     262             :         {
     263          85 :             GrB_Vector ttmp = dtmp;
     264          85 :             dtmp = d;
     265          85 :             d = ttmp;
     266             :         }
     267          88 :         iter ++;
     268             :     }
     269             : 
     270             :     // check for negative-weight cycle only when there was a new path in the
     271             :     // last loop, otherwise, there can't be a negative-weight cycle.
     272           5 :     if (!same)
     273             :     {
     274             :         // execute semiring again to check for negative-weight cycle
     275           2 :         GRB_TRY (GrB_vxm(dtmp, GrB_NULL, GrB_NULL, BF_lMIN_PLUSrhs_Tuple3,
     276             :             d, Atmp, GrB_NULL));
     277             : 
     278             :         // if d != dtmp, then there is a negative-weight cycle in the graph
     279           2 :         LG_TRY (LAGraph_Vector_IsEqualOp (&same, dtmp, d, BF_EQ_Tuple3, NULL));
     280           2 :         if (!same)
     281             :         {
     282             :             // printf("A negative-weight cycle found. \n");
     283           2 :             LG_FREE_ALL;
     284           2 :             return (GrB_NO_VALUE) ;
     285             :         }
     286             :     }
     287             : 
     288             :     //--------------------------------------------------------------------------
     289             :     // extract tuple from "distance" vector d and create GrB_Vectors for output
     290             :     //--------------------------------------------------------------------------
     291             : 
     292           3 :     GRB_TRY (GrB_Vector_extractTuples_UDT (I, (void *) W, &nz, d));
     293           3 :     LAGRAPH_TRY (LAGraph_Malloc ((void **) &h , nz, sizeof(GrB_Index), msg)) ;
     294           3 :     LAGRAPH_TRY (LAGraph_Malloc ((void **) &pi, nz, sizeof(GrB_Index), msg)) ;
     295             : 
     296         111 :     for (k = 0; k < nz; k++)
     297             :     {
     298         108 :         w [k] = W[k].w ;
     299         108 :         h [k] = W[k].h ;
     300         108 :         pi[k] = W[k].pi;
     301             :     }
     302           3 :     GRB_TRY (GrB_Vector_new(pd_output,  GrB_FP64,   n));
     303           3 :     GRB_TRY (GrB_Vector_new(ppi_output, GrB_UINT64, n));
     304           3 :     GRB_TRY (GrB_Vector_new(ph_output,  GrB_UINT64, n));
     305           3 :     GRB_TRY (GrB_Vector_build_FP64  (*pd_output , I, w , nz,GrB_MIN_FP64  ));
     306           3 :     GRB_TRY (GrB_Vector_build_UINT64(*ppi_output, I, pi, nz,GrB_MIN_UINT64));
     307           3 :     GRB_TRY (GrB_Vector_build_UINT64(*ph_output , I, h , nz,GrB_MIN_UINT64));
     308           3 :     LG_FREE_ALL;
     309           3 :     return (GrB_SUCCESS) ;
     310             : }

Generated by: LCOV version 1.14