LCOV - code coverage report
Current view: top level - experimental/algorithm - LAGraph_BF_pure_c_double.c (source / functions) Hit Total Coverage
Test: LAGraph code coverage report. Commit id: cc56ed4. Current time (UTC): 2024-08-30T17:14:30Z Lines: 36 36 100.0 %
Date: 2024-08-30 17:16:41 Functions: 1 1 100.0 %

          Line data    Source code
       1             : //------------------------------------------------------------------------------
       2             : // BF_pure_c_double.c: Bellman-Ford method, not using GraphBLAS
       3             : //------------------------------------------------------------------------------
       4             : 
       5             : // LAGraph, (c) 2019-2022 by The LAGraph Contributors, All Rights Reserved.
       6             : // SPDX-License-Identifier: BSD-2-Clause
       7             : //
       8             : // For additional details (including references to third party source code and
       9             : // other files) see the LICENSE file or contact permission@sei.cmu.edu. See
      10             : // Contributors.txt for a full list of contributors. Created, in part, with
      11             : // funding and support from the U.S. Government (see Acknowledgments.txt file).
      12             : // DM22-0790
      13             : 
      14             : // Contributed by Jinhao Chen and Timothy A. Davis, Texas A&M University
      15             : 
      16             : //------------------------------------------------------------------------------
      17             : 
      18             : // LAGraph_BF_pure_c_double: Bellman-Ford single source shortest paths,
      19             : // returning both the path lengths and the shortest-path tree.
      20             : 
      21             : // LAGraph_BF_pure_c_double performs a Bellman-Ford to find out shortest path
      22             : // length, parent nodes along the path from given source vertex s in the range
      23             : // of [0, n) on graph with n nodes. It is implemented purely using conventional
      24             : // method. It is used here for checking the correctness of the result and
      25             : // comparison with the Bellman Ford implemented based on LAGraph. Therefore, it
      26             : // require the graph represented as triplet format (I, J, W), which is an edge
      27             : // from vertex I(k) to vertex J(k) with weight W(k), and also the number of
      28             : // vertices and number of edges.
      29             : 
      30             : // LAGraph_BF_pure_c_double returns GrB_SUCCESS if it succeeds. In this case,
      31             : // there are no negative-weight cycle in the graph, and d and pi are returned.
      32             : // The vector d has d(k) as the distance from source noce to k-th node. pi(k) =
      33             : // p, where p is the parent node of k-th node in the shortest path. In
      34             : // particular, pi(s) = -1.
      35             : 
      36             : // If the graph has a negative-weight cycle, GrB_NO_VALUE is returned, and the
      37             : // vectors d and pi (i.e., pd and ppi) will be NULL.
      38             : 
      39             : //------------------------------------------------------------------------------
      40             : 
      41             : #define LG_FREE_ALL                         \
      42             : {                                           \
      43             :     LAGraph_Free ((void**) &d, NULL) ;      \
      44             :     LAGraph_Free ((void**) &pi, NULL) ;     \
      45             : }
      46             : 
      47             : #include <float.h>
      48             : 
      49             : #include "LG_internal.h"
      50             : #include <LAGraphX.h>
      51             : 
      52             : // Given the edges and corresponding weights of a graph in tuple
      53             : // form {I, J, W} and a source vertex s. If there is no negative-weight
      54             : // cycle reachable from s, returns GrB_SUCCESS and the shortest distance
      55             : // d and the shortest path tree pi. Otherwise return NULL pointer for d
      56             : // and pi.
      57           5 : GrB_Info LAGraph_BF_pure_c_double
      58             : (
      59             :     double **pd,     // pointer to distance vector d, d(k) = shorstest distance
      60             :                      // between s and k if k is reachable from s
      61             :     int64_t **ppi,   // pointer to parent index vector pi, pi(k) = parent of
      62             :                      // node k in the shortest path tree
      63             :     const int64_t s, // given source node index
      64             :     const int64_t n, // number of nodes
      65             :     const int64_t nz,// number of edges
      66             :     const int64_t *I,// row index vector
      67             :     const int64_t *J,// column index vector
      68             :     const double  *W // weight vector, W(i) = weight of edge (I(i),J(i))
      69             : )
      70             : {
      71           5 :     char *msg = NULL ;
      72             :     int64_t i, j, k;
      73           5 :     double *d = NULL;
      74           5 :     int64_t *pi = NULL;
      75           5 :     LG_ASSERT (I != NULL && J != NULL && W != NULL && pd != NULL &&
      76             :         ppi != NULL, GrB_NULL_POINTER) ;
      77             : 
      78           5 :     LAGraph_Free ((void **) pd, NULL) ;
      79           5 :     LAGraph_Free ((void **) ppi, NULL) ;
      80             : 
      81           5 :     LG_ASSERT_MSG (s < n, GrB_INVALID_INDEX, "invalid source node") ;
      82             : 
      83             :     // allocate d and pi
      84           5 :     LAGRAPH_TRY (LAGraph_Malloc((void **) &d,  n, sizeof(double), msg));
      85           5 :     LAGRAPH_TRY (LAGraph_Malloc((void **) &pi, n, sizeof(int64_t), msg));
      86             : 
      87             :     // initialize d to a vector of INF while set d(s) = 0
      88             :     // and pi to a vector of -1
      89         187 :     for (i = 0; i < n; i++)
      90             :     {
      91         182 :         d[i] = INFINITY;
      92         182 :         pi[i] = -1;
      93             :     }
      94           5 :     d[s] = 0;
      95             :     // start the RELAX process and print results after each loop
      96           5 :     bool new_path = true;     //variable indicating if new path is found
      97           5 :     int64_t count = 0;        //number of loops
      98             :     // terminate when no new path is found or more than n-1 loops
      99          85 :     while(new_path && count < n-1)
     100             :     {
     101          80 :         new_path = false;
     102       20786 :         for (k = 0; k < nz; k++)
     103             :         {
     104       20706 :             i = I[k];
     105       20706 :             j = J[k];
     106       20706 :             if (d[j] > d[i] + W[k])
     107             :             {
     108       11110 :                 d[j] = d[i] + W[k];
     109       11110 :                 pi[j] = i;
     110       11110 :                 new_path = true;
     111             :             }
     112             :         }
     113          80 :         count++;
     114             :     }
     115             : 
     116             :     // check for negative-weight cycle only when there was a new path in the
     117             :     // last loop, otherwise, there can't be a negative-weight cycle.
     118           5 :     if (new_path)
     119             :     {
     120             :         // Do another loop of RELAX to check for negative loop,
     121             :         // return true if there is negative-weight cycle;
     122             :         // otherwise, print the distance vector and return false.
     123           4 :         for (k = 0; k < nz; k++)
     124             :         {
     125           4 :             i = I[k];
     126           4 :             j = J[k];
     127           4 :             if (d[j] > d[i] + W[k] + DBL_EPSILON*d[j])
     128             :             {
     129           2 :                 LG_FREE_ALL ;
     130           2 :                 return (GrB_NO_VALUE) ;
     131             :             }
     132             :         }
     133             :     }
     134             : 
     135           3 :     *pd = d;
     136           3 :     *ppi = pi;
     137           3 :     return (GrB_SUCCESS) ;
     138             : }

Generated by: LCOV version 1.14