LCOV - code coverage report
Current view: top level - src/utility - LG_msort2.c (source / functions) Hit Total Coverage
Test: LAGraph code coverage report. Commit id: cc56ed4. Current time (UTC): 2024-08-30T17:14:30Z Lines: 113 113 100.0 %
Date: 2024-08-30 17:16:41 Functions: 4 4 100.0 %

          Line data    Source code
       1             : //------------------------------------------------------------------------------
       2             : // LG_msort2: sort a 2-by-n list of integers, using A[0:1][ ] as the key
       3             : //------------------------------------------------------------------------------
       4             : 
       5             : // LAGraph, (c) 2019-2022 by The LAGraph Contributors, All Rights Reserved.
       6             : // SPDX-License-Identifier: BSD-2-Clause
       7             : //
       8             : // For additional details (including references to third party source code and
       9             : // other files) see the LICENSE file or contact permission@sei.cmu.edu. See
      10             : // Contributors.txt for a full list of contributors. Created, in part, with
      11             : // funding and support from the U.S. Government (see Acknowledgments.txt file).
      12             : // DM22-0790
      13             : 
      14             : // Contributed by Timothy A. Davis, Texas A&M University
      15             : 
      16             : //------------------------------------------------------------------------------
      17             : 
      18             : // A parallel mergesort of an array of 2-by-n integers.  Each key
      19             : // consists of two integers.
      20             : 
      21             : #define LG_FREE_ALL LAGraph_Free ((void **) &W, NULL) ;
      22             : 
      23             : #include "LG_internal.h"
      24             : 
      25             : //------------------------------------------------------------------------------
      26             : // prototype only needed for LG_msort2
      27             : //------------------------------------------------------------------------------
      28             : 
      29             : void LG_msort_2b_create_merge_tasks
      30             : (
      31             :     // output:
      32             :     int64_t *LG_RESTRICT L_task,        // L_task [t0...t0+ntasks-1] computed
      33             :     int64_t *LG_RESTRICT L_len,         // L_len  [t0...t0+ntasks-1] computed
      34             :     int64_t *LG_RESTRICT R_task,        // R_task [t0...t0+ntasks-1] computed
      35             :     int64_t *LG_RESTRICT R_len,         // R_len  [t0...t0+ntasks-1] computed
      36             :     int64_t *LG_RESTRICT S_task,        // S_task [t0...t0+ntasks-1] computed
      37             :     // input:
      38             :     const int t0,                       // first task tid to create
      39             :     const int ntasks,                   // # of tasks to create
      40             :     const int64_t pS_start,             // merge into S [pS_start...]
      41             :     const int64_t *LG_RESTRICT L_0,     // Left = L [pL_start...pL_end-1]
      42             :     const int64_t *LG_RESTRICT L_1,
      43             :     const int64_t pL_start,
      44             :     const int64_t pL_end,
      45             :     const int64_t *LG_RESTRICT R_0,     // Right = R [pR_start...pR_end-1]
      46             :     const int64_t *LG_RESTRICT R_1,
      47             :     const int64_t pR_start,
      48             :     const int64_t pR_end
      49             : ) ;
      50             : 
      51             : //------------------------------------------------------------------------------
      52             : // LG_msort_2b_binary_search: binary search for the pivot
      53             : //------------------------------------------------------------------------------
      54             : 
      55             : // The Pivot value is Y [pivot], and a binary search for the Pivot is made in
      56             : // the array X [p_pstart...p_end-1], which is sorted in non-decreasing order on
      57             : // input.  The return value is pleft, where
      58             : //
      59             : //    X [p_start ... pleft-1] <= Pivot and
      60             : //    X [pleft ... p_end-1] >= Pivot holds.
      61             : //
      62             : // pleft is returned in the range p_start to p_end.  If pleft is p_start, then
      63             : // the Pivot is smaller than all entries in X [p_start...p_end-1], and the left
      64             : // list X [p_start...pleft-1] is empty.  If pleft is p_end, then the Pivot is
      65             : // larger than all entries in X [p_start...p_end-1], and the right list X
      66             : // [pleft...p_end-1] is empty.
      67             : 
      68         196 : static int64_t LG_msort_2b_binary_search    // return pleft
      69             : (
      70             :     const int64_t *LG_RESTRICT Y_0,         // Pivot is Y [pivot]
      71             :     const int64_t *LG_RESTRICT Y_1,
      72             :     const int64_t pivot,
      73             :     const int64_t *LG_RESTRICT X_0,         // search in X [p_start..p_end_-1]
      74             :     const int64_t *LG_RESTRICT X_1,
      75             :     const int64_t p_start,
      76             :     const int64_t p_end
      77             : )
      78             : {
      79             : 
      80             :     //--------------------------------------------------------------------------
      81             :     // find where the Pivot appears in X
      82             :     //--------------------------------------------------------------------------
      83             : 
      84             :     // binary search of X [p_start...p_end-1] for the Pivot
      85         196 :     int64_t pleft = p_start ;
      86         196 :     int64_t pright = p_end - 1 ;
      87        2980 :     while (pleft < pright)
      88             :     {
      89        2784 :         int64_t pmiddle = (pleft + pright) >> 1 ;
      90             :         // less = (X [pmiddle] < Pivot)
      91        2784 :         bool less = LG_lt_2 (X_0, X_1, pmiddle,
      92             :                              Y_0, Y_1, pivot) ;
      93        2784 :         pleft  = less ? (pmiddle+1) : pleft ;
      94        2784 :         pright = less ? pright : pmiddle ;
      95             :     }
      96             : 
      97             :     // binary search is narrowed down to a single item
      98             :     // or it has found the list is empty:
      99             :     ASSERT (pleft == pright || pleft == pright + 1) ;
     100             : 
     101             :     // If found is true then X [pleft == pright] == Pivot.  If duplicates
     102             :     // appear then X [pleft] is any one of the entries equal to the Pivot
     103             :     // in the list.  If found is false then
     104             :     //    X [p_start ... pleft-1] < Pivot and
     105             :     //    X [pleft+1 ... p_end-1] > Pivot holds.
     106             :     //    The value X [pleft] may be either < or > Pivot.
     107         196 :     bool found = (pleft == pright) && LG_eq_2 (X_0, X_1, pleft,
     108             :                                                Y_0, Y_1, pivot) ;
     109             : 
     110             :     // Modify pleft and pright:
     111         196 :     if (!found && (pleft == pright))
     112             :     {
     113         100 :         if (LG_lt_2 (X_0, X_1, pleft,
     114             :                      Y_0, Y_1, pivot))
     115             :         {
     116           2 :             pleft++ ;
     117             :         }
     118             :         else
     119             :         {
     120             : //          pright++ ;  // (not needed)
     121             :         }
     122             :     }
     123             : 
     124             :     //--------------------------------------------------------------------------
     125             :     // return result
     126             :     //--------------------------------------------------------------------------
     127             : 
     128             :     // If found is false then
     129             :     //    X [p_start ... pleft-1] < Pivot and
     130             :     //    X [pleft ... p_end-1] > Pivot holds,
     131             :     //    and pleft-1 == pright
     132             : 
     133             :     // If X has no duplicates, then whether or not Pivot is found,
     134             :     //    X [p_start ... pleft-1] < Pivot and
     135             :     //    X [pleft ... p_end-1] >= Pivot holds.
     136             : 
     137             :     // If X has duplicates, then whether or not Pivot is found,
     138             :     //    X [p_start ... pleft-1] <= Pivot and
     139             :     //    X [pleft ... p_end-1] >= Pivot holds.
     140             : 
     141         196 :     return (pleft) ;
     142             : }
     143             : 
     144             : //------------------------------------------------------------------------------
     145             : // LG_msort_2b_create_merge_tasks
     146             : //------------------------------------------------------------------------------
     147             : 
     148             : // Recursively constructs ntasks tasks to merge two arrays, Left and Right,
     149             : // into Sresult, where Left is L [pL_start...pL_end-1], Right is R
     150             : // [pR_start...pR_end-1], and Sresult is S [pS_start...pS_start+total_work-1],
     151             : // and where total_work is the total size of Left and Right.
     152             : //
     153             : // Task tid will merge L [L_task [tid] ... L_task [tid] + L_len [tid] - 1] and
     154             : // R [R_task [tid] ... R_task [tid] + R_len [tid] -1] into the merged output
     155             : // array S [S_task [tid] ... ].  The task tids created are t0 to
     156             : // t0+ntasks-1.
     157             : 
     158         452 : void LG_msort_2b_create_merge_tasks
     159             : (
     160             :     // output:
     161             :     int64_t *LG_RESTRICT L_task,        // L_task [t0...t0+ntasks-1] computed
     162             :     int64_t *LG_RESTRICT L_len,         // L_len  [t0...t0+ntasks-1] computed
     163             :     int64_t *LG_RESTRICT R_task,        // R_task [t0...t0+ntasks-1] computed
     164             :     int64_t *LG_RESTRICT R_len,         // R_len  [t0...t0+ntasks-1] computed
     165             :     int64_t *LG_RESTRICT S_task,        // S_task [t0...t0+ntasks-1] computed
     166             :     // input:
     167             :     const int t0,                       // first task tid to create
     168             :     const int ntasks,                   // # of tasks to create
     169             :     const int64_t pS_start,             // merge into S [pS_start...]
     170             :     const int64_t *LG_RESTRICT L_0,     // Left = L [pL_start...pL_end-1]
     171             :     const int64_t *LG_RESTRICT L_1,
     172             :     const int64_t pL_start,
     173             :     const int64_t pL_end,
     174             :     const int64_t *LG_RESTRICT R_0,     // Right = R [pR_start...pR_end-1]
     175             :     const int64_t *LG_RESTRICT R_1,
     176             :     const int64_t pR_start,
     177             :     const int64_t pR_end
     178             : )
     179             : {
     180             : 
     181             :     //--------------------------------------------------------------------------
     182             :     // get problem size
     183             :     //--------------------------------------------------------------------------
     184             : 
     185         452 :     int64_t nleft  = pL_end - pL_start ;        // size of Left array
     186         452 :     int64_t nright = pR_end - pR_start ;        // size of Right array
     187         452 :     int64_t total_work = nleft + nright ;       // total work to do
     188             :     ASSERT (ntasks >= 1) ;
     189             :     ASSERT (total_work > 0) ;
     190             : 
     191             :     //--------------------------------------------------------------------------
     192             :     // create the tasks
     193             :     //--------------------------------------------------------------------------
     194             : 
     195         452 :     if (ntasks == 1)
     196             :     {
     197             : 
     198             :         //----------------------------------------------------------------------
     199             :         // a single task will merge all of Left and Right into Sresult
     200             :         //----------------------------------------------------------------------
     201             : 
     202         256 :         L_task [t0] = pL_start ; L_len [t0] = nleft ;
     203         256 :         R_task [t0] = pR_start ; R_len [t0] = nright ;
     204         256 :         S_task [t0] = pS_start ;
     205             : 
     206             :     }
     207             :     else
     208             :     {
     209             : 
     210             :         //----------------------------------------------------------------------
     211             :         // partition the Left and Right arrays for multiple merge tasks
     212             :         //----------------------------------------------------------------------
     213             : 
     214             :         int64_t pleft, pright ;
     215         196 :         if (nleft >= nright)
     216             :         {
     217             :             // split Left in half, and search for its pivot in Right
     218         134 :             pleft = (pL_end + pL_start) >> 1 ;
     219         134 :             pright = LG_msort_2b_binary_search (
     220             :                         L_0, L_1, pleft,
     221             :                         R_0, R_1, pR_start, pR_end) ;
     222             :         }
     223             :         else
     224             :         {
     225             :             // split Right in half, and search for its pivot in Left
     226          62 :             pright = (pR_end + pR_start) >> 1 ;
     227          62 :             pleft = LG_msort_2b_binary_search (
     228             :                         R_0, R_1, pright,
     229             :                         L_0, L_1, pL_start, pL_end) ;
     230             :         }
     231             : 
     232             :         //----------------------------------------------------------------------
     233             :         // partition the tasks according to the work of each partition
     234             :         //----------------------------------------------------------------------
     235             : 
     236             :         // work0 is the total work in the first partition
     237         196 :         int64_t work0 = (pleft - pL_start) + (pright - pR_start) ;
     238         196 :         int ntasks0 = (int) round ((double) ntasks *
     239         196 :             (((double) work0) / ((double) total_work))) ;
     240             : 
     241             :         // ensure at least one task is assigned to each partition
     242         196 :         ntasks0 = LAGRAPH_MAX (ntasks0, 1) ;
     243         196 :         ntasks0 = LAGRAPH_MIN (ntasks0, ntasks-1) ;
     244         196 :         int ntasks1 = ntasks - ntasks0 ;
     245             : 
     246             :         //----------------------------------------------------------------------
     247             :         // assign ntasks0 to the first half
     248             :         //----------------------------------------------------------------------
     249             : 
     250             :         // ntasks0 tasks merge L [pL_start...pleft-1] and R [pR_start..pright-1]
     251             :         // into the result S [pS_start...work0-1].
     252             : 
     253         196 :         LG_msort_2b_create_merge_tasks (
     254             :             L_task, L_len, R_task, R_len, S_task, t0, ntasks0, pS_start,
     255             :             L_0, L_1, pL_start, pleft,
     256             :             R_0, R_1, pR_start, pright) ;
     257             : 
     258             :         //----------------------------------------------------------------------
     259             :         // assign ntasks1 to the second half
     260             :         //----------------------------------------------------------------------
     261             : 
     262             :         // ntasks1 tasks merge L [pleft...pL_end-1] and R [pright...pR_end-1]
     263             :         // into the result S [pS_start+work0...pS_start+total_work].
     264             : 
     265         196 :         int t1 = t0 + ntasks0 ;     // first task id of the second set of tasks
     266         196 :         int64_t pS_start1 = pS_start + work0 ;  // 2nd set starts here in S
     267         196 :         LG_msort_2b_create_merge_tasks (
     268             :             L_task, L_len, R_task, R_len, S_task, t1, ntasks1, pS_start1,
     269             :             L_0, L_1, pleft,  pL_end,
     270             :             R_0, R_1, pright, pR_end) ;
     271             :     }
     272         452 : }
     273             : 
     274             : //------------------------------------------------------------------------------
     275             : // LG_msort_2b_merge: merge two sorted lists via a single thread
     276             : //------------------------------------------------------------------------------
     277             : 
     278             : // merge Left [0..nleft-1] and Right [0..nright-1] into S [0..nleft+nright-1] */
     279             : 
     280         256 : static void LG_msort_2b_merge
     281             : (
     282             :     int64_t *LG_RESTRICT S_0,              // output of length nleft + nright
     283             :     int64_t *LG_RESTRICT S_1,
     284             :     const int64_t *LG_RESTRICT Left_0,     // left input of length nleft
     285             :     const int64_t *LG_RESTRICT Left_1,
     286             :     const int64_t nleft,
     287             :     const int64_t *LG_RESTRICT Right_0,    // right input of length nright
     288             :     const int64_t *LG_RESTRICT Right_1,
     289             :     const int64_t nright
     290             : )
     291             : {
     292             :     int64_t p, pleft, pright ;
     293             : 
     294             :     // merge the two inputs, Left and Right, while both inputs exist
     295     3005622 :     for (p = 0, pleft = 0, pright = 0 ; pleft < nleft && pright < nright ; p++)
     296             :     {
     297     3005366 :         if (LG_lt_2 (Left_0,  Left_1,  pleft,
     298             :                      Right_0, Right_1, pright))
     299             :         {
     300             :             // S [p] = Left [pleft++]
     301     1196304 :             S_0 [p] = Left_0 [pleft] ;
     302     1196304 :             S_1 [p] = Left_1 [pleft] ;
     303     1196304 :             pleft++ ;
     304             :         }
     305             :         else
     306             :         {
     307             :             // S [p] = Right [pright++]
     308     1809062 :             S_0 [p] = Right_0 [pright] ;
     309     1809062 :             S_1 [p] = Right_1 [pright] ;
     310     1809062 :             pright++ ;
     311             :         }
     312             :     }
     313             : 
     314             :     // either input is exhausted; copy the remaining list into S
     315         256 :     if (pleft < nleft)
     316             :     {
     317         170 :         int64_t nremaining = (nleft - pleft) ;
     318         170 :         memcpy (S_0 + p, Left_0 + pleft, nremaining * sizeof (int64_t)) ;
     319         170 :         memcpy (S_1 + p, Left_1 + pleft, nremaining * sizeof (int64_t)) ;
     320             :     }
     321          86 :     else if (pright < nright)
     322             :     {
     323          86 :         int64_t nremaining = (nright - pright) ;
     324          86 :         memcpy (S_0 + p, Right_0 + pright, nremaining * sizeof (int64_t)) ;
     325          86 :         memcpy (S_1 + p, Right_1 + pright, nremaining * sizeof (int64_t)) ;
     326             :     }
     327         256 : }
     328             : 
     329             : //------------------------------------------------------------------------------
     330             : // LG_msort2: parallel mergesort
     331             : //------------------------------------------------------------------------------
     332             : 
     333        1663 : int LG_msort2
     334             : (
     335             :     // input/output:
     336             :     int64_t *A_0,       // size n array
     337             :     int64_t *A_1,       // size n array
     338             :     // input:
     339             :     const int64_t n,
     340             :     char *msg
     341             : )
     342             : {
     343             : 
     344             :     //--------------------------------------------------------------------------
     345             :     // check inputs
     346             :     //--------------------------------------------------------------------------
     347             : 
     348        1663 :     LG_CLEAR_MSG ;
     349        1663 :     int64_t *LG_RESTRICT W = NULL ;
     350        1663 :     LG_ASSERT (A_0 != NULL, GrB_NULL_POINTER) ;
     351        1663 :     LG_ASSERT (A_1 != NULL, GrB_NULL_POINTER) ;
     352             : 
     353             :     //--------------------------------------------------------------------------
     354             :     // handle small problems with a single thread
     355             :     //--------------------------------------------------------------------------
     356             : 
     357        1663 :     int nthreads = LG_nthreads_outer * LG_nthreads_inner ; // # threads to use
     358        1663 :     if (nthreads <= 1 || n <= LG_BASECASE)
     359             :     {
     360             :         // sequential quicksort
     361        1657 :         LG_qsort_2 (A_0, A_1, n) ;
     362        1657 :         return (GrB_SUCCESS) ;
     363             :     }
     364             : 
     365             :     //--------------------------------------------------------------------------
     366             :     // determine # of tasks
     367             :     //--------------------------------------------------------------------------
     368             : 
     369             :     // determine the number of levels to create, which must always be an
     370             :     // even number.  The # of levels is chosen to ensure that the # of leaves
     371             :     // of the task tree is between 4*nthreads and 16*nthreads.
     372             : 
     373             :     //  2 to 4 threads:     4 levels, 16 qsort leaves
     374             :     //  5 to 16 threads:    6 levels, 64 qsort leaves
     375             :     // 17 to 64 threads:    8 levels, 256 qsort leaves
     376             :     // 65 to 256 threads:   10 levels, 1024 qsort leaves
     377             :     // 256 to 1024 threads: 12 levels, 4096 qsort leaves
     378             :     // ...
     379             : 
     380           6 :     int k = (int) (2 + 2 * ceil (log2 ((double) nthreads) / 2)) ;
     381           6 :     int ntasks = 1 << k ;
     382             : 
     383             :     //--------------------------------------------------------------------------
     384             :     // allocate workspace
     385             :     //--------------------------------------------------------------------------
     386             : 
     387           6 :     LG_TRY (LAGraph_Malloc ((void **) &W, 2*n + 6*ntasks + 1, sizeof (int64_t),
     388             :         msg)) ;
     389             : 
     390           4 :     int64_t *T = W ;
     391           4 :     int64_t *LG_RESTRICT W_0    = T ; T += n ;
     392           4 :     int64_t *LG_RESTRICT W_1    = T ; T += n ;
     393           4 :     int64_t *LG_RESTRICT L_task = T ; T += ntasks ;
     394           4 :     int64_t *LG_RESTRICT L_len  = T ; T += ntasks ;
     395           4 :     int64_t *LG_RESTRICT R_task = T ; T += ntasks ;
     396           4 :     int64_t *LG_RESTRICT R_len  = T ; T += ntasks ;
     397           4 :     int64_t *LG_RESTRICT S_task = T ; T += ntasks ;
     398           4 :     int64_t *LG_RESTRICT Slice  = T ; T += (ntasks+1) ;
     399             : 
     400             :     //--------------------------------------------------------------------------
     401             :     // partition and sort the leaves
     402             :     //--------------------------------------------------------------------------
     403             : 
     404           4 :     LG_eslice (Slice, n, ntasks) ;
     405             :     int tid ;
     406             :     #pragma omp parallel for num_threads(nthreads) schedule(dynamic,1)
     407          68 :     for (tid = 0 ; tid < ntasks ; tid++)
     408             :     {
     409          64 :         int64_t leaf = Slice [tid] ;
     410          64 :         int64_t leafsize = Slice [tid+1] - leaf ;
     411          64 :         LG_qsort_2 (A_0 + leaf, A_1 + leaf, leafsize) ;
     412             :     }
     413             : 
     414             :     //--------------------------------------------------------------------------
     415             :     // merge each level
     416             :     //--------------------------------------------------------------------------
     417             : 
     418           4 :     int nt = 1 ;
     419          12 :     for ( ; k >= 2 ; k -= 2)
     420             :     {
     421             : 
     422             :         //----------------------------------------------------------------------
     423             :         // merge level k into level k-1, from A into W
     424             :         //----------------------------------------------------------------------
     425             : 
     426             :         // FUTURE: skip k and k-1 for each group of 4 sublists of A if they are
     427             :         // already sorted with respect to each other.
     428             : 
     429             :         // this could be done in parallel if ntasks was large
     430          48 :         for (tid = 0 ; tid < ntasks ; tid += 2*nt)
     431             :         {
     432             :             // create 2*nt tasks to merge two A sublists into one W sublist
     433          40 :             LG_msort_2b_create_merge_tasks (
     434          40 :                 L_task, L_len, R_task, R_len, S_task, tid, 2*nt, Slice [tid],
     435          40 :                 A_0, A_1, Slice [tid],    Slice [tid+nt],
     436          40 :                 A_0, A_1, Slice [tid+nt], Slice [tid+2*nt]) ;
     437             :         }
     438             : 
     439             :         #pragma omp parallel for num_threads(nthreads) schedule(dynamic,1)
     440         136 :         for (tid = 0 ; tid < ntasks ; tid++)
     441             :         {
     442             :             // merge A [pL...pL+nL-1] and A [pR...pR+nR-1] into W [pS..]
     443         128 :             int64_t pL = L_task [tid], nL = L_len [tid] ;
     444         128 :             int64_t pR = R_task [tid], nR = R_len [tid] ;
     445         128 :             int64_t pS = S_task [tid] ;
     446             : 
     447         128 :             LG_msort_2b_merge (
     448         128 :                 W_0 + pS, W_1 + pS,
     449         128 :                 A_0 + pL, A_1 + pL, nL,
     450         128 :                 A_0 + pR, A_1 + pR, nR) ;
     451             :         }
     452           8 :         nt = 2*nt ;
     453             : 
     454             :         //----------------------------------------------------------------------
     455             :         // merge level k-1 into level k-2, from W into A
     456             :         //----------------------------------------------------------------------
     457             : 
     458             :         // this could be done in parallel if ntasks was large
     459          28 :         for (tid = 0 ; tid < ntasks ; tid += 2*nt)
     460             :         {
     461             :             // create 2*nt tasks to merge two W sublists into one A sublist
     462          20 :             LG_msort_2b_create_merge_tasks (
     463          20 :                 L_task, L_len, R_task, R_len, S_task, tid, 2*nt, Slice [tid],
     464          20 :                 W_0, W_1, Slice [tid],    Slice [tid+nt],
     465          20 :                 W_0, W_1, Slice [tid+nt], Slice [tid+2*nt]) ;
     466             :         }
     467             : 
     468             :         #pragma omp parallel for num_threads(nthreads) schedule(dynamic,1)
     469         136 :         for (tid = 0 ; tid < ntasks ; tid++)
     470             :         {
     471             :             // merge A [pL...pL+nL-1] and A [pR...pR+nR-1] into W [pS..]
     472         128 :             int64_t pL = L_task [tid], nL = L_len [tid] ;
     473         128 :             int64_t pR = R_task [tid], nR = R_len [tid] ;
     474         128 :             int64_t pS = S_task [tid] ;
     475         128 :             LG_msort_2b_merge (
     476         128 :                 A_0 + pS, A_1 + pS,
     477         128 :                 W_0 + pL, W_1 + pL, nL,
     478         128 :                 W_0 + pR, W_1 + pR, nR) ;
     479             :         }
     480           8 :         nt = 2*nt ;
     481             :     }
     482             : 
     483             :     //--------------------------------------------------------------------------
     484             :     // free workspace and return result
     485             :     //--------------------------------------------------------------------------
     486             : 
     487           4 :     LG_FREE_ALL ;
     488           4 :     return (GrB_SUCCESS) ;
     489             : }

Generated by: LCOV version 1.14