
The GraphBLAS C API Specification †:1

Version 1.3.02

Aydın Buluç, Timothy Mattson, Scott McMillan, José Moreira, Carl Yang3

Generated on 2019/09/25 at 15:32:56 EDT4

†Based on GraphBLAS Mathematics by Jeremy Kepner

Copyright c© 2017-2019 Carnegie Mellon University, The Regents of the University of California,5

through Lawrence Berkeley National Laboratory (subject to receipt of any required approvals from6

the U.S. Dept. of Energy), the Regents of the University of California (U.C. Davis), Intel Corpo-7

ration, International Business Machines Corporation, and Massachusetts Institute of Technology8

Lincoln Laboratory.9

Any opinions, findings and conclusions or recommendations expressed in this material are those of10

the author(s) and do not necessarily reflect the views of the United States Department of Defense,11

the United States Department of Energy, Carnegie Mellon University, the Regents of the University12

of California, Intel Corporation, or the IBM Corporation.13

NO WARRANTY. THIS MATERIAL IS FURNISHED ON AN AS-IS BASIS. THE COPYRIGHT14

OWNERS AND/OR AUTHORS MAKE NO WARRANTIES OF ANY KIND, EITHER EX-15

PRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WAR-16

RANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RE-17

SULTS OBTAINED FROM USE OF THE MATERIAL. THE COPYRIGHT OWNERS AND/OR18

AUTHORS DO NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREE-19

DOM FROM PATENT, TRADE MARK, OR COPYRIGHT INFRINGEMENT.20

Except as otherwise noted, this material is licensed under a Creative Commons Attribution 4.021

license (http://creativecommons.org/licenses/by/4.0/legalcode), and examples are licensed under22

the BSD License (https://opensource.org/licenses/BSD-3-Clause).23

2

http://creativecommons.org/licenses/by/4.0/legalcode
https://opensource.org/licenses/BSD-3-Clause

Contents24

List of Tables . 825

List of Figures . 1126

Acknowledgments . 1227

1 Introduction 1328

2 Basic Concepts 1529

2.1 Glossary . 1530

2.1.1 GraphBLAS API basic definitions . 1531

2.1.2 GraphBLAS objects and their structure . 1632

2.1.3 Algebraic structures used in the GraphBLAS 1733

2.1.4 The execution of an application using the GraphBLAS C API 1834

2.1.5 GraphBLAS methods: behaviors and error conditions 1935

2.2 Notation . 2036

2.3 Algebraic and Arithmetic Foundations . 2137

2.4 GraphBLAS Opaque Objects . 2138

2.5 Domains . 2339

2.6 Operators and Associated Functions . 2340

2.7 Indices, Index Arrays, and Scalar Arrays . 2441

2.8 Execution Model . 2942

2.8.1 Execution modes . 3043

2.8.2 Thread safety . 3144

2.9 Error Model . 3145

3 Objects 3546

3

3.1 Operators . 3747

3.2 Monoids . 3748

3.3 Semirings . 3749

3.4 Vectors . 3850

3.5 Matrices . 3951

3.6 Masks . 3952

3.7 Descriptors . 4053

4 Methods 4354

4.1 Context Methods . 4355

4.1.1 init: Initialize a GraphBLAS context . 4356

4.1.2 finalize: Finalize a GraphBLAS context . 4457

4.1.3 getVersion: Get the version number of the standard. 4558

4.2 Object Methods . 4559

4.2.1 Algebra Methods . 4660

4.2.1.1 Type new: Create a new GraphBLAS (user-defined) type 4661

4.2.1.2 UnaryOp new: Create a new GraphBLAS unary operator 4762

4.2.1.3 BinaryOp new: Create a new GraphBLAS binary operator 4863

4.2.1.4 Monoid new: Create new GraphBLAS monoid 5064

4.2.1.5 Semiring new: Create new GraphBLAS semiring 5165

4.2.2 Vector Methods . 5266

4.2.2.1 Vector new: Create new vector . 5267

4.2.2.2 Vector dup: Create a copy of a GraphBLAS vector 5368

4.2.2.3 Vector resize: Resize a vector . 5469

4.2.2.4 Vector clear: Clear a vector . 5570

4.2.2.5 Vector size: Size of a vector . 5671

4.2.2.6 Vector nvals: Number of stored elements in a vector 5672

4.2.2.7 Vector build: Store elements from tuples into a vector 5773

4.2.2.8 Vector setElement: Set a single element in a vector 5974

4.2.2.9 Vector removeElement: Remove an element from a vector 6175

4.2.2.10 Vector extractElement: Extract a single element from a vector. . . . 6276

4

4.2.2.11 Vector extractTuples: Extract tuples from a vector 6377

4.2.3 Matrix Methods . 6578

4.2.3.1 Matrix new: Create new matrix . 6579

4.2.3.2 Matrix dup: Create a copy of a GraphBLAS matrix 6680

4.2.3.3 Matrix resize: Resize a matrix . 6781

4.2.3.4 Matrix clear: Clear a matrix . 6882

4.2.3.5 Matrix nrows: Number of rows in a matrix 6983

4.2.3.6 Matrix ncols: Number of columns in a matrix 7084

4.2.3.7 Matrix nvals: Number of stored elements in a matrix 7185

4.2.3.8 Matrix build: Store elements from tuples into a matrix 7286

4.2.3.9 Matrix setElement: Set a single element in matrix 7487

4.2.3.10 Matrix removeElement: Remove an element from a matrix 7588

4.2.3.11 Matrix extractElement: Extract a single element from a matrix . . . 7689

4.2.3.12 Matrix extractTuples: Extract tuples from a matrix 7890

4.2.4 Descriptor Methods . 8091

4.2.4.1 Descriptor new: Create new descriptor 8092

4.2.4.2 Descriptor set: Set content of descriptor 8193

4.2.5 free method . 8294

4.3 GraphBLAS Operations . 8395

4.3.1 mxm: Matrix-matrix multiply . 8796

4.3.2 vxm: Vector-matrix multiply . 9297

4.3.3 mxv: Matrix-vector multiply . 9698

4.3.4 eWiseMult: Element-wise multiplication . 10099

4.3.4.1 eWiseMult: Vector variant . 100100

4.3.4.2 eWiseMult: Matrix variant . 105101

4.3.5 eWiseAdd: Element-wise addition . 110102

4.3.5.1 eWiseAdd: Vector variant . 110103

4.3.5.2 eWiseAdd: Matrix variant . 115104

4.3.6 extract: Selecting Sub-Graphs . 121105

4.3.6.1 extract: Standard vector variant . 121106

5

4.3.6.2 extract: Standard matrix variant . 125107

4.3.6.3 extract: Column (and row) variant 130108

4.3.7 assign: Modifying Sub-Graphs . 135109

4.3.7.1 assign: Standard vector variant . 135110

4.3.7.2 assign: Standard matrix variant . 140111

4.3.7.3 assign: Column variant . 146112

4.3.7.4 assign: Row variant . 151113

4.3.7.5 assign: Constant vector variant . 157114

4.3.7.6 assign: Constant matrix variant . 162115

4.3.8 apply: Apply a function to the elements of an object 167116

4.3.8.1 apply: Vector variant . 167117

4.3.8.2 apply: Matrix variant . 171118

4.3.8.3 apply: Vector-BinaryOp variants . 176119

4.3.8.4 apply: Matrix-BinaryOp variants . 180120

4.3.9 reduce: Perform a reduction across the elements of an object 186121

4.3.9.1 reduce: Standard matrix to vector variant 186122

4.3.9.2 reduce: Vector-scalar variant . 190123

4.3.9.3 reduce: Matrix-scalar variant . 193124

4.3.10 transpose: Transpose rows and columns of a matrix 195125

4.3.11 kronecker: Kronecker product of two matrices 199126

4.4 Sequence Termination . 205127

4.4.1 wait: Wait for pending operations to complete 205128

4.4.1.1 wait: Waits until all pending operations complete variant 205129

4.4.1.2 wait: Waits until pending operations on a specific object complete130

variant . 206131

4.4.2 error: Get an error message regarding internal errors 207132

5 Nonpolymorphic Interface 209133

A Revision History 217134

B Examples 221135

6

B.1 Example: level breadth-first search (BFS) in GraphBLAS 222136

B.2 Example: level BFS in GraphBLAS using apply . 223137

B.3 Example: parent BFS in GraphBLAS . 224138

B.4 Example: betweenness centrality (BC) in GraphBLAS 225139

B.5 Example: batched BC in GraphBLAS . 227140

B.6 Example: maximal independent set (MIS) in GraphBLAS 229141

B.7 Example: counting triangles in GraphBLAS . 231142

7

8

List of Tables143

2.1 GraphBLAS opaque objects and their types. 22144

2.2 Predefined GrB Type values, the corresponding C type (for scalar parameters), and145

domains for GraphBLAS. 23146

2.3 Valid GraphBLAS domain suffixes and corresponding C types (for I and T in Ta-147

bles 2.4, 2.5, 2.6, and 2.7). 24148

2.4 Predefined unary and binary operators for GraphBLAS in C. The T can be any149

suffix from Table 2.3, I can be any integer suffix from Table 2.3, and F can be any150

floating-point suffix from Table 2.3. 25151

2.5 Predefined monoids for GraphBLAS in C. Maximum and minimum values for the152

various integral types are defined in stdint.h. Floating-point infinities are defined153

in math.h. The x in UINTx or INTx can be one of 8, 16, 32, or 64; whereas in FPx,154

it can be 32 or 64. 26155

2.6 Predefined true semirings where the additive identity is the multiplicative annihila-156

tor. The x in UINTx or INTx can be one of 8, 16, 32, or 64; whereas in FPx, it can157

be 32 or 64. 27158

2.7 Other useful predefined semirings that don’t have a multiplicative annihilator. The159

x in UINTx or INTx can be one of 8, 16, 32, or 64; whereas in FPx, it can be 32 or 64. 28160

2.8 Error values returned by GraphBLAS methods. 33161

3.1 Operator input for relevant GraphBLAS operations. The semiring add and times162

are shown if applicable. 36163

3.2 Properties and recipes for building GraphBLAS algebraic objects: unary operator,164

binary operator, monoid, and semiring (composed of operations add and times).165

Note 1: The output domain of the semiring times must be same as the domain of166

the semiring add. This ensures three domains for a semiring rather than four. 36167

3.3 Descriptors are GraphBLAS objects passed as arguments to Graph BLAS operations168

to modify other GraphBLAS objects in the operation’s argument list. A descriptor,169

desc, has one or more (field, value) pairs indicated as desc[GrB Desc Field].GrB Desc Value.170

In this table, we define all types and literals used with descriptors. 41171

9

3.4 Pre-defined GraphBLAS descriptors. The list includes all possible descriptors, ac-172

cording to the current standard. Columns list the possible fields and entries list the173

value(s) associated with those fields for a given descriptor. 42174

4.1 A mathematical notation for the fundamental GraphBLAS operations supported175

in this specification. Input matrices A and B may be optionally transposed (not176

shown). Use of an optional accumulate with existing values in the output object177

is indicated with �. Use of optional write masks and replace flags are indicated178

as C〈M, z〉 when applied to the output matrix, C. The mask controls which values179

resulting from the operation on the right-hand side are written into the output object180

(complement and structure flags are not shown). The “replace” option, indicated by181

specifying the z flag, means that all values in the output object are removed prior182

to assignment. If “replace” is not specifed, only the values/locations computed on183

the right-hand side and allowed by the mask will be written to the output (“merge”184

mode). 84185

5.1 Long-name, nonpolymorphic form of GraphBLAS methods. 209186

5.2 Long-name, nonpolymorphic form of GraphBLAS methods (continued). 210187

5.3 Long-name, nonpolymorphic form of GraphBLAS methods (continued). 211188

5.4 Long-name, nonpolymorphic form of GraphBLAS methods (continued). 212189

5.5 Long-name, nonpolymorphic form of GraphBLAS methods (continued). 213190

5.6 Long-name, nonpolymorphic form of GraphBLAS methods (continued). 214191

5.7 Long-name, nonpolymorphic form of GraphBLAS methods (continued). 215192

5.8 Long-name, nonpolymorphic form of GraphBLAS methods (continued). 216193

10

List of Figures194

2.1 Signature of GrB error() function. 32195

3.1 Hierarchy of algebraic object classes in GraphBLAS. GraphBLAS semirings consist196

of a conventional monoid with one domain for the addition function, and a binary197

operator with three domains for the multiplication function. 38198

4.1 Flowchart for the GraphBLAS operations. Although shown specifically for the mxm199

operation, many elements are common to all operations: such as the “ACCUM” and200

“MASK and REPLACE” blocks. The triple arrows (V) denote where “as if copy”201

takes place (including both collections and descriptor settings). The bold, dotted202

arrows indicate where casting may occur between different domains. 85203

11

Acknowledgments204

This document represents the work of the people who have served on the C API Subcommittee of205

the GraphBLAS Forum.206

Those who served as C API Subcommittee members for GraphBLAS 1.0 through 1.3 are (in al-207

phabetical order):208

• Aydın Buluç (Lawrence Berkeley National Laboratory)209

• Timothy G. Mattson (Intel Corporation)210

• Scott McMillan (Software Engineering Institute at Carnegie Mellon University)211

• José Moreira (IBM Corporation)212

• Carl Yang (UC Davis)213

The GraphBLAS specification is based upon work funded and supported in part by:214

• The Department of Energy Office of Advanced Scientific Computing Research under contract215

number DE-AC02-05CH11231216

• Intel Corporation217

• Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon Univer-218

sity for the operation of the Software Engineering Institute [DM-0003727, DM19-0929]219

• International Business Machines Corporation220

• Department of Defense under contract No. W911QX-12-C-0059, L-3 Data Tactics subcontract221

SCT-14-004 with University of California, Davis222

The following people provided valuable input and feedback during the development of the specifi-223

cation (in alphabetical order): Hollen Barmer, Benjamin Brock, Tim Davis, Jeremy Kepner, Peter224

Kogge, Manoj Kumar, Andrew Mellinger, Maxim Naumov, Nancy M. Ott, Ping Tak Peter Tang,225

Michael Wolf, Albert-Jan Yzelman.226

12

Chapter 1227

Introduction228

The GraphBLAS standard defines a set of matrix and vector operations based on semi-ring algebraic229

structures. These operations can be used to express a wide range of graph algorithms. This230

document defines the C binding to the GraphBLAS standard. We refer to this as the GraphBLAS231

C API (Application Programming Interface).232

The GraphBLAS C API is built on a collection of objects exposed to the C programmer as opaque233

data types. Functions that manipulate these objects are referred to as methods. These methods234

fully define the interface to GraphBLAS objects to create or destroy them, modify their contents,235

and copy the contents of opaque objects into non-opaque objects; the contents of which are under236

direct control of the programmer.237

The GraphBLAS C API is designed to work with C99 (ISO/IEC 9899:199) extended with static238

type-based and number of parameters-based function polymorphism, and language extensions on par239

with the Generic construct from C11 (ISO/IEC 9899:2011). Furthermore, the standard assumes240

programs using the GraphBLAS C API will execute on hardware that supports floating point241

arithmetic such as that defined by the IEEE 754 (IEEE 754-2008) standard.242

The remainder of this document is organized as follows:243

• Chapter 2: Basic Concepts244

• Chapter 3: Objects245

• Chapter 4: Methods246

• Chapter 5: Nonpolymorphic Interface247

• Appendix A: Revision History248

• Appendix B: Examples249

13

14

Chapter 2250

Basic Concepts251

The GraphBLAS C API is used to construct graph algorithms expressed “in the language of linear252

algebra.” Graphs are expressed as matrices, and the operations over these matrices are generalized253

through the use of a semiring algebraic structure.254

In this chapter, we will define the basic concepts used to define the GraphBLAS C API. We provide255

the following elements:256

• Glossary of terms used in this document.257

• Algebraic structures and associated arithmetic foundations of the API.258

• Domains of elements in the GraphBLAS.259

• Functions that appear in the GraphBLAS algebraic structures and how they are managed.260

• Indices, index arrays, and scalar arrays used to expose the contents of GraphBLAS objects.261

• The execution and error models implied by the GraphBLAS C specification.262

2.1 Glossary263

2.1.1 GraphBLAS API basic definitions264

• application: A program that calls methods from the GraphBLAS C API to solve a problem.265

• GraphBLAS C API : The application programming interface that fully defines the types,266

objects, literals, and other elements of the C binding to the GraphBLAS.267

• function: Refers to a named group of statements in the C programming language. Meth-268

ods, operators, and user-defined functions are typically implemented as C functions. When269

referring to the code programmers write, as opposed to the role of functions as an element of270

the GraphBLAS, they may be referred to as such.271

15

• method : A function defined in the GraphBLAS C API that manipulates GraphBLAS objects272

or other opaque features of the implementation of the GraphBLAS API.273

• operator : A function that performs an operation on the elements stored in GraphBLAS274

matrices and vectors.275

• GraphBLAS operation: A mathematical operation defined in the GraphBLAS mathematical276

specification. These operations (not to be confused with operators) typically act on matrices277

and vectors with elements defined in terms of an algebraic semiring.278

2.1.2 GraphBLAS objects and their structure279

• GraphBLAS object : An instance of a data type defined by the GraphBLAS C API that280

is opaque and manipulated only through the API. There are three groups of GraphBLAS281

objects: algebraic objects (operators, monoids and semirings), collections (vectors, matrices282

and masks), and descriptors. Because the object is based on an opaque datatype, an im-283

plementation of the GraphBLAS C API has the flexibility to optimize data structures for a284

particular platform. GraphBLAS objects are often implemented as sparse data structures,285

meaning only the subset of the elements that have non-zero values are stored.286

• handle: A variable that uses one of the GraphBLAS opaque data types. The value of287

this variable holds a reference to a GraphBLAS object but not the contents of the object288

itself. Hence, assigning a value of one handle to another variable copies the reference to the289

GraphBLAS object but not the contents of the object.290

• non-opaque datatype: Any datatype that exposes its internal structure. This is contrasted291

with an opaque datatype that hides its internal structure and can be manipulated only through292

an API.293

• domain: The set of valid values for the elements of a GraphBLAS object. Note that some294

GraphBLAS objects involve functions that map values from one or more input domains onto295

values in an output domain. These GraphBLAS objects would have multiple domains.296

• implied zero: Any element that has a valid index (or indices) in a GraphBLAS vector or297

matrix but is not explicitly identified in the list of elements of that vector or matrix. From a298

mathematical perspective, an implied zero is treated as having the value of the zero element of299

the relevant monoid or semiring. However, GraphBLAS operations are purposefully defined300

using set notation in such a way that it makes it unnecessary to reason about implied zeros.301

Therefore, this concept is not used in the definition of GraphBLAS methods and operators.302

• mask : An internal GraphBLAS object used to control how values are stored in a method’s303

output object. The mask exists only inside a method; hence, it is called an internal opaque304

object. A mask is formed from the elements of a collection object (vector or matrix) input as305

a mask parameter to a method. There are two different operations for forming the internal306

mask.307

GraphBLAS allows two types of masks:308

16

1. The default behavior is that an element of the mask exists for each element that exists309

in the input collection object when the value of that element cast to a Boolean type310

evaluates to true.311

2. In the structure only case, masks have structure but no values. The input collection312

describes a structure whereby an element of the mask exists for each element of the313

input collection regardless of its value.314

• complement : The complement of a GraphBLAS mask, M , is another mask, M ′, where the315

elements of M ′ are those elements from M that do not exist.316

2.1.3 Algebraic structures used in the GraphBLAS317

• GraphBLAS operators: Binary or unary operators that act on elements of GraphBLAS ob-318

jects. GraphBLAS operators are used to express algebraic structures used in the GraphBLAS319

such as monoids and semirings. There are two types of GraphBLAS operators: (1) predefined320

operators found in Table 2.4 and (2) user-defined operators created using GrB UnaryOp new()321

or GrB BinaryOp new() (see Section 4.2.1).322

• associative operator : In an expression where a binary operator is used two or more times323

consecutively, that operator is associative if the result does not change regardless of the way324

operations are grouped (without changing their order) changes. In other words, in a sequence325

of binary operations created using the same associative operator, the legal placement of326

parenthesis does not change the value resulting from the sequence operations. Operators that327

are associative over infinitely precise numbers (e.g., real numbers) are not strictly associative328

when applied to numbers with finite precision (e.g., floating point numbers). Such non-329

associativity results, for example, from roundoff errors or from the fact some numbers can330

not be represented exactly as floating point numbers. In the GraphBLAS specification, as is331

common practice in computing, we refer to operators as associative when their mathematical332

definition over infinitely precise numbers is associative even when they are only approximately333

associative when applied to finite precision numbers.334

No GraphBLAS method will imply a predefined order over any associative operators. Im-335

plementations of the GraphBLAS are encouraged to exploit associativity to optimize per-336

formance of any GraphBLAS method. This holds even if the definition of the graphBLAS337

method implies a fixed order for the associative operations.338

• monoid : An algebraic structure consisting of a domain, an associative binary operator, and339

an identity corresponding to that operator. There are two types of GraphBLAS monoids: (1)340

predefined monoids found in Table 2.5 and (2) user-defined monoids created using GrB Monoid new()341

(see Section 4.2.1).342

• semiring : An algebraic structure consisting of a set of allowed values (the domain), two343

commutative binary operators called addition and multiplication (where multiplication dis-344

tributes over addition), and identities over addition (0) and multiplication (1). The additive345

identity is an annihilator over multiplication. Note that a GraphBLAS semiring is allowed to346

diverge from the mathematically rigorous definition of a semiring since certain combinations347

of domains, operators, and identity elements are useful in graph algorithms even when they do348

17

not strictly match the mathematical definition of a semiring. There are two types of Graph-349

BLAS semirings: (1) predefined semirings found in Tables 2.6 and 2.7, and (2) user-defined350

semirings created using GrB Semiring new() (see Section 4.2.1).351

2.1.4 The execution of an application using the GraphBLAS C API352

• program order : The order of the GraphBLAS methods as defined by the text of an application353

program.354

• sequence: A series of GraphBLAS method calls in program order. An implementation of the355

GraphBLAS may reorder or even fuse GraphBLAS methods within a sequence as long as the356

definitions of any GraphBLAS object that is later read by an application are not changed; by357

“read” we mean that values are copied from an opaque GraphBLAS object into a non-opaque358

object. A sequence begins when a thread calls the first method that creates or modifies a359

GraphBLAS object, either (1) the first call in an application or (2) the first call following360

termination of a prior sequence. In blocking mode, every GraphBLAS method call is its own361

sequence. In nonblocking mode, a sequence can be terminated by a call to GrB finalize(),362

a call to GrB wait(), or by a series of GrB wait(obj) method calls to every object that is an363

output in the sequence.364

• complete: The state of a GraphBLAS object when the computations that implement the365

mathematical definition of the object have finished and the values associated with that com-366

putation touches that object in the program’s address space. A GraphBLAS object is fully367

defined by the sequence of methods. The execution of a sequence may be deferred, however,368

so at any point in an application, a GraphBLAS object may not be materialized. That is,369

the values associated with a particular GraphBLAS object may not have been computed and370

stored in memory. An object is complete when the sequence that defines the object’s value371

terminates or when a GrB wait() method is called with that object as an argument.372

• materialize: Cause the values associated with that object to be resident in memory and373

visible to an application. A GraphBLAS object has been materialized when the computa-374

tions that implement the mathematical definition of the object are complete. A GraphBLAS375

object that is never loaded into a non-opaque data structure may potentially never be ma-376

terialized. This might happen, for example, if the operations associated with the object are377

fused or otherwise changed by the runtime system that supports the implementation of the378

GraphBLAS C API.379

• context : An instance of the GraphBLAS C API implementation as seen by an application.380

An application can have only one context between the start and end of the application. A381

context begins with the first thread that calls GrB init() and ends with the first thread to call382

GrB finalize(). It is an error for GrB init() or GrB finalize() to be called more than one time383

within an application. The context is used to constrain the behavior of an instance of the384

GraphBLAS C API implementation and support various execution strategies. Currently, the385

only supported constraints on a context pertain to the mode of program execution.386

• mode: Defines how a GraphBLAS sequence executes, and is associated with the context of a387

GraphBLAS C API implementation. It is set by an application with its call to GrB init() to one388

18

of two possible states. In blocking mode, GraphBLAS methods return after the computations389

complete and any output objects have been updated. In nonblocking mode, a method may390

return once the arguments are tested as consistent with the method (i.e., there are no API391

errors), and potentially before any computation has taken place.392

2.1.5 GraphBLAS methods: behaviors and error conditions393

• implementation defined behavior : Behavior that must be documented by the implementation394

and is allowed to vary among different compliant implementations.395

• undefined behavior : Behavior that is not specified by the GraphBLAS C API. A conforming396

implementation is free to choose results delivered from a method whose behavior is undefined.397

• thread-safe routine: A routine that performs its intended function even when executed398

concurrently (i.e., by more than one thread).399

• shape compatible objects: GraphBLAS objects (matrices and vectors) that are passed as400

parameters to a GraphBLAS method and have the correct number of dimensions and sizes for401

each dimension to satisfy the rules of the mathematical definition of the operation associated402

with the method. This is also referred to as dimension compatible.403

• domain compatible: Two domains for which values from one domain can be cast to values in404

the other domain as per the rules of the C language. In particular, domains from Table 2.2405

are all compatible with each other, and a domain from a user-defined type is only compatible406

with itself. If any domain compatibility rule above is violated, execution of the GraphBLAS407

method ends and the domain mismatch error GrB DOMAIN MISMATCH is returned.408

19

2.2 Notation409

Notation Description

Dout, Din, Din1 , Din2 Refers to output and input domains of various GraphBLAS operators.
Dout(∗),Din(∗), Evaluates to output and input domains of GraphBLAS operators (usually

Din1(∗),Din2(∗) a unary or binary operator, or semiring).
D(∗) Evaluates to the (only) domain of a GraphBLAS object (usually a monoid,

vector, or matrix).
f An arbitrary unary function, usually a component of a unary operator.
f(Fu) Evaluates to the unary function contained in the unary operator given as

the argument.
� An arbitrary binary function, usually a component of a binary operator.⊙

(∗) Evaluates to the binary function contained in the binary operator or monoid
given as the argument.

⊗ Multiplicative binary operator of a semiring.
⊕ Additive binary operator of a semiring.⊗

(S) Evaluates to the multiplicative binary operator of the semiring given as the
argument.⊕

(S) Evaluates to the additive binary operator of the semiring given as the argu-
ment.

0(∗) The identity of a monoid, or the additive identity of a GraphBLAS semiring.
L(∗) The contents (all stored values) of the vector or matrix GraphBLAS objects.

For a vector, it is the set of (index, value) pairs, and for a matrix it is the
set of (row, col, value) triples.

v(i) or vi The ith element of the vector v.
size(v) The size of the vector v.
ind(v) The set of indices corresponding to the stored values of the vector v.
nrows(A) The number of rows in the A.
ncols(A) The number of columns in the A.
indrow(A) The set of row indices corresponding to rows in A that have stored values.
indcol(A) The set of column indices corresponding to columns in A that have stored

values.
ind(A) The set of (i, j) indices corresponding to the stored values of the matrix.
A(i, j) or Aij The element of A with row index i and column index j.
A(:, j) The jth column of the the matrix A.
A(i, :) The ith row of the the matrix A.
AT The transpose of the matrix A.
¬M The complement of M.

t̃ A temporary object created by the GraphBLAS implementation.
< type > A method argument type that is void * or one of the types from Table 2.2.
GrB ALL A method argument literal to indicate that all indices of an input array

should be used.
GrB Type A method argument type that is either a user defined type or one of the

types from Table 2.2.
GrB Object A method argument type referencing any of the GraphBLAS object types.
GrB NULL The GraphBLAS NULL.

410

20

2.3 Algebraic and Arithmetic Foundations411

Graphs can be represented in terms of matrices. Operations defined by the GraphBLAS standard412

operate on these matrices to construct graph algorithms. These GraphBLAS operations are defined413

in terms of GraphBLAS semiring algebraic structures. Modifying the underlying semiring changes414

the result of an operation to support a wide range of graph algorithms.415

Inside a given algorithm, it is often beneficial to change the GraphBLAS semiring that applies to an416

operation on a matrix. This has two implications for the C binding of the GraphBLAS API. First,417

it means that we define a separate object for the semiring to pass into functions. Since in many418

cases the full semiring is not required, we also support passing monoids or even binary operators,419

which means the semiring is implied rather than explicitly stated.420

Second, the ability to change semirings impacts the meaning of the implied zero in a sparse repre-421

sentation of a matrix. This element in real arithmetic is zero, which is the identity of the addition422

operator and the annihilator of the multiplication operator. As the semiring changes, this implied423

zero changes to the identity of the addition operator and the annihilator of the multiplication op-424

erator for the new semiring. Nothing changes in the stored matrix, but the implied zeros within425

the sparse matrix or vector change with respect to a particular operation. In all cases, the nature426

of the implied zero does not matter since the GraphBLAS C API treats them as elements of the427

matrix or vector that do not exist.428

The mathematical formalism for graph operations in the language of linear algebra assumes that429

we can operate in the field of real numbers. However, the GraphBLAS C binding is designed for430

implementation on computers, which by necessity have a finite number of bits to represent numbers.431

Therefore, we require a conforming implementation to use floating point numbers such as those432

defined by the IEEE-754 standard (both single- and double-precision) wherever real numbers need433

to be represented. The practical implications of these finite precision numbers is that the result of a434

sequence of computations may vary from one execution to the next as the association of operations435

changes. While techniques are known to reduce these effects, we do not require or even expect an436

implementation to use them as they may add considerable overhead. In most cases, these roundoff437

errors are not significant. When they are significant, the problem itself is ill-conditioned and needs438

to be reformulated.439

2.4 GraphBLAS Opaque Objects440

Objects defined in the GraphBLAS standard include collections of elements (matrices and vectors),441

operators on those elements (unary and binary operators), and algebraic structures (semirings and442

monoids). GraphBLAS objects are defined as opaque types; that is, they are managed, manipu-443

lated, and accessed solely through the GraphBLAS application programming interface. This gives444

an implementation of the GraphBLAS C specification flexibility to optimize objects for different445

scenarios or to meet the needs of different hardware platforms.446

A GraphBLAS opaque object is accessed through its handle. A handle is a variable that uses447

one of the types from Table 2.1. An implementation of the GraphBLAS specification has a great448

deal of flexibility in how these handles are implemented. All that is required is that the handle449

21

Table 2.1: GraphBLAS opaque objects and their types.

GrB Object types Description

GrB Type User-defined scalar type.
GrB UnaryOp Unary operator, built-in or associated with a single-argument C function.
GrB BinaryOp Binary operator, built-in or associated with a two-argument C function.
GrB Monoid Monoid algebraic structure.
GrB Semiring A GraphBLAS semiring algebraic structure.
GrB Matrix Two-dimensional collection of elements; typically sparse.
GrB Vector One-dimensional collection of elements.
GrB Descriptor Descriptor object, used to modify behavior of methods.

corresponds to a type defined in the C language that supports assignment and comparison for450

equality. The GraphBLAS specification defines a literal GrB INVALID HANDLE that is valid for451

each type. Using the logical equality operator from C, it must be possible to compare a handle to452

GrB INVALID HANDLE to verify that a handle is valid.453

An application using the GraphBLAS API will declare variables of the appropriate type for the454

objects it will use. Before use, the object must be initialized with the appropriate method. This455

is done with one of the methods that has a “ new” suffix in its name (e.g., GrB Vector new).456

Alternatively, an object can be initialized by duplicating an existing object with one of the methods457

that has the “ dup” suffix in its name (e.g., GrB Vector dup). When an application is finished with458

an object, any resources associated with that object can be released by a call to the GrB free459

method.460

These new, dup, and free methods are the only methods that change the value of a handle. Hence,461

objects changed by these methods are passed into the method as pointers. In all other cases, handles462

are not changed by the method and are passed by value. For example, even when multiplying463

matrices, while the contents of the output product matrix changes, the handle for that matrix is464

unchanged.465

Programmers using GraphBLAS handles must be careful to distinguish between a handle and466

the object manipulated through a handle. For example, a program may declare two GraphBLAS467

objects of the same type, initialize one, and then assign it to the other variable. That assignment,468

however, only assigns the handle to the variable. It does not create a copy of that variable (to469

do that, one would need to use the appropriate duplication method). If later the object is freed470

by calling GrB free with the first variable, the object is destroyed and the second variable is left471

referencing an object that no longer exists (a so-called “dangling handle”).472

In addition to opaque objects manipulated through handles, the GraphBLAS C API defines an473

additional opaque object as an internal object; that is, the object is never exposed as a variable474

within an application. This opaque object is the mask used to control how computed values are475

stored in the output from a method. Masks are described in Section 3.6.476

22

Table 2.2: Predefined GrB Type values, the corresponding C type (for scalar parameters), and
domains for GraphBLAS.

GrB Type values C type domain

GrB BOOL bool {false, true}
GrB INT8 int8 t Z ∩ [−27, 27)
GrB UINT8 uint8 t Z ∩ [0, 28)
GrB INT16 int16 t Z ∩ [−215, 215)
GrB UINT16 uint16 t Z ∩ [0, 216)
GrB INT32 int32 t Z ∩ [−231, 231)
GrB UINT32 uint32 t Z ∩ [0, 232)
GrB INT64 int64 t Z ∩ [−263, 263)
GrB UINT64 uint64 t Z ∩ [0, 264)
GrB FP32 float IEEE 754 binary32
GrB FP64 double IEEE 754 binary64

2.5 Domains477

GraphBLAS defines two kinds of collections: matrices and vectors. For any given collection, the478

elements of the collection belong to a domain, which is the set of valid values for the elements. In479

GraphBLAS, domains correspond to the valid values for types from the host language (in our case,480

the C programming language). For any variable or object V in GraphBLAS we denote as D(V)481

the domain of V , that is, the set of possible values that elements of V can take.482

The predefined types and corresponding domains used in the GraphBLAS C API are shown in483

Table 2.2. The Boolean type (bool) is defined in stdbool.h, the integral types (int8 t, uint8 t,484

int16 t, uint16 t, int32 t, uint32 t, int64 t, uint64 t) are defined in stdint.h, and the485

floating-point types (float, double) are native to the language and in most cases defined by the486

IEEE-754 standard.487

2.6 Operators and Associated Functions488

GraphBLAS operators act on elements of GraphBLAS objects. A binary operator is a function that489

maps two input values to one output value. A unary operator is a function that maps one input490

value to one output value. The value of the output is determined by the value of the input(s).491

Binary operators are defined over two input domains and produce an output from a (possibly492

different) third domain. Unary operators are specified over one input domain and produce an493

output from a (possibly different) second domain.494

Similar to GraphBLAS types with predefined types and user-defined types, GraphBLAS operators495

come in two types: (1) predefined operators found in Table 2.4 and (2) user-defined operators using496

GrB UnaryOp new() or GrB BinaryOp new() (see Section 4.2.1).497

Likewise, a list of predefined monoids, true semirings and convenience semirings can be found in498

23

Table 2.3: Valid GraphBLAS domain suffixes and corresponding C types (for I and T in Tables 2.4,
2.5, 2.6, and 2.7).

Suffix C type

BOOL bool

INT8 int8 t

UINT8 uint8 t

INT16 int16 t

UINT16 uint16 t

INT32 int32 t

UINT32 uint32 t

INT64 int64 t

UINT64 uint64 t

FP32 float

FP64 double

Tables 2.5, 2.6 and 2.7, respectively. Predefined monoids are named GrB op MONOID T , where499

op is the name of the predefined GraphBLAS operator used as the associative binary opera-500

tion of the monoid and T is the domain (type) of the monoid. Predefined semirings are named501

GrB add mul SEMIRING T , where add is the semiring additive operation, mul is the semiring mul-502

tiplicative operation and T is the domain (type) of the semiring.503

The multiplicative inverse (GrB MINV F) function is only defined for floating-point types (F =504

FP32 or FP64). The division (GrB DIV T) function is defined for all types, but only if y 6= 0 for505

integral types and y 6= false for the Boolean type.506

2.7 Indices, Index Arrays, and Scalar Arrays507

In order to interface with third-party software (i.e., software other than an implementation of the508

GraphBLAS), operations such as GrB Matrix build (Section 4.2.3.8) and GrB Matrix extractTuples509

(Section 4.2.3.12) must specify how the data should be laid out in non-opaque data structures. To510

this end we explicitly define the types for indices and the arrays used by these operations.511

For indices a typedef is used to give a GraphBLAS name to a concrete type. We define it as follows:512

typedef uint64_t GrB_Index;513

An index array is a pointer to a set of GrB Index values that are stored in a contiguous block of514

memory (i.e., GrB Index*). Likewise, a scalar array is a pointer to a contiguous block of memory515

storing a number of scalar values as specified by the user. Some GraphBLAS operations (e.g.,516

GrB assign) include an input parameter with the type of an index array. This input index array517

selects a subset of elements from a GraphBLAS vector object to be used in the operation. In these518

cases, the literal GrB ALL can be used in place of the index array input parameter to indicate that519

24

Table 2.4: Predefined unary and binary operators for GraphBLAS in C. The T can be any suffix from Table 2.3,
I can be any integer suffix from Table 2.3, and F can be any floating-point suffix from Table 2.3.

Operator GraphBLAS
type identifier Domains Description

GrB UnaryOp GrB IDENTITY T T → T f(x) = x, identity
GrB UnaryOp GrB ABS T T → T f(x) = |x|, absolute value
GrB UnaryOp GrB AINV T T → T f(x) = −x, additive inverse
GrB UnaryOp GrB MINV F F → F f(x) = 1

x , multiplicative inverse
GrB UnaryOp GrB LNOT bool→ bool f(x) = ¬x, logical inverse
GrB UnaryOp GrB BNOT I I → I f(x) = ˜x, bitwise complement

GrB BinaryOp GrB LOR bool× bool→ bool f(x, y) = x ∨ y, logical OR
GrB BinaryOp GrB LAND bool× bool→ bool f(x, y) = x ∧ y, logical AND
GrB BinaryOp GrB LXOR bool× bool→ bool f(x, y) = x⊕ y, logical XOR
GrB BinaryOp GrB LXNOR bool× bool→ bool f(x, y) = x⊕ y, logical XNOR
GrB BinaryOp GrB BOR I I × I → I f(x, y) = x | y, bitwise OR
GrB BinaryOp GrB BAND I I × I → I f(x, y) = x & y, bitwise AND
GrB BinaryOp GrB BXOR I I × I → I f(x, y) = x ˆ y, bitwise XOR

GrB BinaryOp GrB BXNOR I I × I → I f(x, y) = x ˆ y, bitwise XNOR
GrB BinaryOp GrB EQ T T × T → bool f(x, y) = (x == y) equal
GrB BinaryOp GrB NE T T × T → bool f(x, y) = (x 6= y) not equal
GrB BinaryOp GrB GT T T × T → bool f(x, y) = (x > y) greater than
GrB BinaryOp GrB LT T T × T → bool f(x, y) = (x < y) less than
GrB BinaryOp GrB GE T T × T → bool f(x, y) = (x ≥ y) greater than or equal
GrB BinaryOp GrB LE T T × T → bool f(x, y) = (x ≤ y) less than or equal
GrB BinaryOp GrB FIRST T T × T → T f(x, y) = x, first argument
GrB BinaryOp GrB SECOND T T × T → T f(x, y) = y, second argument
GrB BinaryOp GrB MIN T T × T → T f(x, y) = (x < y) ? x : y, minimum
GrB BinaryOp GrB MAX T T × T → T f(x, y) = (x > y) ? x : y, maximum
GrB BinaryOp GrB PLUS T T × T → T f(x, y) = x + y, addition
GrB BinaryOp GrB MINUS T T × T → T f(x, y) = x− y, subtraction
GrB BinaryOp GrB TIMES T T × T → T f(x, y) = xy, multiplication
GrB BinaryOp GrB DIV T T × T → T f(x, y) = x

y , division

25

Table 2.5: Predefined monoids for GraphBLAS in C. Maximum and minimum values for
the various integral types are defined in stdint.h. Floating-point infinities are defined
in math.h. The x in UINTx or INTx can be one of 8, 16, 32, or 64; whereas in FPx, it
can be 32 or 64.

GraphBLAS Domains, T
identifier (T × T → T) Identity Description

GrB PLUS MONOID T UINTx 0 addition
INTx 0
FPx 0

GrB TIMES MONOID T UINTx 1 multiplication
INTx 1
FPx 1

GrB MIN MONOID T UINTx UINTx MAX minimum
INTx INTx MAX

FPx INFINITY

GrB MAX MONOID T UINTx 0 maximum
INTx INTx MIN

FPx -INFINITY

GrB LOR MONOID BOOL BOOL false logical OR
GrB LAND MONOID BOOL BOOL true logical AND
GrB LXOR MONOID BOOL BOOL false logical XOR (not equal)
GrB LXNOR MONOID BOOL BOOL true logical XNOR (equal)

26

Table 2.6: Predefined true semirings where the additive identity is the multiplicative annihi-
lator. The x in UINTx or INTx can be one of 8, 16, 32, or 64; whereas in FPx, it can be 32
or 64.

Domains, T + identity
GraphBLAS identifier (T × T → T) × annihilator Description

GrB PLUS TIMES SEMIRING T UINTx 0 arithmetic semiring
INTx 0
FPx 0

GrB MIN PLUS SEMIRING T UINTx UINTx MAX min-plus semiring
INTx INTx MAX

FPx INFINITY

GrB MAX PLUS SEMIRING T INTx INTx MIN max-plus semiring
FPx -INFINITY

GrB MIN TIMES SEMIRING T UINTx UINTx MAX min-times semiring
GrB MIN MAX SEMIRING T UINTx UINTx MAX min-max semiring

INTx INTx MAX

FPx INFINITY

GrB MAX MIN SEMIRING T UINTx 0 max-min semiring
INTx INTx MIN

FPx -INFINITY

GrB MAX TIMES SEMIRING T UINTx 0 max-times semiring
GrB PLUS MIN SEMIRING T UINTx 0 plus-min semiring

GrB LOR LAND SEMIRING BOOL BOOL false Logical semiring
GrB LAND LOR SEMIRING BOOL BOOL true ”and-or” semiring
GrB LXOR LAND SEMIRING BOOL BOOL false same as NEQ LAND
GrB LXNOR LOR SEMIRING BOOL BOOL true same as EQ LOR

27

Table 2.7: Other useful predefined semirings that don’t have a multiplicative annihilator. The
x in UINTx or INTx can be one of 8, 16, 32, or 64; whereas in FPx, it can be 32 or 64.

Domains, T
GraphBLAS identifier (T × T → T) + identity Description

GrB MAX PLUS SEMIRING T UINTx 0 max-plus semiring
GrB MIN TIMES SEMIRING T INTx INTx MAX min-times semiring

FPx INFINITY

GrB MAX TIMES SEMIRING T INTx INTx MIN max-times semiring
FPx -INFINITY

GrB PLUS MIN SEMIRING T INTx 0 plus-min semiring
FPx 0

GrB MIN FIRST SEMIRING T UINTx UINTx MAX min-select first semiring
INTx INTx MAX

FPx INFINITY

GrB MIN SECOND SEMIRING T UINTx UINTx MAX min-select second semiring
INTx INTx MAX

FPx INFINITY

GrB MAX FIRST SEMIRING T UINTx 0 max-select first semiring
INTx INTx MIN

FPx -INFINITY

GrB MAX SECOND SEMIRING T UINTx 0 max-select second semiring
INTx INTx MIN

FPx -INFINITY

28

all indices of the associated GraphBLAS vector object should be used. As with any literal defined520

in the GraphBLAS, an implementation of the GraphBLAS C API has considerable freedom in521

terms of how GrB ALL is defined. Since GrB ALL is used as an argument for an array parameter, it522

must use a type consistent with a pointer. GrB ALL must also have a non-null value to distinguish523

it from the erroneous case of passing a NULL pointer as an array.524

2.8 Execution Model525

A program using the GraphBLAS C API constructs GraphBLAS objects, manipulates them to526

implement a graph algorithm, and then extracts values from the GraphBLAS objects as the result527

of the algorithm. Functions defined within the GraphBLAS C API that manipulate GraphBLAS528

objects are called methods. If the method corresponds to one of the operations defined in the529

GraphBLAS mathematical specification, we refer to the method as an operation.530

Graph algorithms are expressed as an ordered collection of GraphBLAS method calls defined by531

the order they are encountered in a program. This is called the program order. Each method in532

the collection uniquely and unambiguously defines the output GraphBLAS objects based on the533

GraphBLAS operation and the input GraphBLAS objects. This is the case as long as there are no534

execution errors, which can put objects in an invalid state (see Section 2.9).535

The GraphBLAS method calls in program order are organized into contiguous and nonoverlapping536

sequences. A sequence is an ordered collection of method calls as encountered by an executing537

thread. (For more on threads and GraphBLAS, see Section 2.8.2.) A sequence begins with either538

(1) the first GraphBLAS method called by a thread, or (2) the first method called by a thread539

after the end of the previous sequence. A sequence can end (terminate) in a variety of ways. A call540

to the GraphBLAS GrB wait() method (Section 4.4.1.1) always ends a sequence. The GraphBLAS541

GrB finalize() method (Section 4.1.2) also implicitly ends a sequence. Finally, in blocking mode (see542

below), each GraphBLAS method starts and ends its own sequence.543

The GraphBLAS objects are fully defined at any point in a sequence by the methods in the sequence544

as long as there are no execution errors. In particular, as soon as a GraphBLAS method call returns,545

its output can be used in the next GraphBLAS method call. However, individual operations in a546

sequence may not be complete. We say that an operation is complete when all the computations547

in the operation have finished and all the values of its output object have been produced and548

committed to the address space of the program. Furthermore, no additional execution time can549

be charged to a completed operation and no additional errors can be attributed to a completed550

operation.551

The opaqueness of GraphBLAS objects allows execution to proceed from one method to the next552

even when operations are not complete. Processing of nonopaque objects is never deferred in Graph-553

BLAS. That is, methods that consume nonopaque objects (e.g., GrB Matrix build, Section 4.2.3.8())554

and methods that produce nonopaque objects (e.g., GrB Matrix extractTuples(), Section 4.2.3.12)555

always finish consuming or producing those nonopaque objects before returning.556

29

2.8.1 Execution modes557

The execution model implied by GraphBLAS sequences depends on the execution mode of the558

GraphBLAS program. There are two modes: blocking and nonblocking.559

• blocking : In blocking mode, each method completes the GraphBLAS operation defined by560

the method before proceeding to the next statement in program order. Output GraphBLAS561

objects defined by a method are fully produced and stored in memory (i.e., they are mate-562

rialized). In other words, it is as if each method call is its own sequence. Even mechanisms563

that break the opaqueness of the GraphBLAS objects (e.g., performance monitors, debuggers,564

memory dumps) will observe the operation as complete.565

• nonblocking : In nonblocking mode, each method may return once the input arguments have566

been inspected and verified to define a well formed GraphBLAS operation. (That is, there567

are no API errors; see Section 2.9.) The GraphBLAS operation may not have completed, but568

the output object is ready to be used by the next GraphBLAS method call. Completion of569

all operations in a sequence, including any that may generate execution errors, is guaranteed570

once the sequence terminates. Sequence termination is accomplished by a call to GrB wait().571

An application executing in nonblocking mode is not required to return immediately after input572

arguments have been verified. A conforming implementation of the GraphBLAS C API running in573

nonblocking mode may choose to execute as if in blocking mode. Further, a sequence in nonblocking574

mode where every GraphBLAS operation is followed by a GrB wait() call is equivalent to the same575

sequence in blocking mode with GrB wait() calls removed.576

Nonblocking mode allows for any execution strategy that satisfies the mathematical definition of577

the sequence. The methods can be placed into a queue and deferred. They can be chained together578

and fused (e.g., replacing a chained pair of matrix products with a matrix triple product). Lazy579

evaluation, greedy evaluation, and asynchronous execution are all valid as long as the final result580

agrees with the mathematical definition provided by the sequence of GraphBLAS method calls581

appearing in program order.582

Blocking mode forces an implementation to carry out precisely the GraphBLAS operations defined583

by the methods and to store output objects to memory between method calls. It is valuable for584

debugging or in cases where an external tool such as a debugger needs to evaluate the state of585

memory during a sequence.586

In a mathematically well-defined sequence with input objects that are well-conditioned and free of587

execution errors, the results from blocking and nonblocking modes should be identical outside of588

effects due to roundoff errors associated with floating point arithmetic. Due to the great flexibility589

afforded to an implementation when using nonblocking mode, we expect execution of a sequence590

in nonblocking mode to potentially complete execution in less time.591

The mode is defined in the GraphBLAS C API when the context of the library invocation is defined.592

This occurs once before any GraphBLAS methods are called with a call to the GrB init() function.593

This function takes a single argument of type GrB Mode with the following possible values:594

• GrB BLOCKING specifies the blocking mode context.595

30

• GrB NONBLOCKING specifies the nonblocking mode context.596

After all GraphBLAS methods are complete, the context is terminated with a call to GrB finalize().597

In the current version of the GraphBLAS C API, the context can be set only once in the execution598

of a program. That is, after GrB finalize() is called, a subsequent call to GrB init() is not allowed.599

2.8.2 Thread safety600

The GraphBLAS C API is designed to work in applications that execute with multiple threads;601

however, management of threads is not exposed within the definition of the GraphBLAS C API.602

The mapping of GraphBLAS methods onto threads and explicit synchronization between methods603

running on different threads are not defined. Furthermore, errors exposed within the error model604

(see Section 2.9) are not required to manage information at a per-thread granularity.605

The only requirement concerning the needs of multi-threaded execution found in the GraphBLAS606

C API is that implementations of GraphBLAS methods must be thread safe. Different threads may607

create GraphBLAS sequences that do not conflict and expect the results to be the same (within608

floating point roundoff errors) regardless of whether the sequences execute serially or concurrently.609

Sequences that do not conflict are free of data races. A data race occurs when (1) two or more610

threads access shared objects, (2) those access operations include at least one modify operation,611

and (3) those operations are not ordered through synchronization operations. The GraphBLAS C612

API does not provide synchronization operations to define ordered accesses to GraphBLAS objects.613

Hence the only way to assure that two sequences running concurrently on different threads do not614

conflict is if neither sequence writes to an object that the other sequence either reads or writes.615

2.9 Error Model616

All GraphBLAS methods return a value of type GrB Info to provide information available to the617

system at the time the method returns. The returned value can be either GrB SUCCESS or one of the618

defined error values shown in Table 2.8. The errors fall into two groups: API errors (Table 2.8(a))619

and execution errors (Table 2.8(b)).620

An API error means that a GraphBLAS method was called with parameters that violate the rules621

for that method. These errors are restricted to those that can be determined by inspecting the types622

and domains of GraphBLAS objects, GraphBLAS operators, or the values of scalar parameters fixed623

at the time a method is called. API errors are deterministic and consistent across platforms and624

implementations. API errors are never deferred, even in nonblocking mode. That is, if a method is625

called in a manner that would generate an API error, it always returns with the appropriate API626

error value. If a GraphBLAS method returns with an API error, it is guaranteed that none of the627

arguments to the method (or any other program data) have been modified.628

Execution errors indicate that something went wrong during the execution of a legal GraphBLAS629

method invocation. Their occurrence may depend on specifics of the executing environment and630

data values being manipulated. This does not mean that execution errors are the fault of the631

31

const char *GrB_error();

Figure 2.1: Signature of GrB error() function.

GraphBLAS implementation. For example, a memory leak could arise from an error in an applica-632

tion’s source code (a “program error”), but it may manifest itself in different points of a program’s633

execution (or not at all) depending on the platform, problem size, or what else is running at that634

time. Index-out-of-bounds and insuficient space execution errors always indicate a program error.635

In blocking mode, where each method executes to completion, a returned execution error value636

applies to the specific method. If a GraphBLAS method, executing in blocking mode, returns with637

any execution error from Table 2.8(b) other than GrB PANIC, it is guaranteed that no argument638

used as input-only has been modified. Output arguments may be left in an invalid state, and their639

use downstream in the program flow may cause additional errors. If a GraphBLAS method returns640

with a GrB PANIC execution error, no guarantees can be made about the state of any program641

data.642

In nonblocking mode, execution errors can be deferred. A return value of GrB SUCCESS only643

guarantees that there are no API errors in the method invocation. If an execution error value is644

returned by a method in nonblocking mode, it indicates that an error was found during execution645

of the sequence, up to and including the GrB wait() method (Section 4.4.1.1) call that ends the646

sequence. When possible, that return value will provide information concerning the cause of the647

error.648

As discussed in Section 4.4.1.2, a GrB wait(obj) on a specific GraphBLAS object obj does not649

necessarily end a sequence. However, no additional errors on the methods of the sequence that650

have obj as an OUT or INOUT argument can be reported. From a GraphBLAS perspective, those651

methods are complete.652

If a GraphBLAS method, executing in nonblocking mode, returns with any execution error from653

Table 2.8(b) other than GrB PANIC, it is guaranteed that no argument used as input-only through654

the entire sequence has been modified. Any output argument in the sequence may be left in655

an invalid state and its use downstream in the program flow may cause additional errors. If a656

GraphBLAS method returns with a GrB PANIC, no guarantees can be made about the state of any657

program data.658

After a call to any GraphBLAS method, the program can retrieve additional error information659

(beyond the error code returned by the method) though a call to the function GrB error(). The660

signature of that function is shown in Figure 2.1. The function returns a pointer to a NULL-661

terminated string, and the contents of that string are implementation dependent. In particular, a662

null string (not a NULL pointer) is always a valid error string. The pointer is valid until the next663

call to any GraphBLAS method by the same thread. GrB error() is a thread-safe function, in the664

sense that multiple threads can call it simultaneously and each will get its own error string back,665

referring to the last GraphBLAS method it called.666

32

Table 2.8: Error values returned by GraphBLAS methods.

(a) API errors

Error code Description

GrB UNINITIALIZED OBJECT A GraphBLAS object is passed to a method
before new was called on it.

GrB NULL POINTER A NULL is passed for a pointer parameter.
GrB INVALID VALUE Miscellaneous incorrect values.
GrB INVALID INDEX Indices passed are larger than dimensions of

the matrix or vector being accessed.
GrB DOMAIN MISMATCH A mismatch between domains of collections

and operations when user-defined domains are
in use.

GrB DIMENSION MISMATCH Operations on matrices and vectors with in-
compatible dimensions.

GrB OUTPUT NOT EMPTY An attempt was made to build a matrix or
vector using an output object that already
contains valid tuples (elements).

GrB NO VALUE A location in a matrix or vector is being ac-
cessed that has no stored value at the specified
location.

(b) Execution errors

Error code Description

GrB OUT OF MEMORY Not enough memory for operations.
GrB INSUFFICIENT SPACE The array provided is not large enough to hold

output.
GrB INVALID OBJECT One of the opaque GraphBLAS objects (input

or output) is in an invalid state caused by a
previous execution error.

GrB INDEX OUT OF BOUNDS Reference to a vector or matrix element that is
outside the defined dimensions of the object.

GrB PANIC Unknown internal error.

33

34

Chapter 3667

Objects668

The GraphBLAS algebraic objects operators, monoids, and semirings are presented below. These669

objects can be used as input arguments to various GraphBLAS operations, as shown in Table 3.1.670

The specific rules for each algebraic object are explained in the respective sections of those ob-671

jects. A summary of the properties and recipes for building these GraphBLAS algebraic objects is672

presented in Table 3.2.673

Once algebraic objects (operators, monoids, and semirings) are described, we introduce collections674

(vectors, matrices, and masks) that algebraic objects operate on. Finally, we introduce descriptors,675

which are a simple way to modify how algebraic objects operate on collections. More concretely,676

descriptors can be used (among other things) to perform multiplication with transpose of matrix677

without the user having to manually transpose the collection. A complete list of what descriptors678

are capable of can be found in the section.679

Every GraphBLAS object has a lifetime, which consists of the sequence of instructions executed680

in program order between the creation and the destruction of the object. Pre-defined objects681

(types, operators, monoids, semirings and descriptors) are created when the GraphBLAS context682

is initialized by a call to GrB init and are destroyed when the GraphBLAS context is terminated683

by a call to GrB finalize.684

Additional objects can be created by a call to a constructor. Each kind of object has its own ex-685

plicit constructor method: GrB Type new, GrB UnaryOp new, GrB BinaryOp new, GrB Monoid new,686

GrB Semiring new, GrB Descriptor new, GrB Vector new, GrB Matrix new. Furthermore, vectors and687

matrices can be constructed by duplicating another vector or matrix through calls to the methods688

GrB Vector dup and GrB Matrix dup, respectively. Objects explicitly created by a call to a con-689

structor can be destroyed by a call to GrB free. The behavior of a program that calls GrB free on690

a pre-defined object is undefined.691

Several GraphBLAS constructor methods take objects as input arguments and use these objects to692

create a new object. For all GrB * new methods, the lifetime of the created object must end strictly693

before the lifetime of any input objects. For example, a vector constructor GrB Vector new takes694

a type object as input. That type object must not be destroyed until after the created vector is695

destroyed. Similarly, a GrB Semiring new method takes a monoid and a binary operator as inputs.696

Neither of these can be destroyed until after the created semiring is destroyed.697

35

Table 3.1: Operator input for relevant GraphBLAS operations. The semiring add and times are
shown if applicable.

Operation Operator input

mxm, mxv, vxm semiring

eWiseAdd binary operator
monoid
semiring

eWiseMult binary operator
monoid
semiring

reduce (to vector) binary operator
monoid

reduce (to scalar) monoid

apply unary operator

kronecker binary operator
monoid
semiring

dup argument (build methods) binary operator

accum argument (various methods) binary operator

Table 3.2: Properties and recipes for building GraphBLAS algebraic objects: unary operator,
binary operator, monoid, and semiring (composed of operations add and times).
Note 1: The output domain of the semiring times must be same as the domain of the semiring add.
This ensures three domains for a semiring rather than four.

(a) Properties of algebraic objects.

Object Must be Must be Identity Number
commutative associative must exist of domains

Unary operator no no no 2
Binary operator no no no 3
Monoid no yes yes 1
Semiring add yes yes yes 1
Semiring times no no no 3 (see Note 1)

(b) Recipes for algebraic objects.

Object Recipe Number of domains

Unary operator Function pointer 2
Binary operator Function pointer 3
Monoid Associative binary operator with identity 1
Semiring Commutative monoid + binary operator 3

36

The GrB Vector dup and GrB Matrix dup constructor methods behave differently. In these cases,698

the input vector or matrix can be destroyed as soon as the call returns. However, the original type699

object used to create the input vector or matrix cannot be destroyed until after the vector or matrix700

created by GrB Vector dup or GrB Matrix dup is destroyed. This behavior must hold for any chain701

of duplicating constructors.702

3.1 Operators703

A GraphBLAS binary operator Fb = 〈Dout, Din1 , Din2 ,�〉 is defined by three domains, Dout,704

Din1 , Din2 , and an operation � : Din1 × Din2 → Dout. For a given GraphBLAS operator705

Fb = 〈Dout, Din1 , Din2 ,�〉, we define Dout(Fb) = Dout, Din1(Fb) = Din1 , Din2(Fb) = Din2 , and706 ⊙
(Fb) = �. Note that � could be used in place of either ⊕ or ⊗ in other methods and operations.707

A GraphBLAS unary operator Fu = 〈Dout, Din, f〉 is defined by two domains, Dout and Din, and708

an operation f : Din → Dout. For a given GraphBLAS operator Fu = 〈Dout, Din, f〉, we define709

Dout(Fu) = Dout, Din(Fu) = Din, and f(Fu) = f .710

3.2 Monoids711

A GraphBLAS monoid M = 〈D,�, 0〉 is defined by a single domain D, an associative1 operation712

� : D ×D → D, and an identity element 0 ∈ D. For a given GraphBLAS monoid M = 〈D,�, 0〉713

we define D(M) = D,
⊙

(M) = �, and 0(M) = 0. A GraphBLAS monoid is equivalent to the714

conventional monoid algebraic structure.715

Let F = 〈D,D,D,�〉 be an associative GraphBLAS binary operator with identity element 0 ∈ D.716

Then M = 〈F, 0〉 = 〈D,�, 0〉 is a GraphBLAS monoid. If � is commutative, then M is said to be717

a commutative monoid. If a monoid M is created using an operator � that is not associative, the718

outcome of GraphBLAS operations using such a monoid is undefined.719

3.3 Semirings720

A GraphBLAS semiring S = 〈Dout, Din1 , Din2 ,⊕,⊗, 0〉 is defined by three domains Dout, Din1 , and721

Din2 ; an associative1 and commutative additive operation ⊕ : Dout×Dout → Dout; a multiplicative722

operation ⊗ : Din1 × Din2 → Dout; and an identity element 0 ∈ Dout. For a given GraphBLAS723

semiring S = 〈Dout, Din1 , Din2 ,⊕,⊗, 0〉 we define Din1(S) = Din1 , Din2(S) = Din2 , Dout(S) =724

Dout,
⊕

(S) = ⊕,
⊗

(S) = ⊗, and 0(S) = 0.725

Let F = 〈Dout, Din1 , Din2 ,⊗〉 be an operator and let A = 〈Dout,⊕, 0〉 be a commutative monoid,726

then S = 〈A,F 〉 = 〈Dout, Din1 , Din2 ,⊕,⊗, 0〉 is a semiring.727

1It is expected that implementations of the GraphBLAS will utilize floating point arithmetic such as that defined
in the IEEE-754 standard even though floating point arithmetic is not strictly associative.

37

In a GraphBLAS semiring, the multiplicative operator does not have to distribute over the additive728

operator. This is unlike the conventional semiring algebraic structure.729

Note: There must be one GraphBLAS monoid in every semiring which serves as the semiring’s730

additive operator and specifies the same domain for its inputs and output parameters. If this731

monoid is not a commutative monoid, the outcome of GraphBLAS operations using the semiring732

is undefined.733

A UML diagram of the conceptual hierarchy of object classes in GraphBLAS algebra (binary734

operators, monoids, and semirings) is shown in Figure 3.1.735

Dout,Din1,Din2

BinaryOp

operation(Din1,Din2) : Dout

Dout,Din1,Din2

Semiring (generalized)

plus_monoid(Dout, "0")
times_operator(Dout,Din1,Din2)

D

Monoid (conventional)

identity_value: D
BinaryOp(D, D, D)

Figure 3.1: Hierarchy of algebraic object classes in GraphBLAS. GraphBLAS semirings consist of
a conventional monoid with one domain for the addition function, and a binary operator with three
domains for the multiplication function.

3.4 Vectors736

A vector v = 〈D,N, {(i, vi)}〉 is defined by a domain D, a size N > 0, and a set of tuples (i, vi)737

where 0 ≤ i < N and vi ∈ D. A particular value of i can appear at most once in v. We define738

size(v) = N and L(v) = {(i, vi)}. The set L(v) is called the content of vector v. We also define739

the set ind(v) = {i : (i, vi) ∈ L(v)} (called the structure of v), and D(v) = D. For a vector v,740

v(i) is a reference to vi if (i, vi) ∈ L(v) and is undefined otherwise.741

38

3.5 Matrices742

A matrix A = 〈D,M,N, {(i, j, Aij)}〉 is defined by a domain D, its number of rows M > 0, its743

number of columns N > 0, and a set of tuples (i, j, Aij) where 0 ≤ i < M , 0 ≤ j < N , and744

Aij ∈ D. A particular pair of values i, j can appear at most once in A. We define ncols(A) = N ,745

nrows(A) = M , and L(A) = {(i, j, Aij)}. The set L(A) is called the content of matrix A. We also746

define the sets indrow(A) = {i : ∃(i, j, Aij) ∈ A} and indcol(A) = {j : ∃(i, j, Aij) ∈ A}. (These747

are the sets of nonempty rows and columns of A, respectively.) The structure of matrix A is the748

set ind(A) = {(i, j) : (i, j, Aij) ∈ L(A)}, and D(A) = D. For a matrix A, A(i, j) is a reference to749

Aij if (i, j, Aij) ∈ L(A) and is undefined otherwise.750

If A is a matrix and 0 ≤ j < N , then A(:, j) = 〈D,M, {(i, Aij) : (i, j, Aij) ∈ L(A)}〉 is a751

vector called the j-th column of A. Correspondingly, if A is a matrix and 0 ≤ i < M , then752

A(i, :) = 〈D,N, {(j, Aij) : (i, j, Aij) ∈ L(A)}〉 is a vector called the i-th row of A.753

Given a matrix A = 〈D,M,N, {(i, j, Aij)}〉, its transpose is another matrix AT = 〈D,N,M, {(j, i, Aij) :754

(i, j, Aij) ∈ L(A)}〉.755

3.6 Masks756

The GraphBLAS C API defines an opaque object called a mask. The mask is used to control how757

computed values are stored in the output from a method. The mask is an internal opaque object;758

that is, it is never exposed as a variable within an application.759

The mask is formed from objects input to the method that uses the mask. For example, a Graph-760

BLAS method may be called with a matrix as the mask parameter. The internal mask object is761

constructed from the input matrix in one of two ways. In the default case, an element of the mask762

is created for each tuple that exists in the matrix for which the value of the tuple cast to Boolean763

evaluates to true. Alternatively, the user can specify structure-only behavior where an element of764

the mask is created for each tuple that exists in the matrix regardless of the value stored in the765

input matrix.766

The internal mask object can be either a one- or a two-dimensional construct. One- and two-767

dimensional masks, described more formally below, are similar to vectors and matrices, respectively,768

except that they have structure (indices) but no values. When needed, a value is implied for the769

elements of a mask with an implied value of true for elements that exist and an implied value770

of false for elements that do not exist (i.e., the locations of the mask that do not have a stored771

value imply a value of false). Hence, even though a mask does not contain any values, it can be772

considered to imply values from a Boolean domain.773

A one-dimensional mask m = 〈N, {i}〉 is defined by its number of elements N > 0, and a set774

ind(m) of indices {i} where 0 ≤ i < N . A particular value of i can appear at most once in m. We775

define size(m) = N . The set ind(m) is called the structure of mask m.776

A two-dimensional mask M = 〈M,N, {(i, j)}〉 is defined by its number of rows M > 0, its number777

of columns N > 0, and a set ind(M) of tuples (i, j) where 0 ≤ i < M , 0 ≤ j < N . A particular pair778

of values i, j can appear at most once in M. We define ncols(M) = N , and nrows(M) = M . We779

39

also define the sets indrow(M) = {i : ∃(i, j) ∈ ind(M)} and indcol(M) = {j : ∃(i, j) ∈ ind(M)}.780

These are the sets of nonempty rows and columns of M, respectively. The set ind(M) is called the781

structure of mask M.782

One common operation on masks is the complement. For a one-dimensional mask m this is denoted783

as ¬m. For a two-dimensional masks, this is denoted as ¬M. The complement of a one-dimensional784

mask m is defined as ind(¬m) = {i : 0 ≤ i < N, i /∈ ind(m)}. It is the set of all possible indices785

that do not appear in m. The complement of a two-dimensional mask M is defined as the set786

ind(¬M) = {(i, j) : 0 ≤ i < M , 0 ≤ j < N , (i, j) /∈ ind(M)}. It is the set of all possible indices787

that do not appear in M.788

3.7 Descriptors789

Descriptors are used to modify the behavior of a GraphBLAS method. When present in the790

signature of a method, they appear as the last argument in the method. Descriptors specify how791

the other input arguments corresponding to GraphBLAS collections – vectors, matrices, and masks792

– should be processed (modified) before the main operation of a method is performed.793

The descriptor is a lightweight object. It is composed of (field, value) pairs where the field selects794

one of the GraphBLAS objects from the argument list of a method and the value defines the795

indicated modification associated with that object. For example, a descriptor may specify that a796

particular input matrix needs to be transposed or that a mask needs to be complemented (defined797

in Section 3.6) before using it in the operation.798

For the purpose of constructing descriptors, the arguments of a method that can be modified799

are identified by specific field names. The output parameter (typically the first parameter in a800

GraphBLAS method) is indicated by the field name, GrB OUTP. The mask is indicated by the801

GrB MASK field name. The input parameters corresponding to the input vectors and matrices are802

indicated by GrB INP0 and GrB INP1 in the order they appear in the signature of the GraphBLAS803

method. The descriptor is an opaque object and hence we do not define how objects of this type804

should be implemented. When referring to (field, value) pairs for a descriptor, however, we often805

use the informal notation desc[GrB Desc Field].GrB Desc Value without implying that a descriptor806

is to be implemented as an array of structures (in fact, field values can be used in conjunction with807

multiple values that are composable). We summarize all types, field names, and values used with808

descriptors in Table 3.3.809

In the definitions of the GraphBLAS methods, we often refer to the default behavior of a method810

with respect to the action of a descriptor. If a descriptor is not provided or if the value associated811

with a particular field in a descriptor is not set, the default behavior of a GraphBLAS method is812

defined as follows:813

• Input matrices are not transposed.814

• The mask is used, as is, without complementing, and stored values are examined to determine815

whether they evaluate to true or false.816

• Values of the output object that are not directly modified by the operation are preserved.817

40

Table 3.3: Descriptors are GraphBLAS objects passed as arguments to Graph BLAS operations to
modify other GraphBLAS objects in the operation’s argument list. A descriptor, desc, has one or
more (field, value) pairs indicated as desc[GrB Desc Field].GrB Desc Value. In this table, we define
all types and literals used with descriptors.

(a) Types used with GraphBLAS descriptors.

Type Description

GrB Descriptor Type of a GraphBLAS descriptor object.
GrB Desc Field Type of a descriptor field.
GrB Desc Value Type of a descriptor field’s value.

(b) Descriptor field names of type GrB Desc Field.

Field name Description

GrB OUTP Field name for the output GraphBLAS object.
GrB INP0 Field name for the first input GraphBLAS object.
GrB INP1 Field name for the second input GraphBLAS object.
GrB MASK Field name for the mask GraphBLAS object.

(c) Descriptor field values of type GrB Desc Value.

Field Value Description

GrB STRUCTURE The write mask is constructed from the structure (pattern of stored
values) of the associated object. The stored values are not examined.

GrB COMP Use the complement of the associated object. When combined
with GrB STRUCTURE, the complement of the structure of the associated
object is used without evaluating the values stored.

GrB SCMP Use the complement of the associated object. When combined
with GrB STRUCTURE, the complement of the structure of the associated
object is used without evaluating the values stored. This field value
is currently deprecated in favor of GrB COMP above, and may be
removed in future versions of this API.

GrB TRAN Use the transpose of the associated object.
GrB REPLACE Clear the output object before assigning computed values.

41

GraphBLAS specifies a set of pre-defined descriptors. Their identifiers and the corresponding set818

of (field,value) pairs for that identfier are shown in Table 3.4.819

Table 3.4: Pre-defined GraphBLAS descriptors. The list includes all possible descriptors, according
to the current standard. Columns list the possible fields and entries list the value(s) associated
with those fields for a given descriptor.

Identifier GrB OUTP GrB MASK GrB INP0 GrB INP1
GrB NULL – – – –
GrB DESC T1 – – – GrB TRAN
GrB DESC T0 – – GrB TRAN –
GrB DESC T0T1 – – GrB TRAN GrB TRAN
GrB DESC C – GrB COMP – –
GrB DESC S – GrB STRUCTURE – –
GrB DESC CT1 – GrB COMP – GrB TRAN
GrB DESC ST1 – GrB STRUCTURE – GrB TRAN
GrB DESC CT0 – GrB COMP GrB TRAN –
GrB DESC ST0 – GrB STRUCTURE GrB TRAN –
GrB DESC CT0T1 – GrB COMP GrB TRAN GrB TRAN
GrB DESC ST0T1 – GrB STRUCTURE GrB TRAN GrB TRAN
GrB DESC SC – GrB STRUCTURE, GrB COMP – –
GrB DESC SCT1 – GrB STRUCTURE, GrB COMP – GrB TRAN
GrB DESC SCT0 – GrB STRUCTURE, GrB COMP GrB TRAN –
GrB DESC SCT0T1 – GrB STRUCTURE, GrB COMP GrB TRAN GrB TRAN
GrB DESC R GrB REPLACE – – –
GrB DESC RT1 GrB REPLACE – – GrB TRAN
GrB DESC RT0 GrB REPLACE – GrB TRAN –
GrB DESC RT0T1 GrB REPLACE – GrB TRAN GrB TRAN
GrB DESC RC GrB REPLACE GrB COMP – –
GrB DESC RS GrB REPLACE GrB STRUCTURE – –
GrB DESC RCT1 GrB REPLACE GrB COMP – GrB TRAN
GrB DESC RST1 GrB REPLACE GrB STRUCTURE – GrB TRAN
GrB DESC RCT0 GrB REPLACE GrB COMP GrB TRAN –
GrB DESC RST0 GrB REPLACE GrB STRUCTURE GrB TRAN –
GrB DESC RCT0T1 GrB REPLACE GrB COMP GrB TRAN GrB TRAN
GrB DESC RST0T1 GrB REPLACE GrB STRUCTURE GrB TRAN GrB TRAN
GrB DESC RSC GrB REPLACE GrB STRUCTURE, GrB COMP – –
GrB DESC RSCT1 GrB REPLACE GrB STRUCTURE, GrB COMP – GrB TRAN
GrB DESC RSCT0 GrB REPLACE GrB STRUCTURE, GrB COMP GrB TRAN –
GrB DESC RSCT0T1 GrB REPLACE GrB STRUCTURE, GrB COMP GrB TRAN GrB TRAN

42

Chapter 4820

Methods821

This chapter defines the behavior of all the methods in the GraphBLAS C API. All methods can822

be declared for use in programs by including the GraphBLAS.h header file.823

We would like to emphasize that no GraphBLAS method will imply a predefined order over any824

associative operators. Implementations of the GraphBLAS are encouraged to exploit associativity825

to optimize performance of any GraphBLAS method. This holds even if the definition of the826

GraphBLAS method implies a fixed order for the associative operations.827

4.1 Context Methods828

The methods in this section set up and tear down the GraphBLAS context within which all Graph-829

BLAS methods must be executed. The initialization of this context also includes the specification830

of which execution mode is to be used.831

4.1.1 init: Initialize a GraphBLAS context832

Creates and initializes a GraphBLAS C API context.833

C Syntax834

GrB_Info GrB_init(GrB_Mode mode);835

Parameters836

mode Mode for the GraphBLAS context. Must be either GrB BLOCKING or GrB NONBLOCKING.837

43

Return Values838

GrB SUCCESS operation completed successfully.839

GrB PANIC unknown internal error.840

GrB INVALID VALUE invalid mode specified, or method called multiple times.841

Description842

The init method creates and initializes a GraphBLAS C API context. The argument to GrB init843

defines the mode for the context. The two available modes are:844

• GrB BLOCKING: In this mode, each method in a sequence returns after its computations have845

completed and output arguments are available to subsequent statements in an application.846

When executing in GrB BLOCKING mode, the methods execute in program order.847

• GrB NONBLOCKING: In this mode, methods in a sequence may return after arguments in848

the method have been tested for dimension and domain compatibility within the method849

but potentially before their computations complete. Output arguments are available to sub-850

sequent GraphBLAS methods in an application. When executing in GrB NONBLOCKING851

mode, the methods in a sequence may execute in any order that preserves the mathematical852

result defined by the sequence.853

An application can only create one context per execution instance. An application may only call854

GrB Init once. Calling GrB Init more than once results in undefined behavior.855

4.1.2 finalize: Finalize a GraphBLAS context856

Terminates and frees any internal resources created to support the GraphBLAS C API context.857

C Syntax858

GrB_Info GrB_finalize();859

Return Values860

GrB SUCCESS operation completed successfully.861

GrB PANIC unknown internal error.862

44

Description863

The finalize method terminates and frees any internal resources created to support the GraphBLAS864

C API context. GrB finalize may only be called after a context has been initialized by calling865

GrB init, or else undefined behavior occurs. After GrB finalize has been called to finalize a Graph-866

BLAS context, calls to any GraphBLAS methods, including GrB finalize, will result in undefined867

behavior.868

4.1.3 getVersion: Get the version number of the standard.869

Query the library for the version number of the standard that this library implements.870

C Syntax871

GrB_Info GrB_getVersion(unsigned int *version,872

unsigned int *subversion);873

Parameters874

version (OUT) On successful return will hold the value of the major version number.875

version (OUT) On successful return will hold the value of the subversion number.876

Return Values877

GrB SUCCESS operation completed successfully.878

GrB PANIC unknown internal error.879

Description880

The getVersion method is used to query the major and minor version number of the GraphBLAS881

C API specification that the library implements at runtime. To support compile time queries the882

following two macros shall also be defined by the library.883

#define GRB_VERSION 1884

#define GrB_SUBVERSION 3885

4.2 Object Methods886

This section describes methods that setup and operate on GraphBLAS opaque objects but are not887

part of the the GraphBLAS math specification.888

45

4.2.1 Algebra Methods889

4.2.1.1 Type new: Create a new GraphBLAS (user-defined) type890

Creates a new user-defined GraphBLAS type. This type can then be used to create new operators,891

monoids, semirings, vectors and matrices.892

C Syntax893

GrB_Info GrB_Type_new(GrB_Type *utype,894

size_t sizeof(ctype));895

Parameters896

utype (INOUT) On successful return, contains a handle to the newly created user-defined897

GraphBLAS type object.898

ctype (IN) A C type that defines the new GraphBLAS user-defined type.899

Return Values900

GrB SUCCESS operation completed successfully.901

GrB PANIC unknown internal error.902

GrB OUT OF MEMORY not enough memory available for operation.903

GrB NULL POINTER utype pointer is NULL.904

Description905

Given a C type ctype, the Type new method returns in utype a handle to a new GraphBLAS type906

that is equivalent to the C type. Variables of this ctype must be a struct, union, or fixed-size array.907

In particular, given two variables, src and dst, of type ctype, the following operation must be a908

valid way to copy the contents of src to dst:909

memcpy(&dst, &src, sizeof(ctype))910

A new, user-defined type utype should be destroyed with a call to GrB free(utype) when no longer911

needed.912

It is not an error to call this method more than once on the same variable; however, the handle to913

the previously created object will be overwritten.914

46

4.2.1.2 UnaryOp new: Create a new GraphBLAS unary operator915

Initializes a new GraphBLAS unary operator with a specified user-defined function and its types916

(domains).917

C Syntax918

GrB_Info GrB_UnaryOp_new(GrB_UnaryOp *unary_op,919

void (*unary_func)(void*, const void*),920

GrB_Type d_out,921

GrB_Type d_in);922

Parameters923

unary op (INOUT) On successful return, contains a handle to the newly created GraphBLAS924

unary operator object.925

unary func (IN) a pointer to a user-defined function that takes one input parameter of d in’s926

type and returns a value of d out’s type, both passed as void pointers. Specifically927

the signature of the function is expected to be of the form:928

void func(void *out, const void *in);929

930

d out (IN) The GrB Type of the return value of the unary operator being created. Should931

be one of the predefined GraphBLAS types in Table 2.2, or a user-defined Graph-932

BLAS type.933

d in (IN) The GrB Type of the input argument of the unary operator being created.934

Should be one of the predefined GraphBLAS types in Table 2.2, or a user-defined935

GraphBLAS type.936

Return Values937

GrB SUCCESS operation completed successfully.938

GrB PANIC unknown internal error.939

GrB OUT OF MEMORY not enough memory available for operation.940

GrB UNINITIALIZED OBJECT any GrB Type parameter (for user-defined types) has not been ini-941

tialized by a call to GrB Type new.942

GrB NULL POINTER unary op or unary func pointers are NULL.943

47

Description944

The UnaryOp new method creates a new GraphBLAS unary operator fu = 〈D(d out),D(d in), unary func〉945

and returns a handle to it in unary op.946

The implementation of unary func must be such that it works even if the d out and d in arguments947

are aliased. In other words, for all invocations of the function:948

unary_func(out,in);949

the value of out must be the same as if the following code was executed:950

D(d in) tmp = malloc(sizeof(D(d in)));951

memcpy(tmp,in,sizeof(D(d in)));952

unary func(out,tmp);953

free(tmp);954

It is not an error to call this method more than once on the same variable; however, the handle to955

the previously created object will be overwritten.956

4.2.1.3 BinaryOp new: Create a new GraphBLAS binary operator957

Initializes a new GraphBLAS binary operator with a specified user-defined function and its types958

(domains).959

C Syntax960

GrB_Info GrB_BinaryOp_new(GrB_BinaryOp *binary_op,961

void (*binary_func)(void*,962

const void*,963

const void*),964

GrB_Type d_out,965

GrB_Type d_in1,966

GrB_Type d_in2);967

Parameters968

binary op (INOUT) On successful return, contains a handle to the newly created GraphBLAS969

binary operator object.970

binary func (IN) A pointer to a user-defined function that takes two input parameters of types971

d in1 and d in2 and returns a value of type d out, all passed as void pointers.972

Specifically the signature of the function is expected to be of the form:973

48

void func(void *out, const void *in1, const void *in2);974

975

d out (IN) The GrB Type of the return value of the binary operator being created. Should976

be one of the predefined GraphBLAS types in Table 2.2, or a user-defined Graph-977

BLAS type.978

d in1 (IN) The GrB Type of the left hand argument of the binary operator being created.979

Should be one of the predefined GraphBLAS types in Table 2.2, or a user-defined980

GraphBLAS type.981

d in2 (IN) The GrB Type of the right hand argument of the binary operator being created.982

Should be one of the predefined GraphBLAS types in Table 2.2, or a user-defined983

GraphBLAS type.984

Return Values985

GrB SUCCESS operation completed successfully.986

GrB PANIC unknown internal error.987

GrB OUT OF MEMORY not enough memory available for operation.988

GrB UNINITIALIZED OBJECT the GrB Type (for user-defined types) has not been initialized by a989

call to GrB Type new.990

GrB NULL POINTER binary op or binary func pointer is NULL.991

Description992

The BinaryOp new methods creates a new GraphBLAS binary operator fb = 〈D(d out),D(d in1),D(d in2), binary func〉993

and returns a handle to it in binary op.994

The implementation of binary func must be such that it works even if any of the d out, d in1, and995

d in2 arguments are aliased to each other. In other words, for all invocations of the function:996

binary_func(out,in1,in2);997

the value of out must be the same as if the following code was executed:998

D(d in1) tmp1 = malloc(sizeof(D(d in1)));999

D(d in2) tmp2 = malloc(sizeof(D(d in2)));1000

memcpy(tmp1,in1,sizeof(D(d in1)));1001

memcpy(tmp2,in2,sizeof(D(d in2)));1002

binary func(out,tmp1,tmp2);1003

free(tmp2);1004

free(tmp1);1005

49

It is not an error to call this method more than once on the same variable; however, the handle to1006

the previously created object will be overwritten.1007

4.2.1.4 Monoid new: Create new GraphBLAS monoid1008

Creates a new monoid with specified binary operator and identity value.1009

C Syntax1010

GrB_Info GrB_Monoid_new(GrB_Monoid *monoid,1011

GrB_BinaryOp binary_op,1012

<type> identity);1013

Parameters1014

monoid (INOUT) On successful return, contains a handle to the newly created GraphBLAS1015

monoid object.1016

binary op (IN) An existing GraphBLAS associative binary operator whose input and output1017

types are the same.1018

identity (IN) The value of the identity element of the monoid. Must be the same type as1019

the type used by the binary op operator.1020

Return Values1021

GrB SUCCESS operation completed successfully.1022

GrB PANIC unknown internal error.1023

GrB OUT OF MEMORY not enough memory available for operation.1024

GrB UNINITIALIZED OBJECT the GrB BinaryOp has not been initialized by a call to GrB BinaryOp new.1025

GrB NULL POINTER monoid pointer is NULL.1026

GrB DOMAIN MISMATCH all three argument types of the binary operator and the type of the1027

identity value are not the same.1028

Description1029

The Monoid new method creates a new monoid M = 〈D(binary op), binary op, identity〉 and returns1030

a handle to it in monoid.1031

If binary op is not associative, the results of GraphBLAS operations that require associativity of1032

this monoid will be undefined.1033

50

It is not an error to call this method more than once on the same variable; however, the handle to1034

the previously created object will be overwritten.1035

4.2.1.5 Semiring new: Create new GraphBLAS semiring1036

Creates a new semiring with specified domain, operators, and elements.1037

C Syntax1038

GrB_Info GrB_Semiring_new(GrB_Semiring *semiring,1039

GrB_Monoid add_op,1040

GrB_BinaryOp mul_op);1041

Parameters1042

semiring (INOUT) On successful return, contains a handle to the newly created GraphBLAS1043

semiring.1044

add op (IN) An existing GraphBLAS commutative monoid that specifies the addition op-1045

erator and its identity.1046

mul op (IN) An existing GraphBLAS binary operator that specifies the semiring’s multi-1047

plication operator. In addition, mul op’s output domain, Dout(mul op), must be1048

the same as the add op’s domain D(add op).1049

Return Values1050

GrB SUCCESS operation completed successfully.1051

GrB PANIC unknown internal error.1052

GrB OUT OF MEMORY not enough memory available for this method to complete.1053

GrB UNINITIALIZED OBJECT the add op object has not been initialized with a call to GrB Monoid new1054

or the mul op object has not been not been initialized by a call to1055

GrB BinaryOp new.1056

GrB NULL POINTER semiring pointer is NULL.1057

GrB DOMAIN MISMATCH the output domain of mul op does not match the domain of the1058

add op monoid.1059

51

Description1060

The Semiring new method creates a new semiring S = 〈Dout(mul op),Din1(mul op),Din2(mul op), add op,mul op,0(add op)〉1061

and returns a handle to it in semiring. Note that Dout(mul op) must be the same as D(add op).1062

If add op is not commutative, then GraphBLAS operations using this semiring will be undefined.1063

It is not an error to call this method more than once on the same variable; however, the handle to1064

the previously created object will be overwritten.1065

4.2.2 Vector Methods1066

4.2.2.1 Vector new: Create new vector1067

Creates a new vector with specified domain and size.1068

C Syntax1069

GrB_Info GrB_Vector_new(GrB_Vector *v,1070

GrB_Type d,1071

GrB_Index nsize);1072

Parameters1073

v (INOUT) On successful return, contains a handle to the newly created GraphBLAS1074

vector.1075

d (IN) The type corresponding to the domain of the vector being created. Can be1076

one of the predefined GraphBLAS types in Table 2.2, or an existing user-defined1077

GraphBLAS type.1078

nsize (IN) The size of the vector being created.1079

Return Values1080

GrB SUCCESS In blocking mode, the operation completed successfully. In non-1081

blocking mode, this indicates that the API checks for the input1082

arguments passed successfully. Either way, output vector v is ready1083

to be used in the next method of the sequence.1084

GrB PANIC Unknown internal error.1085

GrB INVALID OBJECT This is returned in any execution mode whenever one of the opaque1086

GraphBLAS objects (input or output) is in an invalid state caused1087

by a previous execution error. Call GrB error() to access any error1088

messages generated by the implementation.1089

52

GrB OUT OF MEMORY Not enough memory available for operation.1090

GrB UNINITIALIZED OBJECT The GrB Type object has not been initialized by a call to GrB Type new1091

(needed for user-defined types).1092

GrB NULL POINTER The v pointer is NULL.1093

GrB INVALID VALUE nsize is zero.1094

Description1095

Creates a new vector v of domain D(d), size nsize, and empty L(v). The method returns a handle1096

to the new vector in v.1097

It is not an error to call this method more than once on the same variable; however, the handle to1098

the previously created object will be overwritten.1099

4.2.2.2 Vector dup: Create a copy of a GraphBLAS vector1100

Creates a new vector with the same domain, size, and contents as another vector.1101

C Syntax1102

GrB_Info GrB_Vector_dup(GrB_Vector *w,1103

const GrB_Vector u);1104

Parameters1105

w (INOUT) On successful return, contains a handle to the newly created GraphBLAS1106

vector.1107

u (IN) The GraphBLAS vector to be duplicated.1108

Return Values1109

GrB SUCCESS In blocking mode, the operation completed successfully. In non-1110

blocking mode, this indicates that the API checks for the input1111

arguments passed successfully. Either way, output vector w is ready1112

to be used in the next method of the sequence.1113

GrB PANIC Unknown internal error.1114

GrB INVALID OBJECT This is returned in any execution mode whenever one of the opaque1115

GraphBLAS objects (input or output) is in an invalid state caused1116

by a previous execution error. Call GrB error() to access any error1117

messages generated by the implementation.1118

53

GrB OUT OF MEMORY Not enough memory available for operation.1119

GrB UNINITIALIZED OBJECT The GraphBLAS vector, u, has not been initialized by a call to1120

Vector new or Vector dup.1121

GrB NULL POINTER The w pointer is NULL.1122

Description1123

Creates a new vector w of domain D(u), size size(u), and contents L(u). The method returns a1124

handle to the new vector in w.1125

It is not an error to call this method more than once on the same variable; however, the handle to1126

the previously created object will be overwritten.1127

4.2.2.3 Vector resize: Resize a vector1128

Changes the size of an existing vector.1129

C Syntax1130

GrB_Info GrB_Vector_resize(GrB_Vector w,1131

GrB_Index nsize);1132

Parameters1133

w (INOUT) An existing Vector object that is being resized.1134

nsize (IN) The new size of the vector. It can be smaller or larger than the current size.1135

Return Values1136

GrB SUCCESS In blocking mode, the operation completed successfully. In non-1137

blocking mode, this indicates that the API checks for the input1138

arguments passed successfully. Either way, output vector w is ready1139

to be used in the next method of the sequence.1140

GrB PANIC Unknown internal error.1141

GrB INVALID OBJECT This is returned in any execution mode whenever one of the opaque1142

GraphBLAS objects (input or output) is in an invalid state caused1143

by a previous execution error. Call GrB error() to access any error1144

messages generated by the implementation.1145

GrB OUT OF MEMORY Not enough memory available for operation.1146

54

GrB NULL POINTER The w pointer is NULL.1147

GrB INVALID VALUE nsize is zero.1148

Description1149

Changes the size of w to nsize. The domain D(w) of vector w remains the same. The contents L(w)1150

are modified as described below.1151

Let w = 〈D(w), N,L(w)〉 when the method is called. When the method returns, w = 〈D(w), nsize,L′(w)〉1152

where L′(w) = {(i, wi) : (i, wi) ∈ L(w) ∧ (i < nsize)}. That is, all elements of w with index greater1153

than or equal to the new vector size (nsize) are dropped.1154

4.2.2.4 Vector clear: Clear a vector1155

Removes all the elements (tuples) from a vector.1156

C Syntax1157

GrB_Info GrB_Vector_clear(GrB_Vector v);1158

Parameters1159

v (INOUT) An existing GraphBLAS vector to clear.1160

Return Values1161

GrB SUCCESS In blocking mode, the operation completed successfully. In non-1162

blocking mode, this indicates that the API checks for the input1163

arguments passed successfully. Either way, output vector v is ready1164

to be used in the next method of the sequence.1165

GrB PANIC Unknown internal error.1166

GrB INVALID OBJECT This is returned in any execution mode whenever one of the opaque1167

GraphBLAS objects (input or output) is in an invalid state caused1168

by a previous execution error. Call GrB error() to access any error1169

messages generated by the implementation.1170

GrB OUT OF MEMORY Not enough memory available for operation.1171

GrB UNINITIALIZED OBJECT The GraphBLAS vector, v, has not been initialized by a call to1172

Vector new or Vector dup.1173

55

Description1174

Removes all elements (tuples) from an existing vector. After the call to GrB Vector clear(v), L(v) =1175

∅. The size of the vector does not change.1176

4.2.2.5 Vector size: Size of a vector1177

Retrieve the size of a vector.1178

C Syntax1179

GrB_Info GrB_Vector_size(GrB_Index *nsize,1180

const GrB_Vector v);1181

Parameters1182

nsize (OUT) On successful return, is set to the size of the vector.1183

v (IN) An existing GraphBLAS vector being queried.1184

Return Values1185

GrB SUCCESS In blocking or non-blocking mode, the operation completed suc-1186

cessfully and the value of nsize has been set.1187

GrB PANIC Unknown internal error.1188

GrB INVALID OBJECT This is returned in any execution mode whenever one of the opaque1189

GraphBLAS objects (input or output) is in an invalid state caused1190

by a previous execution error. Call GrB error() to access any error1191

messages generated by the implementation.1192

GrB UNINITIALIZED OBJECT The GraphBLAS vector, v, has not been initialized by a call to1193

Vector new or Vector dup.1194

GrB NULL POINTER nsize pointer is NULL.1195

Description1196

Return size(v) in nsize.1197

4.2.2.6 Vector nvals: Number of stored elements in a vector1198

Retrieve the number of stored elements (tuples) in a vector.1199

56

C Syntax1200

GrB_Info GrB_Vector_nvals(GrB_Index *nvals,1201

const GrB_Vector v);1202

Parameters1203

nvals (OUT) On successful return, this is set to the number of stored elements (tuples)1204

in the vector.1205

v (IN) An existing GraphBLAS vector being queried.1206

Return Values1207

GrB SUCCESS In blocking or non-blocking mode, the operation completed suc-1208

cessfully and the value of nvals has been set.1209

GrB PANIC Unknown internal error.1210

GrB INVALID OBJECT This is returned in any execution mode whenever one of the opaque1211

GraphBLAS objects (input or output) is in an invalid state caused1212

by a previous execution error. Call GrB error() to access any error1213

messages generated by the implementation.1214

GrB OUT OF MEMORY Not enough memory available for operation.1215

GrB UNINITIALIZED OBJECT The GraphBLAS vector, v, has not been initialized by a call to1216

Vector new or Vector dup.1217

GrB NULL POINTER The nvals pointer is NULL.1218

Description1219

Return nvals(v) in nvals. This is the number of stored elements in vector v, which is the size of1220

L(v) (see Section 3.4).1221

4.2.2.7 Vector build: Store elements from tuples into a vector1222

C Syntax1223

GrB_Info GrB_Vector_build(GrB_Vector w,1224

const GrB_Index *indices,1225

const <type> *values,1226

GrB_Index n,1227

const GrB_BinaryOp dup);1228

57

Parameters1229

w (INOUT) An existing Vector object to store the result.1230

indices (IN) Pointer to an array of indices.1231

values (IN) Pointer to an array of scalars of a type that is compatible with the domain of1232

vector w.1233

n (IN) The number of entries contained in each array (the same for indices and values).1234

dup (IN) An associative and commutative binary operator to apply when duplicate1235

values for the same location are present in the input arrays. All three domains of1236

dup must be the same; hence dup = 〈Ddup, Ddup, Ddup,⊕〉.1237

Return Values1238

GrB SUCCESS In blocking mode, the operation completed successfully. In non-1239

blocking mode, this indicates that the API checks for the input1240

arguments passed successfully. Either way, output vector w is ready1241

to be used in the next method of the sequence.1242

GrB PANIC Unknown internal error.1243

GrB INVALID OBJECT This is returned in any execution mode whenever one of the opaque1244

GraphBLAS objects (input or output) is in an invalid state caused1245

by a previous execution error. Call GrB error() to access any error1246

messages generated by the implementation.1247

GrB OUT OF MEMORY Not enough memory available for operation.1248

GrB UNINITIALIZED OBJECT Either w has not been initialized by a call to by GrB Vector new or1249

by GrB Vector dup, or dup has not been initialized by a call to by1250

GrB BinaryOp new.1251

GrB NULL POINTER indices or values pointer is NULL.1252

GrB INDEX OUT OF BOUNDS A value in indices is outside the allowed range for w.1253

GrB DOMAIN MISMATCH Either the domains of the GraphBLAS binary operator dup are not1254

all the same, or the domains of values and w are incompatible with1255

each other or Ddup.1256

GrB OUTPUT NOT EMPTY Output vector w already contains valid tuples (elements). In other1257

words, GrB Vector nvals(C) returns a positive value.1258

58

Description1259

An internal vector w̃ = 〈Ddup, size(w), ∅〉 is created, which only differs from w in its domain.1260

Each tuple {indices[k], values[k]}, where 0 ≤ k < n, is a contribution to the output in the form of1261

w̃(indices[k]) = (Ddup) values[k].

If multiple values for the same location are present in the input arrays, the dup binary operand is1262

used to reduce them before assignment into w̃ as follows:1263

w̃i =
⊕

k: indices[k]=i

(Ddup) values[k],1264

where ⊕ is the dup binary operator. Finally, the resulting w̃ is copied into w via typecasting its1265

values to D(w) if necessary. If ⊕ is not associative or not commutative, the result is undefined.1266

The nonopaque input arrays, indices and values, must be at least as large as n.1267

It is an error to call this function on an output object with existing elements. In other words,1268

GrB Vector nvals(w) should evaluate to zero prior to calling this function.1269

After GrB Vector build returns, it is safe for a programmer to modify or delete the arrays indices or1270

values.1271

4.2.2.8 Vector setElement: Set a single element in a vector1272

Set one element of a vector to a given value.1273

C Syntax1274

GrB_Info GrB_Vector_setElement(GrB_Vector w,1275

<type> val,1276

GrB_Index index);1277

Parameters1278

w (INOUT) An existing GraphBLAS vector for which an element is to be assigned.1279

val (IN) Scalar value to assign. The type must be compatible with the domain of w.1280

index (IN) The location of the element to be assigned.1281

59

Return Values1282

GrB SUCCESS In blocking mode, the operation completed successfully. In non-1283

blocking mode, this indicates that the compatibility tests on in-1284

dex/dimensions and domains for the input arguments passed suc-1285

cessfully. Either way, the output vector w is ready to be used in1286

the next method of the sequence.1287

GrB PANIC Unknown internal error.1288

GrB INVALID OBJECT This is returned in any execution mode whenever one of the opaque1289

GraphBLAS objects (input or output) is in an invalid state caused1290

by a previous execution error. Call GrB error() to access any error1291

messages generated by the implementation.1292

GrB OUT OF MEMORY Not enough memory available for operation.1293

GrB UNINITIALIZED OBJECT The GraphBLAS vector, w, has not been initialized by a call to1294

Vector new or Vector dup.1295

GrB INVALID INDEX index specifies a location that is outside the dimensions of w.1296

GrB DOMAIN MISMATCH The domains of w and val are incompatible.1297

Description1298

First, the scalar and output vector are tested for domain compatibility as follows: D(val) must be1299

compatible with D(w). Two domains are compatible with each other if values from one domain can1300

be cast to values in the other domain as per the rules of the C language. In particular, domains from1301

Table 2.2 are all compatible with each other. A domain from a user-defined type is only compatible1302

with itself. If any compatibility rule above is violated, execution of GrB Vector setElement ends and1303

the domain mismatch error listed above is returned.1304

Then, the index parameter is checked for a valid value where the following condition must hold:1305

0 ≤ index < size(w)1306

If this condition is violated, execution of GrB Vector extractElement ends and the invalid index error1307

listed above is returned.1308

We are now ready to carry out the assignment val; that is:1309

w(index) = val1310

If a value existed at this location in w, it will be overwritten; otherwise, and new value is stored in1311

w.1312

In GrB BLOCKING mode, the method exits with return value GrB SUCCESS and the new contents1313

of w is as defined above and fully computed. In GrB NONBLOCKING mode, the method exits with1314

return value GrB SUCCESS and the new content of vector w is as defined above but may not be1315

fully computed; however, it can be used in the next GraphBLAS method call in a sequence.1316

60

4.2.2.9 Vector removeElement: Remove an element from a vector1317

Remove (annihilate) one stored element from a vector.1318

C Syntax1319

GrB_Info GrB_Vector_removeElement(GrB_Vector w,1320

GrB_Index index);1321

Parameters1322

w (INOUT) An existing GraphBLAS vector from which an element is to be removed.1323

index (IN) The location of the element to be removed.1324

Return Values1325

GrB SUCCESS In blocking mode, the operation completed successfully. In non-1326

blocking mode, this indicates that the compatibility tests on in-1327

dex/dimensions and domains for the input arguments passed suc-1328

cessfully. Either way, the output vector w is ready to be used in1329

the next method of the sequence.1330

GrB PANIC Unknown internal error.1331

GrB INVALID OBJECT This is returned in any execution mode whenever one of the opaque1332

GraphBLAS objects (input or output) is in an invalid state caused1333

by a previous execution error. Call GrB error() to access any error1334

messages generated by the implementation.1335

GrB OUT OF MEMORY Not enough memory available for operation.1336

GrB UNINITIALIZED OBJECT The GraphBLAS vector, w, has not been initialized by a call to1337

Vector new or Vector dup.1338

GrB INVALID INDEX index specifies a location that is outside the dimensions of w.1339

Description1340

First, the index parameter is checked for a valid value where the following condition must hold:1341

0 ≤ index < size(w)1342

If this condition is violated, execution of GrB Vector removeElement ends and the invalid index error1343

listed above is returned.1344

61

We are now ready to carry out the removal of a value that may be stored at the location specified1345

by index. If a value does not exist at the specified location in w, no error is reported and the1346

operation has no effect on the state of w. In either case, the following will be true on return from1347

the method: index /∈ ind(w).1348

In GrB BLOCKING mode, the method exits with return value GrB SUCCESS and the new contents1349

of w is as defined above and fully computed. In GrB NONBLOCKING mode, the method exits with1350

return value GrB SUCCESS and the new content of vector w is as defined above but may not be1351

fully computed; however, it can be used in the next GraphBLAS method call in a sequence.1352

4.2.2.10 Vector extractElement: Extract a single element from a vector.1353

Extract one element of a vector into a scalar.1354

C Syntax1355

GrB_Info GrB_Vector_extractElement(<type> *val,1356

const GrB_Vector u,1357

GrB_Index index);1358

Parameters1359

val (INOUT) Pointer to a scalar of type that is compatible with the domain of vector1360

w. On successful return, this scalar holds the result of the operation. Any previous1361

value in val is overwritten.1362

u (IN) The GraphBLAS vector from which an element is extracted.1363

index (IN) The location in u to extract.1364

Return Values1365

GrB SUCCESS In blocking or non-blocking mode, the operation completed suc-1366

cessfully. This indicates that the compatibility tests on dimensions1367

and domains for the input arguments passed successfully, and the1368

output scalar, val, has been computed and is ready to be used in1369

the next method of the sequence.1370

GrB PANIC Unknown internal error.1371

GrB INVALID OBJECT This is returned in any execution mode whenever one of the opaque1372

GraphBLAS objects (input or output) is in an invalid state caused1373

by a previous execution error. Call GrB error() to access any error1374

messages generated by the implementation.1375

GrB OUT OF MEMORY Not enough memory available for operation.1376

62

GrB UNINITIALIZED OBJECT The GraphBLAS vector, u, has not been initialized by a call to1377

Vector new or Vector dup.1378

GrB NULL POINTER val pointer is NULL.1379

GrB NO VALUE There is no stored value at specified location.1380

GrB INVALID INDEX index specifies a location that is outside the dimensions of w.1381

GrB DOMAIN MISMATCH The domains of the vector or scalar are incompatible.1382

Description1383

First, the scalar and input vector are tested for domain compatibility as follows: D(val) must be1384

compatible with D(u). Two domains are compatible with each other if values from one domain can1385

be cast to values in the other domain as per the rules of the C language. In particular, domains from1386

Table 2.2 are all compatible with each other. A domain from a user-defined type is only compatible1387

with itself. If any compatibility rule above is violated, execution of GrB Vector extractElement ends1388

and the domain mismatch error listed above is returned.1389

Then, the index parameter is checked for a valid value where the following condition must hold:1390

0 ≤ index < size(u)1391

If this condition is violated, execution of GrB Vector extractElement ends and the invalid index error1392

listed above is returned.1393

We are now ready to carry out the extract into the output argument, val; that is:1394

val = u(index)1395

where the following condition must be true:1396

index ∈ ind(u)1397

If this condition is violated, execution of GrB Vector extractElement ends and the ”no value” error1398

listed above is returned.1399

In both GrB BLOCKING mode GrB NONBLOCKING mode if the method exits with return value1400

GrB SUCCESS, the new contents of val are as defined above.1401

4.2.2.11 Vector extractTuples: Extract tuples from a vector1402

Extract the contents of a GraphBLAS vector into non-opaque data structures.1403

63

C Syntax1404

GrB_Info GrB_Vector_extractTuples(GrB_Index *indices,1405

<type> *values,1406

GrB_Index *n,1407

const GrB_Vector v);1408

1409

indices (OUT) Pointer to an array of indices that is large enough to hold all of the stored1410

values’ indices.1411

values (OUT) Pointer to an array of scalars of a type that is large enough to hold all of1412

the stored values whose type is compatible with D(v).1413

n (INOUT) Pointer to a value indicating (on input) the number of elements the1414

values and indices arrays can hold. Upon return, it will contain the number of1415

values written to the arrays.1416

v (IN) An existing GraphBLAS vector.1417

Return Values1418

GrB SUCCESS In blocking or non-blocking mode, the operation completed suc-1419

cessfully. This indicates that the compatibility tests on the input1420

argument passed successfully, and the output arrays, indices and1421

values, have been computed.1422

GrB PANIC Unknown internal error.1423

GrB INVALID OBJECT This is returned in any execution mode whenever one of the opaque1424

GraphBLAS objects (input or output) is in an invalid state caused1425

by a previous execution error. Call GrB error() to access any error1426

messages generated by the implementation.1427

GrB OUT OF MEMORY Not enough memory available for operation.1428

GrB INSUFFICIENT SPACE Not enough space in indices and values (as indicated by the n pa-1429

rameter) to hold all of the tuples that will be extacted.1430

GrB UNINITIALIZED OBJECT The GraphBLAS vector, v, has not been initialized by a call to1431

Vector new or Vector dup.1432

GrB NULL POINTER indices, values, or n pointer is NULL.1433

GrB DOMAIN MISMATCH The domains of the v vector or values array are incompatible with1434

one another.1435

64

Description1436

This method will extract all the tuples from the GraphBLAS vector v. The values associated1437

with those tuples are placed in the values array and the indices are placed in the indices array.1438

Both indices and values must be pre-allocated by the user to have enough space to hold at least1439

GrB Vector nvals(v) elements before calling this function.1440

Upon return of this function, n will be set to the number of values (and indices) copied. Also, the1441

entries of indices are unique, but not necessarily sorted. Each tuple (i, vi) in v is unzipped and1442

copied into a distinct kth location in output vectors:1443

{indices[k], values[k]} ← (i, vi),

where 0 ≤ k < GrB Vector nvals(v). No gaps in output vectors are allowed; that is, if indices[k] and1444

values[k] exist upon return, so does indices[j] and values[j] for all j such that 0 ≤ j < k.1445

Note that if the value in n on input is less than the number of values contained in the vector v,1446

then a GrB INSUFFICIENT SPACE error is returned because it is undefined which subset of values1447

would be extracted otherwise.1448

In both GrB BLOCKING mode GrB NONBLOCKING mode if the method exits with return value1449

GrB SUCCESS, the new contents of the arrays indices and values are as defined above.1450

4.2.3 Matrix Methods1451

4.2.3.1 Matrix new: Create new matrix1452

Creates a new matrix with specified domain and dimensions.1453

C Syntax1454

GrB_Info GrB_Matrix_new(GrB_Matrix *A,1455

GrB_Type d,1456

GrB_Index nrows,1457

GrB_Index ncols);1458

Parameters1459

A (INOUT) On successful return, contains a handle to the newly created GraphBLAS1460

matrix.1461

d (IN) The type corresponding to the domain of the matrix being created. Can be1462

one of the predefined GraphBLAS types in Table 2.2, or an existing user-defined1463

GraphBLAS type.1464

nrows (IN) The number of rows of the matrix being created.1465

65

ncols (IN) The number of columns of the matrix being created.1466

Return Values1467

GrB SUCCESS In blocking mode, the operation completed successfully. In non-1468

blocking mode, this indicates that the API checks for the input ar-1469

guments passed successfully. Either way, output matrix A is ready1470

to be used in the next method of the sequence.1471

GrB PANIC Unknown internal error.1472

GrB INVALID OBJECT This is returned in any execution mode whenever one of the opaque1473

GraphBLAS objects (input or output) is in an invalid state caused1474

by a previous execution error. Call GrB error() to access any error1475

messages generated by the implementation.1476

GrB OUT OF MEMORY Not enough memory available for operation.1477

GrB UNINITIALIZED OBJECT The GrB Type object has not been initialized by a call to GrB Type new1478

(needed for user-defined types).1479

GrB NULL POINTER The A pointer is NULL.1480

GrB INVALID VALUE nrows or ncols is zero.1481

Description1482

Creates a new matrix A of domain D(d), size nrows × ncols, and empty L(A). The method returns1483

a handle to the new matrix in A.1484

It is not an error to call this method more than once on the same variable; however, the handle to1485

the previously created object will be overwritten.1486

4.2.3.2 Matrix dup: Create a copy of a GraphBLAS matrix1487

Creates a new matrix with the same domain, dimensions, and contents as another matrix.1488

C Syntax1489

GrB_Info GrB_Matrix_dup(GrB_Matrix *C,1490

const GrB_Matrix A);1491

Parameters1492

C (INOUT) On successful return, contains a handle to the newly created GraphBLAS1493

matrix.1494

66

A (IN) The GraphBLAS matrix to be duplicated.1495

Return Values1496

GrB SUCCESS In blocking mode, the operation completed successfully. In non-1497

blocking mode, this indicates that the API checks for the input1498

arguments passed successfully. Either way, output matrix C is ready1499

to be used in the next method of the sequence.1500

GrB PANIC Unknown internal error.1501

GrB INVALID OBJECT This is returned in any execution mode whenever one of the opaque1502

GraphBLAS objects (input or output) is in an invalid state caused1503

by a previous execution error. Call GrB error() to access any error1504

messages generated by the implementation.1505

GrB OUT OF MEMORY Not enough memory available for operation.1506

GrB UNINITIALIZED OBJECT The GraphBLAS matrix, A, has not been initialized by a call to1507

Matrix new or Matrix dup.1508

GrB NULL POINTER The C pointer is NULL.1509

Description1510

Creates a new matrix C of domain D(A), size nrows(A)×ncols(A), and contents L(A). It returns1511

a handle to it in C.1512

It is not an error to call this method more than once on the same variable; however, the handle to1513

the previously created object will be overwritten.1514

4.2.3.3 Matrix resize: Resize a matrix1515

Changes the dimensions of an existing matrix.1516

C Syntax1517

GrB_Info GrB_Matrix_resize(GrB_Matrix C,1518

GrB_Index nrows,1519

GrB_Index ncols);1520

Parameters1521

C (INOUT) An existing Matrix object that is being resized.1522

67

nrows (IN) The new number of rows of the matrix. It can be smaller or larger than the1523

current number of rows.1524

ncols (IN) The new number of columns of the matrix. It can be smaller or larger than1525

the current number of columns.1526

Return Values1527

GrB SUCCESS In blocking mode, the operation completed successfully. In non-1528

blocking mode, this indicates that the API checks for the input1529

arguments passed successfully. Either way, output matrix C is ready1530

to be used in the next method of the sequence.1531

GrB PANIC Unknown internal error.1532

GrB INVALID OBJECT This is returned in any execution mode whenever one of the opaque1533

GraphBLAS objects (input or output) is in an invalid state caused1534

by a previous execution error. Call GrB error() to access any error1535

messages generated by the implementation.1536

GrB OUT OF MEMORY Not enough memory available for operation.1537

GrB NULL POINTER The C pointer is NULL.1538

GrB INVALID VALUE nrows or ncols is zero.1539

Description1540

Changes the number of rows and columsn of C to nrows and ncols, respectively. The domain D(C)1541

of matrix C remains the same. The contents L(C) are modified as described below.1542

Let C = 〈D(C),M,N,L(C)〉 when the method is called. When the method returns C is modified1543

to C = 〈D(C), nrows, ncols,L′(C)〉 where L′(C) = {(i, j, Cij) : (i, j, Cij) ∈ L(C) ∧ (i < nrows) ∧ (j <1544

ncols)}. That is, all elements of C with row index greater than or equal to nrows or column index1545

greater than or equal to ncols are dropped.1546

4.2.3.4 Matrix clear: Clear a matrix1547

Removes all elements (tuples) from a matrix.1548

C Syntax1549

GrB_Info GrB_Matrix_clear(GrB_Matrix A);1550

68

Parameters1551

A (IN) An exising GraphBLAS matrix to clear.1552

Return Values1553

GrB SUCCESS In blocking mode, the operation completed successfully. In non-1554

blocking mode, this indicates that the API checks for the input ar-1555

guments passed successfully. Either way, output matrix A is ready1556

to be used in the next method of the sequence.1557

GrB PANIC Unknown internal error.1558

GrB INVALID OBJECT This is returned in any execution mode whenever one of the opaque1559

GraphBLAS objects (input or output) is in an invalid state caused1560

by a previous execution error. Call GrB error() to access any error1561

messages generated by the implementation.1562

GrB OUT OF MEMORY Not enough memory available for operation.1563

GrB UNINITIALIZED OBJECT The GraphBLAS matrix, *A, has not been initialized by a call to1564

Matrix new or Matrix dup.1565

Description1566

Removes all elements (tuples) from an existing matrix. After the call to GrB Matrix clear(A),1567

L(A) = ∅. The dimensions of the matrix do not change.1568

4.2.3.5 Matrix nrows: Number of rows in a matrix1569

Retrieve the number of rows in a matrix.1570

C Syntax1571

GrB_Info GrB_Matrix_nrows(GrB_Index *nrows,1572

const GrB_Matrix A);1573

Parameters1574

nrows (OUT) On successful return, contains the number of rows in the matrix.1575

A (IN) An existing GraphBLAS matrix being queried.1576

69

Return Values1577

GrB SUCCESS In blocking or non-blocking mode, the operation completed suc-1578

cessfully and the value of nrows has been set.1579

GrB PANIC Unknown internal error.1580

GrB INVALID OBJECT This is returned in any execution mode whenever one of the opaque1581

GraphBLAS objects (input or output) is in an invalid state caused1582

by a previous execution error. Call GrB error() to access any error1583

messages generated by the implementation.1584

GrB UNINITIALIZED OBJECT The GraphBLAS matrix, A, has not been initialized by a call to1585

Matrix new or Matrix dup.1586

GrB NULL POINTER nrows pointer is NULL.1587

Description1588

Return nrows(A) in nrows (the number of rows).1589

4.2.3.6 Matrix ncols: Number of columns in a matrix1590

Retrieve the number of columns in a matrix.1591

C Syntax1592

GrB_Info GrB_Matrix_ncols(GrB_Index *ncols,1593

const GrB_Matrix A);1594

Parameters1595

ncols (OUT) On successful return, contains the number of columns in the matrix.1596

A (IN) An existing GraphBLAS matrix being queried.1597

Return Values1598

GrB SUCCESS In blocking or non-blocking mode, the operation completed suc-1599

cessfully and the value of ncols has been set.1600

GrB PANIC Unknown internal error.1601

70

GrB INVALID OBJECT This is returned in any execution mode whenever one of the opaque1602

GraphBLAS objects (input or output) is in an invalid state caused1603

by a previous execution error. Call GrB error() to access any error1604

messages generated by the implementation.1605

GrB UNINITIALIZED OBJECT The GraphBLAS matrix, A, has not been initialized by a call to1606

Matrix new or Matrix dup.1607

GrB NULL POINTER ncols pointer is NULL.1608

Description1609

Return ncols(A) in ncols (the number of columns).1610

4.2.3.7 Matrix nvals: Number of stored elements in a matrix1611

Retrieve the number of stored elements (tuples) in a matrix.1612

C Syntax1613

GrB_Info GrB_Matrix_nvals(GrB_Index *nvals,1614

const GrB_Matrix A);1615

Parameters1616

nvals (OUT) On successful return, contains the number of stored elements (tuples) in1617

the matrix.1618

A (IN) An existing GraphBLAS matrix being queried.1619

Return Values1620

GrB SUCCESS In blocking or non-blocking mode, the operation completed suc-1621

cessfully and the value of nvals has been set.1622

GrB PANIC Unknown internal error.1623

GrB INVALID OBJECT This is returned in any execution mode whenever one of the opaque1624

GraphBLAS objects (input or output) is in an invalid state caused1625

by a previous execution error. Call GrB error() to access any error1626

messages generated by the implementation.1627

GrB OUT OF MEMORY Not enough memory available for operation.1628

71

GrB UNINITIALIZED OBJECT The GraphBLAS matrix, A, has not been initialized by a call to1629

Matrix new or Matrix dup.1630

GrB NULL POINTER The nvals pointer is NULL.1631

Description1632

Return nvals(A) in nvals. This is the number of tuples stored in matrix A, which is the size of1633

L(A) (see Section 3.5).1634

4.2.3.8 Matrix build: Store elements from tuples into a matrix1635

C Syntax1636

GrB_Info GrB_Matrix_build(GrB_Matrix C,

const GrB_Index *row_indices,

const GrB_Index *col_indices,

const <type> *values,

GrB_Index n,

const GrB_BinaryOp dup);

Parameters1637

C (INOUT) An existing Matrix object to store the result.1638

row indices (IN) Pointer to an array of row indices.1639

col indices (IN) Pointer to an array of column indices.1640

values (IN) Pointer to an array of scalars of a type that is compatible with the domain of1641

matrix, C.1642

n (IN) The number of entries contained in each array (the same for row indices,1643

col indices, and values).1644

dup (IN) An associative and commutative binary function to apply when duplicate1645

values for the same location are present in the input arrays. All three domains of1646

dup must be the same; hence dup = 〈Ddup, Ddup, Ddup,⊕〉.1647

Return Values1648

GrB SUCCESS In blocking mode, the operation completed successfully. In non-1649

blocking mode, this indicates that the API checks for the input1650

arguments passed successfully. Either way, output matrix C is ready1651

to be used in the next method of the sequence.1652

72

GrB PANIC Unknown internal error.1653

GrB INVALID OBJECT This is returned in any execution mode whenever one of the opaque1654

GraphBLAS objects (input or output) is in an invalid state caused1655

by a previous execution error. Call GrB error() to access any error1656

messages generated by the implementation.1657

GrB OUT OF MEMORY Not enough memory available for operation.1658

GrB UNINITIALIZED OBJECT Either C has not been initialized by a call to by GrB Matrix new or1659

by GrB Matrix dup, or dup has not been initialized by a call to by1660

GrB BinaryOp new.1661

GrB NULL POINTER row indices, col indices or values pointer is NULL.1662

GrB INDEX OUT OF BOUNDS A value in row indices or col indices is outside the allowed range for1663

C.1664

GrB DOMAIN MISMATCH Either the domains of the GraphBLAS binary operator dup are not1665

all the same, or the domains of values and C are incompatible with1666

each other or Ddup.1667

GrB OUTPUT NOT EMPTY Output matrix C already contains valid tuples (elements). In other1668

words, GrB Matrix nvals(C) returns a positive value.1669

Description1670

An internal matrix C̃ = 〈Ddup,nrows(C),ncols(C), ∅〉 is created, which only differs from C in its1671

domain.1672

Each tuple {row indices[k], col indices[k], values[k]}, where 0 ≤ k < n, is a contribution to the output1673

in the form of1674

C̃(row indices[k], col indices[k]) = (Ddup) values[k].

If multiple values for the same location are present in the input arrays, the dup binary operand is1675

used to reduce them before assignment into C̃ as follows:1676

C̃ij =
⊕

k: row indices[k]=i∧ col indices[k]=j

(Ddup) values[k],1677

where ⊕ is the dup binary operator. Finally, the resulting C̃ is copied into C via typecasting its1678

values to D(C) if necessary. If ⊕ is not associative or not commutative, the result is undefined.1679

The nonopaque input arrays row indices, col indices, and values must be at least as large as n.1680

It is an error to call this function on an output object with existing elements. In other words,1681

GrB Matrix nvals(C) should evaluate to zero prior to calling this function.1682

73

After GrB Matrix build returns, it is safe for a programmer to modify or delete the arrays row indices,1683

col indices, or values.1684

4.2.3.9 Matrix setElement: Set a single element in matrix1685

Set one element of a matrix to a given value.1686

C Syntax1687

GrB_Info GrB_Matrix_setElement(GrB_Matrix C,1688

<type> val,1689

GrB_Index row_index,1690

GrB_Index col_index);1691

Parameters1692

C (INOUT) An existing GraphBLAS matrix for which an element is to be assigned.1693

val (IN) Scalar value to assign. The type must be compatible with the domain of C.1694

row index (IN) Row index of element to be assigned1695

col index (IN) Column index of element to be assigned1696

Return Values1697

GrB SUCCESS In blocking mode, the operation completed successfully. In non-1698

blocking mode, this indicates that the compatibility tests on in-1699

dex/dimensions and domains for the input arguments passed suc-1700

cessfully. Either way, the output matrix C is ready to be used in1701

the next method of the sequence.1702

GrB PANIC Unknown internal error.1703

GrB INVALID OBJECT This is returned in any execution mode whenever one of the opaque1704

GraphBLAS objects (input or output) is in an invalid state caused1705

by a previous execution error. Call GrB error() to access any error1706

messages generated by the implementation.1707

GrB OUT OF MEMORY Not enough memory available for operation.1708

GrB UNINITIALIZED OBJECT The GraphBLAS matrix, C, has not been initialized by a call to1709

Matrix new or Matrix dup.1710

GrB INVALID INDEX row index or col index is outside the allowable range (i.e., not less1711

than nrows(C) or ncols(C), respectively).1712

GrB DOMAIN MISMATCH The domains of C and val are incompatible.1713

74

Description1714

First, the scalar and output matrix are tested for domain compatibility as follows: D(val) must be1715

compatible with D(C). Two domains are compatible with each other if values from one domain can1716

be cast to values in the other domain as per the rules of the C language. In particular, domains from1717

Table 2.2 are all compatible with each other. A domain from a user-defined type is only compatible1718

with itself. If any compatibility rule above is violated, execution of GrB Matrix extractElement ends1719

and the domain mismatch error listed above is returned.1720

Then, both index parameters are checked for valid values where following conditions must hold:1721

0 ≤ row index < nrows(C),

0 ≤ col index < ncols(C)
1722

If either of these conditions is violated, execution of GrB Matrix extractElement ends and the invalid1723

index error listed above is returned.1724

We are now ready to carry out the assignment of val; that is,1725

C(row index, col index) = val1726

If a value existed at this location in C, it will be overwritten; otherwise, and new value is stored in1727

C.1728

In GrB BLOCKING mode, the method exits with return value GrB SUCCESS and the new contents1729

of C is as defined above and fully computed. In GrB NONBLOCKING mode, the method exits with1730

return value GrB SUCCESS and the new content of vector C is as defined above but may not be1731

fully computed; however, it can be used in the next GraphBLAS method call in a sequence.1732

4.2.3.10 Matrix removeElement: Remove an element from a matrix1733

Remove (annihilate) one stored element from a matrix.1734

C Syntax1735

GrB_Info GrB_Matrix_removeElement(GrB_Matrix C,1736

GrB_Index row_index,1737

GrB_Index col_index);1738

Parameters1739

C (INOUT) An existing GraphBLAS matrix from which an element is to be removed.1740

row index (IN) Row index of element to be removed1741

col index (IN) Column index of element to be removed1742

75

Return Values1743

GrB SUCCESS In blocking mode, the operation completed successfully. In non-1744

blocking mode, this indicates that the compatibility tests on in-1745

dex/dimensions and domains for the input arguments passed suc-1746

cessfully. Either way, the output matrix C is ready to be used in1747

the next method of the sequence.1748

GrB PANIC Unknown internal error.1749

GrB INVALID OBJECT This is returned in any execution mode whenever one of the opaque1750

GraphBLAS objects (input or output) is in an invalid state caused1751

by a previous execution error. Call GrB error() to access any error1752

messages generated by the implementation.1753

GrB OUT OF MEMORY Not enough memory available for operation.1754

GrB UNINITIALIZED OBJECT The GraphBLAS matrix, C, has not been initialized by a call to1755

Matrix new or Matrix dup.1756

GrB INVALID INDEX row index or col index is outside the allowable range (i.e., not less1757

than nrows(C) or ncols(C), respectively).1758

Description1759

First, both index parameters are checked for valid values where following conditions must hold:1760

0 ≤ row index < nrows(C),

0 ≤ col index < ncols(C)
1761

If either of these conditions is violated, execution of GrB Matrix removeElement ends and the invalid1762

index error listed above is returned.1763

We are now ready to carry out the removal of a value that may be stored at the location specified1764

by (row index, col index). If a value does not exist at the specified location in C, no error is reported1765

and the operation has no effect on the state of C. In either case, the following will be true on return1766

from this method: (row index, col index) /∈ ind(C)1767

In GrB BLOCKING mode, the method exits with return value GrB SUCCESS and the new contents1768

of C is as defined above and fully computed. In GrB NONBLOCKING mode, the method exits with1769

return value GrB SUCCESS and the new content of vector C is as defined above but may not be1770

fully computed; however, it can be used in the next GraphBLAS method call in a sequence.1771

4.2.3.11 Matrix extractElement: Extract a single element from a matrix1772

Extract one element of a matrix into a scalar.1773

76

C Syntax1774

GrB_Info GrB_Matrix_extractElement(<type> *val,1775

const GrB_Matrix A,1776

GrB_Index row_index,1777

GrB_Index col_index);1778

1779

Parameters1780

val (OUT) Pointer to a scalar of type that is compatible with the domain of matrix A.1781

On successful return, this scalar holds the result of the operation. Any previous1782

value in val is overwritten.1783

A (IN) The GraphBLAS matrix from which an element is extracted.1784

row index (IN) The row index of location in A to extract.1785

col index (IN) The column index of location in A to extract.1786

Return Values1787

GrB SUCCESS In blocking or non-blocking mode, the operation completed suc-1788

cessfully. This indicates that the compatibility tests on dimensions1789

and domains for the input arguments passed successfully, and the1790

output scalar, val, has been computed and is ready to be used in1791

the next method of the sequence.1792

GrB PANIC Unknown internal error.1793

GrB INVALID OBJECT This is returned in any execution mode whenever one of the opaque1794

GraphBLAS objects (input or output) is in an invalid state caused1795

by a previous execution error. Call GrB error() to access any error1796

messages generated by the implementation.1797

GrB OUT OF MEMORY Not enough memory available for operation.1798

GrB UNINITIALIZED OBJECT The GraphBLAS matrix, A, has not been initialized by a call to1799

Matrix new or Matrix dup.1800

GrB NULL POINTER val pointer is NULL.1801

GrB NO VALUE There is no stored value at specified location.1802

GrB INVALID INDEX row index or col index is outside the allowable range (i.e. less than1803

zero or greater than or equal to nrows(A) or ncols(A), respec-1804

tively).1805

GrB DOMAIN MISMATCH The domains of the matrix and scalar are incompatible.1806

77

Description1807

First, the scalar and input matrix are tested for domain compatibility as follows: D(val) must be1808

compatible with D(A). Two domains are compatible with each other if values from one domain can1809

be cast to values in the other domain as per the rules of the C language. In particular, domains from1810

Table 2.2 are all compatible with each other. A domain from a user-defined type is only compatible1811

with itself. If any compatibility rule above is violated, execution of GrB Matrix extractElement ends1812

and the domain mismatch error listed above is returned.1813

Then, both index parameters are checked for valid values where following conditions must hold:1814

0 ≤ row index < nrows(A),

0 ≤ col index < ncols(A)
1815

If either of these conditions is violated, execution of GrB Matrix extractElement ends and the invalid1816

index error listed above is returned.1817

We are now ready to carry out the extract into the output argument, val; that is,1818

val = A(row index, col index)1819

where the following condition must be true:1820

(row index, col index) ∈ ind(A)1821

If this condition is violated, execution of GrB Matrix extractElement ends and the ”no value” error1822

listed above is returned.1823

In both GrB BLOCKING mode GrB NONBLOCKING mode if the method exits with return value1824

GrB SUCCESS, the new contents of val are as defined above.1825

4.2.3.12 Matrix extractTuples: Extract tuples from a matrix1826

Extract the contents of a GraphBLAS matrix into non-opaque data structures.1827

C Syntax1828

GrB_Info GrB_Matrix_extractTuples(GrB_Index *row_indices,1829

GrB_Index *col_indices,1830

<type> *values,1831

GrB_Index *n,1832

const GrB_Matrix A);1833

Parameters1834

row indices (OUT) Pointer to an array of row indices that is large enough to hold all of the1835

row indices.1836

78

col indices (OUT) Pointer to an array of column indices that is large enough to hold all of the1837

column indices.1838

values (OUT) Pointer to an array of scalars of a type that is large enough to hold all of1839

the stored values whose type is compatible with D(A).1840

n (INOUT) Pointer to a value indicating (in input) the number of elements the values,1841

row indices, and col indices arrays can hold. Upon return, it will contain the number1842

of values written to the arrays.1843

A (IN) An existing GraphBLAS matrix.1844

Return Values1845

GrB SUCCESS In blocking or non-blocking mode, the operation completed suc-1846

cessfully. This indicates that the compatibility tests on the input1847

argument passed successfully, and the output arrays, indices and1848

values, have been computed.1849

GrB PANIC Unknown internal error.1850

GrB INVALID OBJECT This is returned in any execution mode whenever one of the opaque1851

GraphBLAS objects (input or output) is in an invalid state caused1852

by a previous execution error. Call GrB error() to access any error1853

messages generated by the implementation.1854

GrB OUT OF MEMORY Not enough memory available for operation.1855

GrB INSUFFICIENT SPACE Not enough space in row indices, col indices, and values (as indicated1856

by the n parameter) to hold all of the tuples that will be extacted.1857

GrB UNINITIALIZED OBJECT The GraphBLAS matrix, A, has not been initialized by a call to1858

Matrix new or Matrix dup.1859

GrB NULL POINTER row indices, col indices, values or n pointer is NULL.1860

GrB DOMAIN MISMATCH The domains of the A matrix and values array are incompatible1861

with one another.1862

Description1863

This method will extract all the tuples from the GraphBLAS matrix A. The values associated with1864

those tuples are placed in the values array, the column indices are placed in the col indices array,1865

and the row indices are placed in the row indices array. These output arrays are pre-allocated by1866

the user before calling this function such that each output array has enough space to hold at least1867

GrB Matrix nvals(A) elements.1868

79

Upon return of this function, a pair of {row indices[k], col indices[k]} are unique for every valid k,1869

but they are not required to be sorted in any particular order. Each tuple (i, j, Aij) in A is unzipped1870

and copied into a distinct kth location in output vectors:1871

{row indices[k], col indices[k], values[k]} ← (i, j, Aij),

where 0 ≤ k < GrB Matrix nvals(v). No gaps in output vectors are allowed; that is, if row indices[k],1872

col indices[k] and values[k] exist upon return, so does row indices[j], col indices[j] and values[j] for all1873

j such that 0 ≤ j < k.1874

Note that if the value in n on input is less than the number of values contained in the matrix A,1875

then a GrB INSUFFICIENT SPACE error is returned since it is undefined which subset of values1876

would be extracted.1877

In both GrB BLOCKING mode GrB NONBLOCKING mode if the method exits with return value1878

GrB SUCCESS, the new contents of the arrays row indices, col indices and values are as defined1879

above.1880

4.2.4 Descriptor Methods1881

The methods in this section create and set values in descriptors. A descriptor is an opaque Graph-1882

BLAS object the values of which are used to modify the behavior of GraphBLAS operations.1883

4.2.4.1 Descriptor new: Create new descriptor1884

Creates a new (empty or default) descriptor.1885

C Syntax1886

GrB_Info GrB_Descriptor_new(GrB_Descriptor *desc);1887

Parameters1888

desc (INOUT) On successful return, contains a handle to the newly created GraphBLAS1889

descriptor.1890

Return Value1891

GrB SUCCESS The method completed successfully.1892

GrB PANIC unknown internal error.1893

GrB OUT OF MEMORY not enough memory available for operation.1894

GrB NULL POINTER desc pointer is NULL.1895

80

Description1896

Creates a new descriptor object and returns a handle to it in desc. A newly created descriptor can1897

be populated by calls to Descriptor set.1898

It is not an error to call this method more than once on the same variable; however, the handle to1899

the previously created object will be overwritten.1900

4.2.4.2 Descriptor set: Set content of descriptor1901

Sets the content for a field for an existing descriptor.1902

C Syntax1903

GrB_Info GrB_Descriptor_set(GrB_Descriptor desc,1904

GrB_Desc_Field field,1905

GrB_Desc_Value val);1906

Parameters1907

desc (IN) An existing GraphBLAS descriptor to be modified.1908

field (IN) The field being set.1909

val (IN) New value for the field being set.1910

Return Values1911

GrB SUCCESS operation completed successfully.1912

GrB PANIC unknown internal error.1913

GrB OUT OF MEMORY not enough memory available for operation.1914

GrB UNINITIALIZED OBJECT the desc parameter has not been initialized by a call to new.1915

GrB INVALID VALUE invalid value set on the field, or invalid field.1916

Description1917

For a given descriptor, the GrB Descriptor set method can be called for each field in the descriptor1918

to set the value associated with that field. Valid values for the field parameter include the following:1919

GrB OUTP refers to the output parameter (result) of the operation.1920

81

GrB MASK refers to the mask parameter of the operation.1921

GrB INP0 refers to the first input parameters of the operation (matrices and vectors).1922

GrB INP1 refers to the second input parameters of the operation (matrices and vectors).1923

Valid values for the val parameter are:1924

GrB STRUCTURE Use only the structure of the stored values of the corresponding mask1925

(GrB MASK) parameter.1926

GrB COMP Use the complement of the corresponding mask (GrB MASK) param-1927

eter. When combined with GrB STRUCTURE, the complement of the1928

structure of the mask is used without evaluating the values stored.1929

GrB TRAN Use the transpose of the corresponding matrix parameter (valid for input1930

matrix parameters only).1931

GrB REPLACE When assigning the masked values to the output matrix or vector, clear1932

the matrix first (or clear the non-masked entries). The default behavior1933

is to leave non-masked locations unchanged. Valid for the GrB OUTP1934

parameter only.1935

Descriptor values can only be set, and once set, cannot be cleared. As, in the case of GrB MASK,1936

multiple values can be set and all will apply (for example, both GrB COMP and GrB STRUCTURE).1937

A value for a given field may be set multiple times but will have no additional effect. Fields that1938

have no values set result in their default behavior, as defined in Section 3.7.1939

4.2.5 free method1940

Destroys a previously created GraphBLAS object and releases any resources associated with the1941

object.1942

C Syntax1943

GrB_Info GrB_free(GrB_Object *obj);1944

Parameters1945

obj (INOUT) An existing GraphBLAS object to be destroyed. The object must have1946

been created by an explicit call to a GraphBLAS constructor. Can be any of the1947

opaque GraphBLAS objects such as matrix, vector, descriptor, semiring, monoid,1948

binary op, unary op, or type. On successful completion of GrB free, obj behaves1949

as an uninitialized object.1950

82

Return Values1951

GrB SUCCESS operation completed successfully1952

GrB PANIC unknown internal error. If this return value is encountered when1953

in nonblocking mode, the error responsible for the panic condition1954

could be from any method involved in the computation of the input1955

object. The GrB error() method should be called for additional1956

information.1957

Description1958

GraphBLAS objects consume memory and other resources managed by the GraphBLAS runtime1959

system. A call to GrB free frees those resources so they are available for use by other GraphBLAS1960

objects.1961

The parameter passed into GrB free is a handle referencing a GraphBLAS opaque object of a1962

data type from table 2.1. The object must have been created by an explicit call to a GraphBLAS1963

constructor. The behavior of a program that calls GrB free on a pre-defined object is implementation1964

defined.1965

After the GrB free method returns, the object referenced by the input handle is destroyed and the1966

handle has the value GrB INVALID HANDLE. The handle can be used in subsequent GraphBLAS1967

methods but only after the handle has been reinitialized with a call the the appropriate new or1968

dup method.1969

Note that unlike other GraphBLAS methods, calling GrB free with an object with an invalid handle1970

is legal. The system may attempt to free resources that might be associated with that object, if1971

possible, and return normally.1972

When using GrB free it is possible to create a dangling reference to an object. This would occur1973

when a handle is assigned to a second variable of the same opaque type. This creates two handles1974

that reference the same object. If GrB free is called with one of the variables, the object is destroyed1975

and the handle associated with the other variable no longer references a valid object. This is not an1976

error condition that the implementation of the GraphBLAS API can be expected to catch, hence1977

programmers must take care to prevent this situation from occurring.1978

4.3 GraphBLAS Operations1979

The GraphBLAS operations are defined in the GraphBLAS math specification and summarized in1980

Table 4.1. In addition to methods that implement these fundamental GraphBLAS operations, we1981

support a number of variants that have been found to be especially useful in algorithm development.1982

A flowchart of the overall behavior of a GraphBLAS operation is shown in Figure 4.1.1983

83

Table 4.1: A mathematical notation for the fundamental GraphBLAS operations supported in
this specification. Input matrices A and B may be optionally transposed (not shown). Use of an
optional accumulate with existing values in the output object is indicated with �. Use of optional
write masks and replace flags are indicated as C〈M, z〉 when applied to the output matrix, C. The
mask controls which values resulting from the operation on the right-hand side are written into the
output object (complement and structure flags are not shown). The “replace” option, indicated by
specifying the z flag, means that all values in the output object are removed prior to assignment.
If “replace” is not specifed, only the values/locations computed on the right-hand side and allowed
by the mask will be written to the output (“merge” mode).

Operation Name Mathematical Notation

mxm C〈M, z〉 = C � A⊕ .⊗B
mxv w〈m, z〉 = w � A⊕ .⊗ u
vxm wT 〈mT , z〉 = wT � uT ⊕ .⊗A
eWiseMult C〈M, z〉 = C � A⊗B

w〈m, z〉 = w � u⊗ v
eWiseAdd C〈M, z〉 = C � A⊕B

w〈m, z〉 = w � u⊕ v
extract C〈M, z〉 = C � A(i, j)

w〈m, z〉 = w � u(i)
assign C〈M, z〉(i, j) = C(i, j) � A

w〈m, z〉(i) = w(i) � u
reduce (row) w〈m, z〉 = w � [⊕jA(:, j)]
reduce (scalar) s = s � [⊕i,jA(i, j)]

s = s � [⊕iu(i)]
apply C〈M, z〉 = C � fu(A)

w〈m, z〉 = w � fu(u)
transpose C〈M, z〉 = C � AT

kronecker C〈M, z〉 = C � A ⊗© B

Domains and Casting1984

A GraphBLAS operation is only valid when the domains of the GraphBLAS objects are mathemat-1985

ically consistent. The C programming language defines implicit casts between built-in data types.1986

For example, floats, doubles, and ints can be freely mixed according to the rules defined for implicit1987

casts. It is the responsibility of the user to assure that these casts are appropriate for the algorithm1988

in question. For example, a cast to int implies truncation of a floating point type. Depending on1989

the operation, this truncation error could lead to erroneous results. Furthermore, casting a wider1990

type onto a narrower type can lead to overflow errors. The GraphBLAS operations do not attempt1991

to protect a user from these sorts of errors.1992

When user-define types are involved, however, GraphBLAS requires strict equivalence between1993

types and no casting is supported. If GraphBLAS detects these mismatches, it will return a1994

domain mismatch error.1995

84

TRAN? TRAN?

op

Din Din

Dout

.

A
D(A)

B
D(B)

M
D(M)

C
D(C)

D(A)

A
D(B)

B

C
D(C)

REPLACE?

~~

T
Dout(op)

~
D(C)

C~

accum

Din

Dout

Din

N Y

ACCUM

M
none

~ ⌐M M

 MASK and REPLACE

Dout(accum)

Z~

accum ==
GrB_NULL?

N Y

D(C)

0

1

21

2

COMP?
STRUCTURE?

Figure 4.1: Flowchart for the GraphBLAS operations. Although shown specifically for the mxm
operation, many elements are common to all operations: such as the “ACCUM” and “MASK and
REPLACE” blocks. The triple arrows (V) denote where “as if copy” takes place (including both
collections and descriptor settings). The bold, dotted arrows indicate where casting may occur
between different domains.

85

Dimensions and Transposes1996

GraphBLAS operations also make assumptions about the numbers of dimensions and the sizes of1997

vectors and matrices in an operation. An operation will test these sizes and report an error if they1998

are not shape compatible. For example, when multiplying two matrices, C = A × B, the number1999

of rows of C must equal the number of rows of A, the number of columns of A must match the2000

number of rows of B, and the number of columns of C must match the number of columns of B.2001

This is the behavior expected given the mathematical definition of the operations.2002

For most of the GraphBLAS operations involving matrices, an optional descriptor can modify the2003

matrix associated with an input GraphBLAS matrix object. For example, if an input matrix is an2004

argument to a GraphBLAS operation and the associated descriptor indicates the transpose option,2005

then the operation occurs as if on the transposed matrix. In this case, the relationships between2006

the sizes in each dimension shift in the mathematically expected way.2007

Masks: Structure-only, Complement, and Replace2008

When a GraphBLAS operation supports the use of an optional mask, that mask is specified through2009

a GraphBLAS vector (for one-dimensional masks) or a GraphBLAS matrix (for two-dimensional2010

masks). When a mask is used and the GrB STRUCTURE descriptor value is not set, it is applied2011

to the result from the operation wherever the stored values in the mask evaluate to true. If the2012

GrB STRUCTURE descriptor is set, the mask is applied to the result from the operation wherever the2013

mask as a stored value (regardless of that value). Wherever the mask is applied, the result from2014

the operation is either assigned to the provided output matrix/vector or, if a binary accumulation2015

operation is provided, the result is accumulated into the corresponding elements of the provided2016

output matrix/vector.2017

Given a GraphBLAS vector v = 〈D,N, {(i, vi)}〉, a one-dimensional mask is derived for use in the2018

operation as follows:2019

m =

{
〈N, {ind(v)}〉, if GrB STRUCTURE is specified,

〈N, {i : (bool)vi = true}〉, otherwise
2020

where (bool)vi denotes casting the value vi to a Boolean value (true or false). Likewise, given a2021

GraphBLAS matrix A = 〈D,M,N, {(i, j, Aij)}〉, a two-dimensional mask is derived for use in the2022

operation as follows:2023

M =

{
〈M,N, {ind(A)}〉, if GrB STRUCTURE is specified,

〈M,N, {(i, j) : (bool)Aij = true}〉, otherwise
2024

where (bool)Aij denotes casting the value Aij to a Boolean value. (true or false)2025

In both the one- and two-dimensional cases, the mask may also have a subsequent complement2026

operation applied (Section 3.6) as specified in the descriptor, before a final mask is generated for2027

use in the operation.2028

When the descriptor of an operation with a mask has specified that the GrB REPLACE value is2029

to be applied to the output (GrB OUTP), then anywhere the mask is not true, the corresponding2030

location in the output is cleared.2031

86

Invalid and uninitialized objects2032

Upon entering a GraphBLAS operation, the first step is a check that all objects are valid and ini-2033

tialized. (Optional parameters can be set to GrB NULL, which always counts as a valid object.) An2034

invalid object is one that could not be computed due to a previous execution error. An unitialized2035

object is one that has not yet been created by a corresponding new or dup method. Appropriate2036

error codes are returned if an object is not initialized (GrB UNINITIALIZED OBJECT) or invalid2037

(GrB INVALID OBJECT).2038

To support the detection of as many cases of uninitialized objects as possible, it is strongly recom-2039

mended to initialize all GraphBLAS objects to the predefined value GrB INVALID HANDLE at the2040

point of their declaration, as shown in the following examples:2041

GrB_Type type = GrB_INVALID_HANDLE;2042

GrB_Semiring semiring = GrB_INVALID_HANDLE;2043

GrB_Matrix matrix = GrB_INVALID_HANDLE;2044

Compliance2045

We follow a prescriptive approach to the definition of the semantics of GraphBLAS operations.2046

That is, for each operation we give a recipe for producing its outcome. Any implementation that2047

produces the same outcome, and follows the GraphBLAS execution model (Section 2.8) and error2048

model (Section 2.9) is a conforming implementation.2049

4.3.1 mxm: Matrix-matrix multiply2050

Multiplies a matrix with another matrix on a semiring. The result is a matrix.2051

C Syntax2052

GrB_Info GrB_mxm(GrB_Matrix C,2053

const GrB_Matrix Mask,2054

const GrB_BinaryOp accum,2055

const GrB_Semiring op,2056

const GrB_Matrix A,2057

const GrB_Matrix B,2058

const GrB_Descriptor desc);2059

Parameters2060

C (INOUT) An existing GraphBLAS matrix. On input, the matrix provides values2061

that may be accumulated with the result of the matrix product. On output, the2062

matrix holds the results of the operation.2063

87

Mask (IN) An optional “write” mask that controls which results from this operation are2064

stored into the output matrix C. The mask dimensions must match those of the2065

matrix C. If the GrB STRUCTURE descriptor is not set for the mask, the domain2066

of the Mask matrix must be of type bool or any of the predefined “built-in” types2067

in Table 2.2. If the default mask is desired (i.e., a mask that is all true with the2068

dimensions of C), GrB NULL should be specified.2069

accum (IN) An optional binary operator used for accumulating entries into existing C2070

entries. If assignment rather than accumulation is desired, GrB NULL should be2071

specified.2072

op (IN) The semiring used in the matrix-matrix multiply.2073

A (IN) The GraphBLAS matrix holding the values for the left-hand matrix in the2074

multiplication.2075

B (IN) The GraphBLAS matrix holding the values for the right-hand matrix in the2076

multiplication.2077

desc (IN) An optional operation descriptor. If a default descriptor is desired, GrB NULL2078

should be specified. Non-default field/value pairs are listed as follows:2079

2080

Param Field Value Description

C GrB OUTP GrB REPLACE Output matrix C is cleared (all elements
removed) before the result is stored in it.

Mask GrB MASK GrB STRUCTURE The write mask is constructed from the
structure (pattern of stored values) of the
input Mask matrix. The stored values are
not examined.

Mask GrB MASK GrB COMP Use the complement of Mask.
A GrB INP0 GrB TRAN Use transpose of A for the operation.
B GrB INP1 GrB TRAN Use transpose of B for the operation.

2081

Return Values2082

GrB SUCCESS In blocking mode, the operation completed successfully. In non-2083

blocking mode, this indicates that the compatibility tests on di-2084

mensions and domains for the input arguments passed successfully.2085

Either way, output matrix C is ready to be used in the next method2086

of the sequence.2087

GrB PANIC Unknown internal error.2088

GrB INVALID OBJECT This is returned in any execution mode whenever one of the opaque2089

GraphBLAS objects (input or output) is in an invalid state caused2090

by a previous execution error. Call GrB error() to access any error2091

messages generated by the implementation.2092

88

GrB OUT OF MEMORY Not enough memory available for the operation.2093

GrB UNINITIALIZED OBJECT One or more of the GraphBLAS objects has not been initialized by2094

a call to new (or Matrix dup for matrix parameters).2095

GrB DIMENSION MISMATCH Mask and/or matrix dimensions are incompatible.2096

GrB DOMAIN MISMATCH The domains of the various matrices are incompatible with the2097

corresponding domains of the semiring or accumulation operator,2098

or the mask’s domain is not compatible with bool (in the case where2099

desc[GrB MASK].GrB STRUCTURE is not set).2100

Description2101

GrB mxm computes the matrix product C = A⊕.⊗B or, if an optional binary accumulation operator2102

(�) is provided, C = C � (A⊕ .⊗ B) (where matrices A and B can be optionally transposed).2103

Logically, this operation occurs in three steps:2104

Setup The internal matrices and mask used in the computation are formed and their domains2105

and dimensions are tested for compatibility.2106

Compute The indicated computations are carried out.2107

Output The result is written into the output matrix, possibly under control of a mask.2108

Up to four argument matrices are used in the GrB mxm operation:2109

1. C = 〈D(C),nrows(C),ncols(C),L(C) = {(i, j, Cij)}〉2110

2. Mask = 〈D(Mask),nrows(Mask),ncols(Mask),L(Mask) = {(i, j,Mij)}〉 (optional)2111

3. A = 〈D(A),nrows(A),ncols(A),L(A) = {(i, j, Aij)}〉2112

4. B = 〈D(B),nrows(B),ncols(B),L(B) = {(i, j, Bij)}〉2113

The argument matrices, the semiring, and the accumulation operator (if provided) are tested for2114

domain compatibility as follows:2115

1. If Mask is not GrB NULL, and desc[GrB MASK].GrB STRUCTURE is not set, then D(Mask)2116

must be from one of the pre-defined types of Table 2.2.2117

2. D(A) must be compatible with Din1(op) of the semiring.2118

3. D(B) must be compatible with Din2(op) of the semiring.2119

4. D(C) must be compatible with Dout(op) of the semiring.2120

5. If accum is not GrB NULL, then D(C) must be compatible with Din1(accum) and Dout(accum)2121

of the accumulation operator and Dout(op) of the semiring must be compatible with Din2(accum)2122

of the accumulation operator.2123

89

Two domains are compatible with each other if values from one domain can be cast to values in2124

the other domain as per the rules of the C language. In particular, domains from Table 2.2 are2125

all compatible with each other. A domain from a user-defined type is only compatible with itself.2126

If any compatibility rule above is violated, execution of GrB mxm ends and the domain mismatch2127

error listed above is returned.2128

From the argument matrices, the internal matrices and mask used in the computation are formed2129

(← denotes copy):2130

1. Matrix C̃← C.2131

2. Two-dimensional mask, M̃, is computed from argument Mask as follows:2132

(a) If Mask = GrB NULL, then M̃ = 〈nrows(C),ncols(C), {(i, j), ∀i, j : 0 ≤ i < nrows(C), 0 ≤2133

j < ncols(C)}〉.2134

(b) If Mask 6= GrB NULL,2135

i. If desc[GrB MASK].GrB STRUCTURE is set, then M̃ = 〈nrows(Mask),ncols(Mask), {(i, j) :2136

(i, j) ∈ ind(Mask)}〉,2137

ii. Otherwise, M̃ = 〈nrows(Mask),ncols(Mask),2138

{(i, j) : (i, j) ∈ ind(Mask) ∧ (bool)Mask(i, j) = true}〉.2139

(c) If desc[GrB MASK].GrB COMP is set, then M̃← ¬M̃.2140

3. Matrix Ã← desc[GrB INP0].GrB TRAN ? AT : A.2141

4. Matrix B̃← desc[GrB INP1].GrB TRAN ? BT : B.2142

The internal matrices and masks are checked for dimension compatibility. The following conditions2143

must hold:2144

1. nrows(C̃) = nrows(M̃).2145

2. ncols(C̃) = ncols(M̃).2146

3. nrows(C̃) = nrows(Ã).2147

4. ncols(C̃) = ncols(B̃).2148

5. ncols(Ã) = nrows(B̃).2149

If any compatibility rule above is violated, execution of GrB mxm ends and the dimension mismatch2150

error listed above is returned.2151

From this point forward, in GrB NONBLOCKING mode, the method can optionally exit with2152

GrB SUCCESS return code and defer any computation and/or execution error codes.2153

We are now ready to carry out the matrix multiplication and any additional associated operations.2154

We describe this in terms of two intermediate matrices:2155

• T̃: The matrix holding the product of matrices Ã and B̃.2156

90

• Z̃: The matrix holding the result after application of the (optional) accumulation operator.2157

The intermediate matrix T̃ = 〈Dout(op),nrows(Ã),ncols(B̃), {(i, j, Tij) : ind(Ã(i, :)) ∩ ind(B̃(:2158

, j)) 6= ∅}〉 is created. The value of each of its elements is computed by2159

Tij =
⊕

k∈ind(Ã(i,:))∩ind(B̃(:,j))

(Ã(i, k)⊗ B̃(k, j)),2160

where ⊕ and ⊗ are the additive and multiplicative operators of semiring op, respectively.2161

The intermediate matrix Z̃ is created as follows, using what is called a standard matrix accumulate:2162

• If accum = GrB NULL, then Z̃ = T̃.2163

• If accum is a binary operator, then Z̃ is defined as2164

Z̃ = 〈Dout(accum),nrows(C̃),ncols(C̃), {(i, j, Zij)∀(i, j) ∈ ind(C̃) ∪ ind(T̃)}〉.2165

The values of the elements of Z̃ are computed based on the relationships between the sets of2166

indices in C̃ and T̃.2167

Zij = C̃(i, j)� T̃(i, j), if (i, j) ∈ (ind(T̃) ∩ ind(C̃)),2168

2169

Zij = C̃(i, j), if (i, j) ∈ (ind(C̃)− (ind(T̃) ∩ ind(C̃))),2170

2171

Zij = T̃(i, j), if (i, j) ∈ (ind(T̃)− (ind(T̃) ∩ ind(C̃))),2172

where � =
⊙

(accum), and the difference operator refers to set difference.2173

Finally, the set of output values that make up matrix Z̃ are written into the final result matrix C,2174

using what is called a standard matrix mask and replace. This is carried out under control of the2175

mask which acts as a “write mask”.2176

• If desc[GrB OUTP].GrB REPLACE is set, then any values in C on input to this operation are2177

deleted and the content of the new output matrix, C, is defined as,2178

L(C) = {(i, j, Zij) : (i, j) ∈ (ind(Z̃) ∩ ind(M̃))}.2179

• If desc[GrB OUTP].GrB REPLACE is not set, the elements of Z̃ indicated by the mask are2180

copied into the result matrix, C, and elements of C that fall outside the set indicated by the2181

mask are unchanged:2182

L(C) = {(i, j, Cij) : (i, j) ∈ (ind(C) ∩ ind(¬M̃))} ∪ {(i, j, Zij) : (i, j) ∈ (ind(Z̃) ∩ ind(M̃))}.2183

In GrB BLOCKING mode, the method exits with return value GrB SUCCESS and the new content2184

of matrix C is as defined above and fully computed. In GrB NONBLOCKING mode, the method2185

exits with return value GrB SUCCESS and the new content of matrix C is as defined above but2186

may not be fully computed. However, it can be used in the next GraphBLAS method call in a2187

sequence.2188

91

4.3.2 vxm: Vector-matrix multiply2189

Multiplies a (row) vector with a matrix on an semiring. The result is a vector.2190

C Syntax2191

GrB_Info GrB_vxm(GrB_Vector w,2192

const GrB_Vector mask,2193

const GrB_BinaryOp accum,2194

const GrB_Semiring op,2195

const GrB_Vector u,2196

const GrB_Matrix A,2197

const GrB_Descriptor desc);2198

Parameters2199

w (INOUT) An existing GraphBLAS vector. On input, the vector provides values2200

that may be accumulated with the result of the vector-matrix product. On output,2201

this vector holds the results of the operation.2202

mask (IN) An optional “write” mask that controls which results from this operation are2203

stored into the output vector w. The mask dimensions must match those of the2204

vector w. If the GrB STRUCTURE descriptor is not set for the mask, the domain2205

of the mask vector must be of type bool or any of the predefined “built-in” types2206

in Table 2.2. If the default mask is desired (i.e., a mask that is all true with the2207

dimensions of w), GrB NULL should be specified.2208

accum (IN) An optional binary operator used for accumulating entries into existing w2209

entries. If assignment rather than accumulation is desired, GrB NULL should be2210

specified.2211

op (IN) Semiring used in the vector-matrix multiply.2212

u (IN) The GraphBLAS vector holding the values for the left-hand vector in the2213

multiplication.2214

A (IN) The GraphBLAS matrix holding the values for the right-hand matrix in the2215

multiplication.2216

desc (IN) An optional operation descriptor. If a default descriptor is desired, GrB NULL2217

should be specified. Non-default field/value pairs are listed as follows:2218

2219

92

Param Field Value Description

w GrB OUTP GrB REPLACE Output vector w is cleared (all elements
removed) before the result is stored in it.

mask GrB MASK GrB STRUCTURE The write mask is constructed from the
structure (pattern of stored values) of the
input mask vector. The stored values are
not examined.

mask GrB MASK GrB COMP Use the complement of mask.
A GrB INP1 GrB TRAN Use transpose of A for the operation.

2220

Return Values2221

GrB SUCCESS In blocking mode, the operation completed successfully. In non-2222

blocking mode, this indicates that the compatibility tests on di-2223

mensions and domains for the input arguments passed successfully.2224

Either way, output vector w is ready to be used in the next method2225

of the sequence.2226

GrB PANIC Unknown internal error.2227

GrB INVALID OBJECT This is returned in any execution mode whenever one of the opaque2228

GraphBLAS objects (input or output) is in an invalid state caused2229

by a previous execution error. Call GrB error() to access any error2230

messages generated by the implementation.2231

GrB OUT OF MEMORY Not enough memory available for the operation.2232

GrB UNINITIALIZED OBJECT One or more of the GraphBLAS objects has not been initialized by2233

a call to new (or dup for matrix or vector parameters).2234

GrB DIMENSION MISMATCH Mask, vector, and/or matrix dimensions are incompatible.2235

GrB DOMAIN MISMATCH The domains of the various vectors/matrices are incompatible with2236

the corresponding domains of the semiring or accumulation opera-2237

tor, or the mask’s domain is not compatible with bool (in the case2238

where desc[GrB MASK].GrB STRUCTURE is not set).2239

Description2240

GrB vxm computes the vector-matrix product wT = uT⊕.⊗A, or, if an optional binary accumulation2241

operator (�) is provided, wT = wT �
(
uT ⊕ .⊗ A

)
(where matrix A can be optionally transposed).2242

Logically, this operation occurs in three steps:2243

Setup The internal vectors, matrices and mask used in the computation are formed and their2244

domains/dimensions are tested for compatibility.2245

Compute The indicated computations are carried out.2246

93

Output The result is written into the output vector, possibly under control of a mask.2247

Up to four argument vectors or matrices are used in the GrB vxm operation:2248

1. w = 〈D(w), size(w),L(w) = {(i, wi)}〉2249

2. mask = 〈D(mask), size(mask),L(mask) = {(i,mi)}〉 (optional)2250

3. u = 〈D(u), size(u),L(u) = {(i, ui)}〉2251

4. A = 〈D(A),nrows(A),ncols(A),L(A) = {(i, j, Aij)}〉2252

The argument matrices, vectors, the semiring, and the accumulation operator (if provided) are2253

tested for domain compatibility as follows:2254

1. If mask is not GrB NULL, and desc[GrB MASK].GrB STRUCTURE is not set, then D(mask)2255

must be from one of the pre-defined types of Table 2.2.2256

2. D(u) must be compatible with Din1(op) of the semiring.2257

3. D(A) must be compatible with Din2(op) of the semiring.2258

4. D(w) must be compatible with Dout(op) of the semiring.2259

5. If accum is not GrB NULL, then D(w) must be compatible with Din1(accum) and Dout(accum)2260

of the accumulation operator and Dout(op) of the semiring must be compatible with Din2(accum)2261

of the accumulation operator.2262

Two domains are compatible with each other if values from one domain can be cast to values in2263

the other domain as per the rules of the C language. In particular, domains from Table 2.2 are2264

all compatible with each other. A domain from a user-defined type is only compatible with itself.2265

If any compatibility rule above is violated, execution of GrB vxm ends and the domain mismatch2266

error listed above is returned.2267

From the argument vectors and matrices, the internal matrices and mask used in the computation2268

are formed (← denotes copy):2269

1. Vector w̃← w.2270

2. One-dimensional mask, m̃, is computed from argument mask as follows:2271

(a) If mask = GrB NULL, then m̃ = 〈size(w), {i, ∀ i : 0 ≤ i < size(w)}〉.2272

(b) If mask 6= GrB NULL,2273

i. If desc[GrB MASK].GrB STRUCTURE is set, then m̃ = 〈size(mask), {i : i ∈ ind(mask)}〉,2274

ii. Otherwise, m̃ = 〈size(mask), {i : i ∈ ind(mask) ∧ (bool)mask(i) = true}〉.2275

(c) If desc[GrB MASK].GrB COMP is set, then m̃← ¬m̃.2276

3. Vector ũ← u.2277

94

4. Matrix Ã← desc[GrB INP1].GrB TRAN ? AT : A.2278

The internal matrices and masks are checked for shape compatibility. The following conditions2279

must hold:2280

1. size(w̃) = size(m̃).2281

2. size(w̃) = ncols(Ã).2282

3. size(ũ) = nrows(Ã).2283

If any compatibility rule above is violated, execution of GrB vxm ends and the dimension mismatch2284

error listed above is returned.2285

From this point forward, in GrB NONBLOCKING mode, the method can optionally exit with2286

GrB SUCCESS return code and defer any computation and/or execution error codes.2287

We are now ready to carry out the vector-matrix multiplication and any additional associated2288

operations. We describe this in terms of two intermediate vectors:2289

• t̃: The vector holding the product of vector ũT and matrix Ã.2290

• z̃: The vector holding the result after application of the (optional) accumulation operator.2291

The intermediate vector t̃ = 〈Dout(op),ncols(Ã), {(j, tj) : ind(ũ) ∩ ind(Ã(:, j)) 6= ∅}〉 is created.2292

The value of each of its elements is computed by2293

tj =
⊕

k∈ind(ũ)∩ind(Ã(:,j))

(ũ(k)⊗ Ã(k, j)),2294

where ⊕ and ⊗ are the additive and multiplicative operators of semiring op, respectively.2295

The intermediate vector z̃ is created as follows, using what is called a standard vector accumulate:2296

• If accum = GrB NULL, then z̃ = t̃.2297

• If accum is a binary operator, then z̃ is defined as2298

z̃ = 〈Dout(accum), size(w̃), {(i, zi) ∀ i ∈ ind(w̃) ∪ ind(t̃)}〉.2299

The values of the elements of z̃ are computed based on the relationships between the sets of2300

indices in w̃ and t̃.2301

zi = w̃(i)� t̃(i), if i ∈ (ind(t̃) ∩ ind(w̃)),2302

2303

zi = w̃(i), if i ∈ (ind(w̃)− (ind(t̃) ∩ ind(w̃))),2304

2305

zi = t̃(i), if i ∈ (ind(t̃)− (ind(t̃) ∩ ind(w̃))),2306

where � =
⊙

(accum), and the difference operator refers to set difference.2307

95

Finally, the set of output values that make up vector z̃ are written into the final result vector w,2308

using what is called a standard vector mask and replace. This is carried out under control of the2309

mask which acts as a “write mask”.2310

• If desc[GrB OUTP].GrB REPLACE is set, then any values in w on input to this operation are2311

deleted and the content of the new output vector, w, is defined as,2312

L(w) = {(i, zi) : i ∈ (ind(z̃) ∩ ind(m̃))}.2313

• If desc[GrB OUTP].GrB REPLACE is not set, the elements of z̃ indicated by the mask are2314

copied into the result vector, w, and elements of w that fall outside the set indicated by the2315

mask are unchanged:2316

L(w) = {(i, wi) : i ∈ (ind(w) ∩ ind(¬m̃))} ∪ {(i, zi) : i ∈ (ind(z̃) ∩ ind(m̃))}.2317

In GrB BLOCKING mode, the method exits with return value GrB SUCCESS and the new content of2318

vector w is as defined above and fully computed. In GrB NONBLOCKING mode, the method exits2319

with return value GrB SUCCESS and the new content of vector w is as defined above but may not2320

be fully computed. However, it can be used in the next GraphBLAS method call in a sequence.2321

4.3.3 mxv: Matrix-vector multiply2322

Multiplies a matrix by a vector on a semiring. The result is a vector.2323

C Syntax2324

GrB_Info GrB_mxv(GrB_Vector w,2325

const GrB_Vector mask,2326

const GrB_BinaryOp accum,2327

const GrB_Semiring op,2328

const GrB_Matrix A,2329

const GrB_Vector u,2330

const GrB_Descriptor desc);2331

Parameters2332

w (INOUT) An existing GraphBLAS vector. On input, the vector provides values2333

that may be accumulated with the result of the matrix-vector product. On output,2334

this vector holds the results of the operation.2335

mask (IN) An optional “write” mask that controls which results from this operation are2336

stored into the output vector w. The mask dimensions must match those of the2337

vector w. If the GrB STRUCTURE descriptor is not set for the mask, the domain2338

of the mask vector must be of type bool or any of the predefined “built-in” types2339

in Table 2.2. If the default mask is desired (i.e., a mask that is all true with the2340

dimensions of w), GrB NULL should be specified.2341

96

accum (IN) An optional binary operator used for accumulating entries into existing w2342

entries. If assignment rather than accumulation is desired, GrB NULL should be2343

specified.2344

op (IN) Semiring used in the vector-matrix multiply.2345

A (IN) The GraphBLAS matrix holding the values for the left-hand matrix in the2346

multiplication.2347

u (IN) The GraphBLAS vector holding the values for the right-hand vector in the2348

multiplication.2349

desc (IN) An optional operation descriptor. If a default descriptor is desired, GrB NULL2350

should be specified. Non-default field/value pairs are listed as follows:2351

2352

Param Field Value Description

w GrB OUTP GrB REPLACE Output vector w is cleared (all elements
removed) before the result is stored in it.

mask GrB MASK GrB STRUCTURE The write mask is constructed from the
structure (pattern of stored values) of the
input mask vector. The stored values are
not examined.

mask GrB MASK GrB COMP Use the complement of mask.
A GrB INP0 GrB TRAN Use transpose of A for the operation.

2353

Return Values2354

GrB SUCCESS In blocking mode, the operation completed successfully. In non-2355

blocking mode, this indicates that the compatibility tests on di-2356

mensions and domains for the input arguments passed successfully.2357

Either way, output vector w is ready to be used in the next method2358

of the sequence.2359

GrB PANIC Unknown internal error.2360

GrB INVALID OBJECT This is returned in any execution mode whenever one of the opaque2361

GraphBLAS objects (input or output) is in an invalid state caused2362

by a previous execution error. Call GrB error() to access any error2363

messages generated by the implementation.2364

GrB OUT OF MEMORY Not enough memory available for the operation.2365

GrB UNINITIALIZED OBJECT One or more of the GraphBLAS objects has not been initialized by2366

a call to new (or dup for matrix or vector parameters).2367

GrB DIMENSION MISMATCH Mask, vector, and/or matrix dimensions are incompatible.2368

97

GrB DOMAIN MISMATCH The domains of the various vectors/matrices are incompatible with2369

the corresponding domains of the semiring or accumulation opera-2370

tor, or the mask’s domain is not compatible with bool (in the case2371

where desc[GrB MASK].GrB STRUCTURE is not set).2372

Description2373

GrB mxv computes the matrix-vector product w = A⊕ .⊗ u, or, if an optional binary accumulation2374

operator (�) is provided, w = w � (A⊕ .⊗ u) (where matrix A can be optionally transposed).2375

Logically, this operation occurs in three steps:2376

Setup The internal vectors, matrices and mask used in the computation are formed and their2377

domains/dimensions are tested for compatibility.2378

Compute The indicated computations are carried out.2379

Output The result is written into the output vector, possibly under control of a mask.2380

Up to four argument vectors or matrices are used in the GrB mxv operation:2381

1. w = 〈D(w), size(w),L(w) = {(i, wi)}〉2382

2. mask = 〈D(mask), size(mask),L(mask) = {(i,mi)}〉 (optional)2383

3. A = 〈D(A),nrows(A),ncols(A),L(A) = {(i, j, Aij)}〉2384

4. u = 〈D(u), size(u),L(u) = {(i, ui)}〉2385

The argument matrices, vectors, the semiring, and the accumulation operator (if provided) are2386

tested for domain compatibility as follows:2387

1. If mask is not GrB NULL, and desc[GrB MASK].GrB STRUCTURE is not set, then D(mask)2388

must be from one of the pre-defined types of Table 2.2.2389

2. D(A) must be compatible with Din1(op) of the semiring.2390

3. D(u) must be compatible with Din2(op) of the semiring.2391

4. D(w) must be compatible with Dout(op) of the semiring.2392

5. If accum is not GrB NULL, then D(w) must be compatible with Din1(accum) and Dout(accum)2393

of the accumulation operator and Dout(op) of the semiring must be compatible with Din2(accum)2394

of the accumulation operator.2395

Two domains are compatible with each other if values from one domain can be cast to values in2396

the other domain as per the rules of the C language. In particular, domains from Table 2.2 are2397

all compatible with each other. A domain from a user-defined type is only compatible with itself.2398

98

If any compatibility rule above is violated, execution of GrB mxv ends and the domain mismatch2399

error listed above is returned.2400

From the argument vectors and matrices, the internal matrices and mask used in the computation2401

are formed (← denotes copy):2402

1. Vector w̃← w.2403

2. One-dimensional mask, m̃, is computed from argument mask as follows:2404

(a) If mask = GrB NULL, then m̃ = 〈size(w), {i, ∀ i : 0 ≤ i < size(w)}〉.2405

(b) If mask 6= GrB NULL,2406

i. If desc[GrB MASK].GrB STRUCTURE is set, then m̃ = 〈size(mask), {i : i ∈ ind(mask)}〉,2407

ii. Otherwise, m̃ = 〈size(mask), {i : i ∈ ind(mask) ∧ (bool)mask(i) = true}〉.2408

(c) If desc[GrB MASK].GrB COMP is set, then m̃← ¬m̃.2409

3. Matrix Ã← desc[GrB INP0].GrB TRAN ? AT : A.2410

4. Vector ũ← u.2411

The internal matrices and masks are checked for shape compatibility. The following conditions2412

must hold:2413

1. size(w̃) = size(m̃).2414

2. size(w̃) = nrows(Ã).2415

3. size(ũ) = ncols(Ã).2416

If any compatibility rule above is violated, execution of GrB mxv ends and the dimension mismatch2417

error listed above is returned.2418

From this point forward, in GrB NONBLOCKING mode, the method can optionally exit with2419

GrB SUCCESS return code and defer any computation and/or execution error codes.2420

We are now ready to carry out the matrix-vector multiplication and any additional associated2421

operations. We describe this in terms of two intermediate vectors:2422

• t̃: The vector holding the product of matrix Ã and vector ũ.2423

• z̃: The vector holding the result after application of the (optional) accumulation operator.2424

The intermediate vector t̃ = 〈Dout(op),nrows(Ã), {(i, ti) : ind(Ã(i, :)) ∩ ind(ũ) 6= ∅}〉 is created.2425

The value of each of its elements is computed by2426

ti =
⊕

k∈ind(Ã(i,:))∩ind(ũ)

(Ã(i, k)⊗ ũ(k)),2427

where ⊕ and ⊗ are the additive and multiplicative operators of semiring op, respectively.2428

The intermediate vector z̃ is created as follows, using what is called a standard vector accumulate:2429

99

• If accum = GrB NULL, then z̃ = t̃.2430

• If accum is a binary operator, then z̃ is defined as2431

z̃ = 〈Dout(accum), size(w̃), {(i, zi) ∀ i ∈ ind(w̃) ∪ ind(t̃)}〉.2432

The values of the elements of z̃ are computed based on the relationships between the sets of2433

indices in w̃ and t̃.2434

zi = w̃(i)� t̃(i), if i ∈ (ind(t̃) ∩ ind(w̃)),2435

2436

zi = w̃(i), if i ∈ (ind(w̃)− (ind(t̃) ∩ ind(w̃))),2437

2438

zi = t̃(i), if i ∈ (ind(t̃)− (ind(t̃) ∩ ind(w̃))),2439

where � =
⊙

(accum), and the difference operator refers to set difference.2440

Finally, the set of output values that make up vector z̃ are written into the final result vector w,2441

using what is called a standard vector mask and replace. This is carried out under control of the2442

mask which acts as a “write mask”.2443

• If desc[GrB OUTP].GrB REPLACE is set, then any values in w on input to this operation are2444

deleted and the content of the new output vector, w, is defined as,2445

L(w) = {(i, zi) : i ∈ (ind(z̃) ∩ ind(m̃))}.2446

• If desc[GrB OUTP].GrB REPLACE is not set, the elements of z̃ indicated by the mask are2447

copied into the result vector, w, and elements of w that fall outside the set indicated by the2448

mask are unchanged:2449

L(w) = {(i, wi) : i ∈ (ind(w) ∩ ind(¬m̃))} ∪ {(i, zi) : i ∈ (ind(z̃) ∩ ind(m̃))}.2450

In GrB BLOCKING mode, the method exits with return value GrB SUCCESS and the new content of2451

vector w is as defined above and fully computed. In GrB NONBLOCKING mode, the method exits2452

with return value GrB SUCCESS and the new content of vector w is as defined above but may not2453

be fully computed. However, it can be used in the next GraphBLAS method call in a sequence.2454

4.3.4 eWiseMult: Element-wise multiplication2455

Note: The difference between eWiseAdd and eWiseMult is not about the element-wise operation2456

but how the index sets are treated. eWiseAdd returns an object whose indices are the “union” of2457

the indices of the inputs whereas eWiseMult returns an object whose indices are the “intersection”2458

of the indices of the inputs. In both cases, the passed semiring, monoid, or operator operates on2459

the set of values from the resulting index set.2460

4.3.4.1 eWiseMult: Vector variant2461

Perform element-wise (general) multiplication on the intersection of elements of two vectors, pro-2462

ducing a third vector as result.2463

100

C Syntax2464

GrB_Info GrB_eWiseMult(GrB_Vector w,2465

const GrB_Vector mask,2466

const GrB_BinaryOp accum,2467

const GrB_Semiring op,2468

const GrB_Vector u,2469

const GrB_Vector v,2470

const GrB_Descriptor desc);2471

2472

GrB_Info GrB_eWiseMult(GrB_Vector w,2473

const GrB_Vector mask,2474

const GrB_BinaryOp accum,2475

const GrB_Monoid op,2476

const GrB_Vector u,2477

const GrB_Vector v,2478

const GrB_Descriptor desc);2479

2480

GrB_Info GrB_eWiseMult(GrB_Vector w,2481

const GrB_Vector mask,2482

const GrB_BinaryOp accum,2483

const GrB_BinaryOp op,2484

const GrB_Vector u,2485

const GrB_Vector v,2486

const GrB_Descriptor desc);2487

Parameters2488

w (INOUT) An existing GraphBLAS vector. On input, the vector provides values2489

that may be accumulated with the result of the element-wise operation. On output,2490

this vector holds the results of the operation.2491

mask (IN) An optional “write” mask that controls which results from this operation are2492

stored into the output vector w. The mask dimensions must match those of the2493

vector w. If the GrB STRUCTURE descriptor is not set for the mask, the domain2494

of the mask vector must be of type bool or any of the predefined “built-in” types2495

in Table 2.2. If the default mask is desired (i.e., a mask that is all true with the2496

dimensions of w), GrB NULL should be specified.2497

accum (IN) An optional binary operator used for accumulating entries into existing w2498

entries. If assignment rather than accumulation is desired, GrB NULL should be2499

specified.2500

op (IN) The semiring, monoid, or binary operator used in the element-wise “product”2501

operation. Depending on which type is passed, the following defines the binary2502

operator, Fb = 〈Dout(op),Din1(op),Din2(op),⊗〉, used:2503

101

BinaryOp: Fb = 〈Dout(op),Din1(op),Din2(op),
⊙

(op)〉.2504

Monoid: Fb = 〈D(op),D(op),D(op),
⊙

(op)〉; the identity element is ig-2505

nored.2506

Semiring: Fb = 〈Dout(op),Din1(op),Din2(op),
⊗

(op)〉; the additive monoid2507

is ignored.2508

u (IN) The GraphBLAS vector holding the values for the left-hand vector in the2509

operation.2510

v (IN) The GraphBLAS vector holding the values for the right-hand vector in the2511

operation.2512

desc (IN) An optional operation descriptor. If a default descriptor is desired, GrB NULL2513

should be specified. Non-default field/value pairs are listed as follows:2514

2515

Param Field Value Description

w GrB OUTP GrB REPLACE Output vector w is cleared (all elements
removed) before the result is stored in it.

mask GrB MASK GrB STRUCTURE The write mask is constructed from the
structure (pattern of stored values) of the
input mask vector. The stored values are
not examined.

mask GrB MASK GrB COMP Use the complement of mask.

2516

Return Values2517

GrB SUCCESS In blocking mode, the operation completed successfully. In non-2518

blocking mode, this indicates that the compatibility tests on di-2519

mensions and domains for the input arguments passed successfully.2520

Either way, output vector w is ready to be used in the next method2521

of the sequence.2522

GrB PANIC Unknown internal error.2523

GrB INVALID OBJECT This is returned in any execution mode whenever one of the opaque2524

GraphBLAS objects (input or output) is in an invalid state caused2525

by a previous execution error. Call GrB error() to access any error2526

messages generated by the implementation.2527

GrB OUT OF MEMORY Not enough memory available for the operation.2528

GrB UNINITIALIZED OBJECT One or more of the GraphBLAS objects has not been initialized by2529

a call to new (or dup for vector parameters).2530

GrB DIMENSION MISMATCH Mask or vector dimensions are incompatible.2531

102

GrB DOMAIN MISMATCH The domains of the various vectors are incompatible with the cor-2532

responding domains of the binary operator (op) or accumulation2533

operator, or the mask’s domain is not compatible with bool (in the2534

case where desc[GrB MASK].GrB STRUCTURE is not set).2535

Description2536

This variant of GrB eWiseMult computes the element-wise “product” of two GraphBLAS vectors:2537

w = u ⊗ v, or, if an optional binary accumulation operator (�) is provided, w = w � (u⊗ v).2538

Logically, this operation occurs in three steps:2539

Setup The internal vectors and mask used in the computation are formed and their domains2540

and dimensions are tested for compatibility.2541

Compute The indicated computations are carried out.2542

Output The result is written into the output vector, possibly under control of a mask.2543

Up to four argument vectors are used in the GrB eWiseMult operation:2544

1. w = 〈D(w), size(w),L(w) = {(i, wi)}〉2545

2. mask = 〈D(mask), size(mask),L(mask) = {(i,mi)}〉 (optional)2546

3. u = 〈D(u), size(u),L(u) = {(i, ui)}〉2547

4. v = 〈D(v), size(v),L(v) = {(i, vi)}〉2548

The argument vectors, the “product” operator (op), and the accumulation operator (if provided)2549

are tested for domain compatibility as follows:2550

1. If mask is not GrB NULL, and desc[GrB MASK].GrB STRUCTURE is not set, then D(mask)2551

must be from one of the pre-defined types of Table 2.2.2552

2. D(u) must be compatible with Din1(op).2553

3. D(v) must be compatible with Din2(op).2554

4. D(w) must be compatible with Dout(op).2555

5. If accum is not GrB NULL, then D(w) must be compatible with Din1(accum) and Dout(accum)2556

of the accumulation operator and Dout(op) of op must be compatible with Din2(accum) of2557

the accumulation operator.2558

Two domains are compatible with each other if values from one domain can be cast to values2559

in the other domain as per the rules of the C language. In particular, domains from Table 2.22560

are all compatible with each other. A domain from a user-defined type is only compatible with2561

103

itself. If any compatibility rule above is violated, execution of GrB eWiseMult ends and the domain2562

mismatch error listed above is returned.2563

From the argument vectors, the internal vectors and mask used in the computation are formed (←2564

denotes copy):2565

1. Vector w̃← w.2566

2. One-dimensional mask, m̃, is computed from argument mask as follows:2567

(a) If mask = GrB NULL, then m̃ = 〈size(w), {i, ∀ i : 0 ≤ i < size(w)}〉.2568

(b) If mask 6= GrB NULL,2569

i. If desc[GrB MASK].GrB STRUCTURE is set, then m̃ = 〈size(mask), {i : i ∈ ind(mask)}〉,2570

ii. Otherwise, m̃ = 〈size(mask), {i : i ∈ ind(mask) ∧ (bool)mask(i) = true}〉.2571

(c) If desc[GrB MASK].GrB COMP is set, then m̃← ¬m̃.2572

3. Vector ũ← u.2573

4. Vector ṽ← v.2574

The internal vectors and mask are checked for dimension compatibility. The following conditions2575

must hold:2576

1. size(w̃) = size(m̃) = size(ũ) = size(ṽ).2577

If any compatibility rule above is violated, execution of GrB eWiseMult ends and the dimension2578

mismatch error listed above is returned.2579

From this point forward, in GrB NONBLOCKING mode, the method can optionally exit with2580

GrB SUCCESS return code and defer any computation and/or execution error codes.2581

We are now ready to carry out the element-wise “product” and any additional associated operations.2582

We describe this in terms of two intermediate vectors:2583

• t̃: The vector holding the element-wise “product” of ũ and vector ṽ.2584

• z̃: The vector holding the result after application of the (optional) accumulation operator.2585

The intermediate vector t̃ = 〈Dout(op), size(ũ),L(t̃) = {(i, ti) : ind(ũ) ∩ ind(ṽ) 6= ∅}〉 is created.2586

The value of each of its elements is computed by:2587

ti = (ũ(i)⊗ ṽ(i)),∀i ∈ (ind(ũ) ∩ ind(ṽ))2588

The intermediate vector z̃ is created as follows, using what is called a standard vector accumulate:2589

• If accum = GrB NULL, then z̃ = t̃.2590

104

• If accum is a binary operator, then z̃ is defined as2591

z̃ = 〈Dout(accum), size(w̃), {(i, zi) ∀ i ∈ ind(w̃) ∪ ind(t̃)}〉.2592

The values of the elements of z̃ are computed based on the relationships between the sets of2593

indices in w̃ and t̃.2594

zi = w̃(i)� t̃(i), if i ∈ (ind(t̃) ∩ ind(w̃)),2595

2596

zi = w̃(i), if i ∈ (ind(w̃)− (ind(t̃) ∩ ind(w̃))),2597

2598

zi = t̃(i), if i ∈ (ind(t̃)− (ind(t̃) ∩ ind(w̃))),2599

where � =
⊙

(accum), and the difference operator refers to set difference.2600

Finally, the set of output values that make up vector z̃ are written into the final result vector w,2601

using what is called a standard vector mask and replace. This is carried out under control of the2602

mask which acts as a “write mask”.2603

• If desc[GrB OUTP].GrB REPLACE is set, then any values in w on input to this operation are2604

deleted and the content of the new output vector, w, is defined as,2605

L(w) = {(i, zi) : i ∈ (ind(z̃) ∩ ind(m̃))}.2606

• If desc[GrB OUTP].GrB REPLACE is not set, the elements of z̃ indicated by the mask are2607

copied into the result vector, w, and elements of w that fall outside the set indicated by the2608

mask are unchanged:2609

L(w) = {(i, wi) : i ∈ (ind(w) ∩ ind(¬m̃))} ∪ {(i, zi) : i ∈ (ind(z̃) ∩ ind(m̃))}.2610

In GrB BLOCKING mode, the method exits with return value GrB SUCCESS and the new content of2611

vector w is as defined above and fully computed. In GrB NONBLOCKING mode, the method exits2612

with return value GrB SUCCESS and the new content of vector w is as defined above but may not2613

be fully computed. However, it can be used in the next GraphBLAS method call in a sequence.2614

4.3.4.2 eWiseMult: Matrix variant2615

Perform element-wise (general) multiplication on the intersection of elements of two matrices, pro-2616

ducing a third matrix as result.2617

C Syntax2618

GrB_Info GrB_eWiseMult(GrB_Matrix C,2619

const GrB_Matrix Mask,2620

const GrB_BinaryOp accum,2621

const GrB_Semiring op,2622

const GrB_Matrix A,2623

105

const GrB_Matrix B,2624

const GrB_Descriptor desc);2625

2626

GrB_Info GrB_eWiseMult(GrB_Matrix C,2627

const GrB_Matrix Mask,2628

const GrB_BinaryOp accum,2629

const GrB_Monoid op,2630

const GrB_Matrix A,2631

const GrB_Matrix B,2632

const GrB_Descriptor desc);2633

2634

GrB_Info GrB_eWiseMult(GrB_Matrix C,2635

const GrB_Matrix Mask,2636

const GrB_BinaryOp accum,2637

const GrB_BinaryOp op,2638

const GrB_Matrix A,2639

const GrB_Matrix B,2640

const GrB_Descriptor desc);2641

Parameters2642

C (INOUT) An existing GraphBLAS matrix. On input, the matrix provides values2643

that may be accumulated with the result of the element-wise operation. On output,2644

the matrix holds the results of the operation.2645

Mask (IN) An optional “write” mask that controls which results from this operation are2646

stored into the output matrix C. The mask dimensions must match those of the2647

matrix C. If the GrB STRUCTURE descriptor is not set for the mask, the domain2648

of the Mask matrix must be of type bool or any of the predefined “built-in” types2649

in Table 2.2. If the default mask is desired (i.e., a mask that is all true with the2650

dimensions of C), GrB NULL should be specified.2651

accum (IN) An optional binary operator used for accumulating entries into existing C2652

entries. If assignment rather than accumulation is desired, GrB NULL should be2653

specified.2654

op (IN) The semiring, monoid, or binary operator used in the element-wise “product”2655

operation. Depending on which type is passed, the following defines the binary2656

operator, Fb = 〈Dout(op),Din1(op),Din2(op),⊗〉, used:2657

BinaryOp: Fb = 〈Dout(op),Din1(op),Din2(op),
⊙

(op)〉.2658

Monoid: Fb = 〈D(op),D(op),D(op),
⊙

(op)〉; the identity element is ig-2659

nored.2660

Semiring: Fb = 〈Dout(op),Din1(op),Din2(op),
⊗

(op)〉; the additive monoid2661

is ignored.2662

106

A (IN) The GraphBLAS matrix holding the values for the left-hand matrix in the2663

operation.2664

B (IN) The GraphBLAS matrix holding the values for the right-hand matrix in the2665

operation.2666

desc (IN) An optional operation descriptor. If a default descriptor is desired, GrB NULL2667

should be specified. Non-default field/value pairs are listed as follows:2668

2669

Param Field Value Description

C GrB OUTP GrB REPLACE Output matrix C is cleared (all elements
removed) before the result is stored in it.

Mask GrB MASK GrB STRUCTURE The write mask is constructed from the
structure (pattern of stored values) of the
input Mask matrix. The stored values are
not examined.

Mask GrB MASK GrB COMP Use the complement of Mask.
A GrB INP0 GrB TRAN Use transpose of A for the operation.
B GrB INP1 GrB TRAN Use transpose of B for the operation.

2670

Return Values2671

GrB SUCCESS In blocking mode, the operation completed successfully. In non-2672

blocking mode, this indicates that the compatibility tests on di-2673

mensions and domains for the input arguments passed successfully.2674

Either way, output matrix C is ready to be used in the next method2675

of the sequence.2676

GrB PANIC Unknown internal error.2677

GrB INVALID OBJECT This is returned in any execution mode whenever one of the opaque2678

GraphBLAS objects (input or output) is in an invalid state caused2679

by a previous execution error. Call GrB error() to access any error2680

messages generated by the implementation.2681

GrB OUT OF MEMORY Not enough memory available for the operation.2682

GrB UNINITIALIZED OBJECT One or more of the GraphBLAS objects has not been initialized by2683

a call to new (or Matrix dup for matrix parameters).2684

GrB DIMENSION MISMATCH Mask and/or matrix dimensions are incompatible.2685

GrB DOMAIN MISMATCH The domains of the various matrices are incompatible with the2686

corresponding domains of the binary operator (op) or accumulation2687

operator, or the mask’s domain is not compatible with bool (in the2688

case where desc[GrB MASK].GrB STRUCTURE is not set).2689

107

Description2690

This variant of GrB eWiseMult computes the element-wise “product” of two GraphBLAS matrices:2691

C = A ⊗ B, or, if an optional binary accumulation operator (�) is provided, C = C � (A⊗ B).2692

Logically, this operation occurs in three steps:2693

Setup The internal matrices and mask used in the computation are formed and their domains2694

and dimensions are tested for compatibility.2695

Compute The indicated computations are carried out.2696

Output The result is written into the output matrix, possibly under control of a mask.2697

Up to four argument matrices are used in the GrB eWiseMult operation:2698

1. C = 〈D(C),nrows(C),ncols(C),L(C) = {(i, j, Cij)}〉2699

2. Mask = 〈D(Mask),nrows(Mask),ncols(Mask),L(Mask) = {(i, j,Mij)}〉 (optional)2700

3. A = 〈D(A),nrows(A),ncols(A),L(A) = {(i, j, Aij)}〉2701

4. B = 〈D(B),nrows(B),ncols(B),L(B) = {(i, j, Bij)}〉2702

The argument matrices, the “product” operator (op), and the accumulation operator (if provided)2703

are tested for domain compatibility as follows:2704

1. If Mask is not GrB NULL, and desc[GrB MASK].GrB STRUCTURE is not set, then D(Mask)2705

must be from one of the pre-defined types of Table 2.2.2706

2. D(A) must be compatible with Din1(op).2707

3. D(B) must be compatible with Din2(op).2708

4. D(C) must be compatible with Dout(op).2709

5. If accum is not GrB NULL, then D(C) must be compatible with Din1(accum) and Dout(accum)2710

of the accumulation operator and Dout(op) of op must be compatible with Din2(accum) of2711

the accumulation operator.2712

Two domains are compatible with each other if values from one domain can be cast to values2713

in the other domain as per the rules of the C language. In particular, domains from Table 2.22714

are all compatible with each other. A domain from a user-defined type is only compatible with2715

itself. If any compatibility rule above is violated, execution of GrB eWiseMult ends and the domain2716

mismatch error listed above is returned.2717

From the argument matrices, the internal matrices and mask used in the computation are formed2718

(← denotes copy):2719

1. Matrix C̃← C.2720

108

2. Two-dimensional mask, M̃, is computed from argument Mask as follows:2721

(a) If Mask = GrB NULL, then M̃ = 〈nrows(C),ncols(C), {(i, j), ∀i, j : 0 ≤ i < nrows(C), 0 ≤2722

j < ncols(C)}〉.2723

(b) If Mask 6= GrB NULL,2724

i. If desc[GrB MASK].GrB STRUCTURE is set, then M̃ = 〈nrows(Mask),ncols(Mask), {(i, j) :2725

(i, j) ∈ ind(Mask)}〉,2726

ii. Otherwise, M̃ = 〈nrows(Mask),ncols(Mask),2727

{(i, j) : (i, j) ∈ ind(Mask) ∧ (bool)Mask(i, j) = true}〉.2728

(c) If desc[GrB MASK].GrB COMP is set, then M̃← ¬M̃.2729

3. Matrix Ã← desc[GrB INP0].GrB TRAN ? AT : A.2730

4. Matrix B̃← desc[GrB INP1].GrB TRAN ? BT : B.2731

The internal matrices and masks are checked for dimension compatibility. The following conditions2732

must hold:2733

1. nrows(C̃) = nrows(M̃) = nrows(Ã) = nrows(C̃).2734

2. ncols(C̃) = ncols(M̃) = ncols(Ã) = ncols(C̃).2735

If any compatibility rule above is violated, execution of GrB eWiseMult ends and the dimension2736

mismatch error listed above is returned.2737

From this point forward, in GrB NONBLOCKING mode, the method can optionally exit with2738

GrB SUCCESS return code and defer any computation and/or execution error codes.2739

We are now ready to carry out the element-wise “product” and any additional associated operations.2740

We describe this in terms of two intermediate matrices:2741

• T̃: The matrix holding the element-wise product of Ã and B̃.2742

• Z̃: The matrix holding the result after application of the (optional) accumulation operator.2743

The intermediate matrix T̃ = 〈Dout(op),nrows(Ã),ncols(Ã), {(i, j, Tij) : ind(Ã) ∩ ind(B̃) 6= ∅}〉2744

is created. The value of each of its elements is computed by2745

Tij = (Ã(i, j)⊗ B̃(i, j)),∀(i, j) ∈ ind(Ã) ∩ ind(B̃)2746

The intermediate matrix Z̃ is created as follows, using what is called a standard matrix accumulate:2747

• If accum = GrB NULL, then Z̃ = T̃.2748

• If accum is a binary operator, then Z̃ is defined as2749

Z̃ = 〈Dout(accum),nrows(C̃),ncols(C̃), {(i, j, Zij)∀(i, j) ∈ ind(C̃) ∪ ind(T̃)}〉.2750

109

The values of the elements of Z̃ are computed based on the relationships between the sets of2751

indices in C̃ and T̃.2752

Zij = C̃(i, j)� T̃(i, j), if (i, j) ∈ (ind(T̃) ∩ ind(C̃)),2753

2754

Zij = C̃(i, j), if (i, j) ∈ (ind(C̃)− (ind(T̃) ∩ ind(C̃))),2755

2756

Zij = T̃(i, j), if (i, j) ∈ (ind(T̃)− (ind(T̃) ∩ ind(C̃))),2757

where � =
⊙

(accum), and the difference operator refers to set difference.2758

Finally, the set of output values that make up matrix Z̃ are written into the final result matrix C,2759

using what is called a standard matrix mask and replace. This is carried out under control of the2760

mask which acts as a “write mask”.2761

• If desc[GrB OUTP].GrB REPLACE is set, then any values in C on input to this operation are2762

deleted and the content of the new output matrix, C, is defined as,2763

L(C) = {(i, j, Zij) : (i, j) ∈ (ind(Z̃) ∩ ind(M̃))}.2764

• If desc[GrB OUTP].GrB REPLACE is not set, the elements of Z̃ indicated by the mask are2765

copied into the result matrix, C, and elements of C that fall outside the set indicated by the2766

mask are unchanged:2767

L(C) = {(i, j, Cij) : (i, j) ∈ (ind(C) ∩ ind(¬M̃))} ∪ {(i, j, Zij) : (i, j) ∈ (ind(Z̃) ∩ ind(M̃))}.2768

In GrB BLOCKING mode, the method exits with return value GrB SUCCESS and the new content2769

of matrix C is as defined above and fully computed. In GrB NONBLOCKING mode, the method2770

exits with return value GrB SUCCESS and the new content of matrix C is as defined above but2771

may not be fully computed. However, it can be used in the next GraphBLAS method call in a2772

sequence.2773

4.3.5 eWiseAdd: Element-wise addition2774

Note: The difference between eWiseAdd and eWiseMult is not about the element-wise operation2775

but how the index sets are treated. eWiseAdd returns an object whose indices are the “union” of2776

the indices of the inputs whereas eWiseMult returns an object whose indices are the “intersection”2777

of the indices of the inputs. In both cases, the passed semiring, monoid, or operator operates on2778

the set of values from the resulting index set.2779

4.3.5.1 eWiseAdd: Vector variant2780

Perform element-wise (general) addition on the elements of two vectors, producing a third vector2781

as result.2782

110

C Syntax2783

GrB_Info GrB_eWiseAdd(GrB_Vector w,2784

const GrB_Vector mask,2785

const GrB_BinaryOp accum,2786

const GrB_Semiring op,2787

const GrB_Vector u,2788

const GrB_Vector v,2789

const GrB_Descriptor desc);2790

2791

GrB_Info GrB_eWiseAdd(GrB_Vector w,2792

const GrB_Vector mask,2793

const GrB_BinaryOp accum,2794

const GrB_Monoid op,2795

const GrB_Vector u,2796

const GrB_Vector v,2797

const GrB_Descriptor desc);2798

2799

GrB_Info GrB_eWiseAdd(GrB_Vector w,2800

const GrB_Vector mask,2801

const GrB_BinaryOp accum,2802

const GrB_BinaryOp op,2803

const GrB_Vector u,2804

const GrB_Vector v,2805

const GrB_Descriptor desc);2806

Parameters2807

w (INOUT) An existing GraphBLAS vector. On input, the vector provides values2808

that may be accumulated with the result of the element-wise operation. On output,2809

this vector holds the results of the operation.2810

mask (IN) An optional “write” mask that controls which results from this operation are2811

stored into the output vector w. The mask dimensions must match those of the2812

vector w. If the GrB STRUCTURE descriptor is not set for the mask, the domain2813

of the mask vector must be of type bool or any of the predefined “built-in” types2814

in Table 2.2. If the default mask is desired (i.e., a mask that is all true with the2815

dimensions of w), GrB NULL should be specified.2816

accum (IN) An optional binary operator used for accumulating entries into existing w2817

entries. If assignment rather than accumulation is desired, GrB NULL should be2818

specified.2819

op (IN) The semiring, monoid, or binary operator used in the element-wise “sum”2820

operation. Depending on which type is passed, the following defines the binary2821

operator, Fb = 〈Dout(op),Din1(op),Din2(op),⊕〉, used:2822

111

BinaryOp: Fb = 〈Dout(op),Din1(op),Din2(op),
⊙

(op)〉.2823

Monoid: Fb = 〈D(op),D(op),D(op),
⊙

(op)〉; the identity element is ig-2824

nored.2825

Semiring: Fb = 〈Dout(op),Din1(op),Din2(op),
⊕

(op)〉; the multiplicative2826

binary op and additive identity are ignored.2827

u (IN) The GraphBLAS vector holding the values for the left-hand vector in the2828

operation.2829

v (IN) The GraphBLAS vector holding the values for the right-hand vector in the2830

operation.2831

desc (IN) An optional operation descriptor. If a default descriptor is desired, GrB NULL2832

should be specified. Non-default field/value pairs are listed as follows:2833

2834

Param Field Value Description

w GrB OUTP GrB REPLACE Output vector w is cleared (all elements
removed) before the result is stored in it.

mask GrB MASK GrB STRUCTURE The write mask is constructed from the
structure (pattern of stored values) of the
input mask vector. The stored values are
not examined.

mask GrB MASK GrB COMP Use the complement of mask.

2835

Return Values2836

GrB SUCCESS In blocking mode, the operation completed successfully. In non-2837

blocking mode, this indicates that the compatibility tests on di-2838

mensions and domains for the input arguments passed successfully.2839

Either way, output vector w is ready to be used in the next method2840

of the sequence.2841

GrB PANIC Unknown internal error.2842

GrB INVALID OBJECT This is returned in any execution mode whenever one of the opaque2843

GraphBLAS objects (input or output) is in an invalid state caused2844

by a previous execution error. Call GrB error() to access any error2845

messages generated by the implementation.2846

GrB OUT OF MEMORY Not enough memory available for the operation.2847

GrB UNINITIALIZED OBJECT One or more of the GraphBLAS objects has not been initialized by2848

a call to new (or dup for vector parameters).2849

GrB DIMENSION MISMATCH Mask or vector dimensions are incompatible.2850

112

GrB DOMAIN MISMATCH The domains of the various vectors are incompatible with the cor-2851

responding domains of the binary operator (op) or accumulation2852

operator, or the mask’s domain is not compatible with bool (in the2853

case where desc[GrB MASK].GrB STRUCTURE is not set).2854

Description2855

This variant of GrB eWiseAdd computes the element-wise “sum” of two GraphBLAS vectors: w =2856

u⊕ v, or, if an optional binary accumulation operator (�) is provided, w = w � (u⊕ v). Logically,2857

this operation occurs in three steps:2858

Setup The internal vectors and mask used in the computation are formed and their domains2859

and dimensions are tested for compatibility.2860

Compute The indicated computations are carried out.2861

Output The result is written into the output vector, possibly under control of a mask.2862

Up to four argument vectors are used in the GrB eWiseAdd operation:2863

1. w = 〈D(w), size(w),L(w) = {(i, wi)}〉2864

2. mask = 〈D(mask), size(mask),L(mask) = {(i,mi)}〉 (optional)2865

3. u = 〈D(u), size(u),L(u) = {(i, ui)}〉2866

4. v = 〈D(v), size(v),L(v) = {(i, vi)}〉2867

The argument vectors, the “sum” operator (op), and the accumulation operator (if provided) are2868

tested for domain compatibility as follows:2869

1. If mask is not GrB NULL, and desc[GrB MASK].GrB STRUCTURE is not set, then D(mask)2870

must be from one of the pre-defined types of Table 2.2.2871

2. D(u) must be compatible with Din1(op).2872

3. D(v) must be compatible with Din2(op).2873

4. D(w) must be compatible with Dout(op).2874

5. D(u) and D(v) must be compatible with Dout(op).2875

6. If accum is not GrB NULL, then D(w) must be compatible with Din1(accum) and Dout(accum)2876

of the accumulation operator and Dout(op) of op must be compatible with Din2(accum) of2877

the accumulation operator.2878

113

Two domains are compatible with each other if values from one domain can be cast to values2879

in the other domain as per the rules of the C language. In particular, domains from Table 2.22880

are all compatible with each other. A domain from a user-defined type is only compatible with2881

itself. If any compatibility rule above is violated, execution of GrB eWiseMult ends and the domain2882

mismatch error listed above is returned.2883

From the argument vectors, the internal vectors and mask used in the computation are formed (←2884

denotes copy):2885

1. Vector w̃← w.2886

2. One-dimensional mask, m̃, is computed from argument mask as follows:2887

(a) If mask = GrB NULL, then m̃ = 〈size(w), {i, ∀ i : 0 ≤ i < size(w)}〉.2888

(b) If mask 6= GrB NULL,2889

i. If desc[GrB MASK].GrB STRUCTURE is set, then m̃ = 〈size(mask), {i : i ∈ ind(mask)}〉,2890

ii. Otherwise, m̃ = 〈size(mask), {i : i ∈ ind(mask) ∧ (bool)mask(i) = true}〉.2891

(c) If desc[GrB MASK].GrB COMP is set, then m̃← ¬m̃.2892

3. Vector ũ← u.2893

4. Vector ṽ← v.2894

The internal vectors and mask are checked for dimension compatibility. The following conditions2895

must hold:2896

1. size(w̃) = size(m̃) = size(ũ) = size(ṽ).2897

If any compatibility rule above is violated, execution of GrB eWiseMult ends and the dimension2898

mismatch error listed above is returned.2899

From this point forward, in GrB NONBLOCKING mode, the method can optionally exit with2900

GrB SUCCESS return code and defer any computation and/or execution error codes.2901

We are now ready to carry out the element-wise “sum” and any additional associated operations.2902

We describe this in terms of two intermediate vectors:2903

• t̃: The vector holding the element-wise “sum” of ũ and vector ṽ.2904

• z̃: The vector holding the result after application of the (optional) accumulation operator.2905

The intermediate vector t̃ = 〈Dout(op), size(ũ),L(t̃) = {(i, ti) : ind(ũ) ∩ ind(ṽ) 6= ∅}〉 is created.2906

The value of each of its elements is computed by:2907

ti = (ũ(i)⊕ ṽ(i)),∀i ∈ (ind(ũ) ∩ ind(ṽ))2908

2909

ti = ũ(i), ∀i ∈ (ind(ũ)− (ind(ṽ) ∩ ind(ũ)))2910

114

2911

ti = ṽ(i), ∀i ∈ (ind(ṽ)− (ind(ṽ) ∩ ind(ũ)))2912

where the difference operator in the previous expressions refers to set difference.2913

The intermediate vector z̃ is created as follows, using what is called a standard vector accumulate:2914

• If accum = GrB NULL, then z̃ = t̃.2915

• If accum is a binary operator, then z̃ is defined as2916

z̃ = 〈Dout(accum), size(w̃), {(i, zi) ∀ i ∈ ind(w̃) ∪ ind(t̃)}〉.2917

The values of the elements of z̃ are computed based on the relationships between the sets of2918

indices in w̃ and t̃.2919

zi = w̃(i)� t̃(i), if i ∈ (ind(t̃) ∩ ind(w̃)),2920

2921

zi = w̃(i), if i ∈ (ind(w̃)− (ind(t̃) ∩ ind(w̃))),2922

2923

zi = t̃(i), if i ∈ (ind(t̃)− (ind(t̃) ∩ ind(w̃))),2924

where � =
⊙

(accum), and the difference operator refers to set difference.2925

Finally, the set of output values that make up vector z̃ are written into the final result vector w,2926

using what is called a standard vector mask and replace. This is carried out under control of the2927

mask which acts as a “write mask”.2928

• If desc[GrB OUTP].GrB REPLACE is set, then any values in w on input to this operation are2929

deleted and the content of the new output vector, w, is defined as,2930

L(w) = {(i, zi) : i ∈ (ind(z̃) ∩ ind(m̃))}.2931

• If desc[GrB OUTP].GrB REPLACE is not set, the elements of z̃ indicated by the mask are2932

copied into the result vector, w, and elements of w that fall outside the set indicated by the2933

mask are unchanged:2934

L(w) = {(i, wi) : i ∈ (ind(w) ∩ ind(¬m̃))} ∪ {(i, zi) : i ∈ (ind(z̃) ∩ ind(m̃))}.2935

In GrB BLOCKING mode, the method exits with return value GrB SUCCESS and the new content of2936

vector w is as defined above and fully computed. In GrB NONBLOCKING mode, the method exits2937

with return value GrB SUCCESS and the new content of vector w is as defined above but may not2938

be fully computed. However, it can be used in the next GraphBLAS method call in a sequence.2939

4.3.5.2 eWiseAdd: Matrix variant2940

Perform element-wise (general) addition on the elements of two matrices, producing a third matrix2941

as result.2942

115

C Syntax2943

GrB_Info GrB_eWiseAdd(GrB_Matrix C,2944

const GrB_Matrix Mask,2945

const GrB_BinaryOp accum,2946

const GrB_Semiring op,2947

const GrB_Matrix A,2948

const GrB_Matrix B,2949

const GrB_Descriptor desc);2950

2951

GrB_Info GrB_eWiseAdd(GrB_Matrix C,2952

const GrB_Matrix Mask,2953

const GrB_BinaryOp accum,2954

const GrB_Monoid op,2955

const GrB_Matrix A,2956

const GrB_Matrix B,2957

const GrB_Descriptor desc);2958

2959

GrB_Info GrB_eWiseAdd(GrB_Matrix C,2960

const GrB_Matrix Mask,2961

const GrB_BinaryOp accum,2962

const GrB_BinaryOp op,2963

const GrB_Matrix A,2964

const GrB_Matrix B,2965

const GrB_Descriptor desc);2966

Parameters2967

C (INOUT) An existing GraphBLAS matrix. On input, the matrix provides values2968

that may be accumulated with the result of the element-wise operation. On output,2969

the matrix holds the results of the operation.2970

Mask (IN) An optional “write” mask that controls which results from this operation are2971

stored into the output matrix C. The mask dimensions must match those of the2972

matrix C. If the GrB STRUCTURE descriptor is not set for the mask, the domain2973

of the Mask matrix must be of type bool or any of the predefined “built-in” types2974

in Table 2.2. If the default mask is desired (i.e., a mask that is all true with the2975

dimensions of C), GrB NULL should be specified.2976

accum (IN) An optional binary operator used for accumulating entries into existing C2977

entries. If assignment rather than accumulation is desired, GrB NULL should be2978

specified.2979

op (IN) The semiring, monoid, or binary operator used in the element-wise “sum”2980

operation. Depending on which type is passed, the following defines the binary2981

operator, Fb = 〈Dout(op),Din1(op),Din2(op),⊕〉, used:2982

116

BinaryOp: Fb = 〈Dout(op),Din1(op),Din2(op),
⊙

(op)〉.2983

Monoid: Fb = 〈D(op),D(op),D(op),
⊙

(op)〉; the identity element is ig-2984

nored.2985

Semiring: Fb = 〈Dout(op),Din1(op),Din2(op),
⊕

(op)〉; the multiplicative2986

binary op and additive identity are ignored.2987

A (IN) The GraphBLAS matrix holding the values for the left-hand matrix in the2988

operation.2989

B (IN) The GraphBLAS matrix holding the values for the right-hand matrix in the2990

operation.2991

desc (IN) An optional operation descriptor. If a default descriptor is desired, GrB NULL2992

should be specified. Non-default field/value pairs are listed as follows:2993

2994

Param Field Value Description

C GrB OUTP GrB REPLACE Output matrix C is cleared (all elements
removed) before the result is stored in it.

Mask GrB MASK GrB STRUCTURE The write mask is constructed from the
structure (pattern of stored values) of the
input Mask matrix. The stored values are
not examined.

Mask GrB MASK GrB COMP Use the complement of Mask.
A GrB INP0 GrB TRAN Use transpose of A for the operation.
B GrB INP1 GrB TRAN Use transpose of B for the operation.

2995

Return Values2996

GrB SUCCESS In blocking mode, the operation completed successfully. In non-2997

blocking mode, this indicates that the compatibility tests on di-2998

mensions and domains for the input arguments passed successfully.2999

Either way, output matrix C is ready to be used in the next method3000

of the sequence.3001

GrB PANIC Unknown internal error.3002

GrB INVALID OBJECT This is returned in any execution mode whenever one of the opaque3003

GraphBLAS objects (input or output) is in an invalid state caused3004

by a previous execution error. Call GrB error() to access any error3005

messages generated by the implementation.3006

GrB OUT OF MEMORY Not enough memory available for the operation.3007

GrB UNINITIALIZED OBJECT One or more of the GraphBLAS objects has not been initialized by3008

a call to new (or Matrix dup for matrix parameters).3009

GrB DIMENSION MISMATCH Mask and/or matrix dimensions are incompatible.3010

117

GrB DOMAIN MISMATCH The domains of the various matrices are incompatible with the3011

corresponding domains of the binary operator (op) or accumulation3012

operator, or the mask’s domain is not compatible with bool (in the3013

case where desc[GrB MASK].GrB STRUCTURE is not set).3014

Description3015

This variant of GrB eWiseAdd computes the element-wise “sum” of two GraphBLAS matrices:3016

C = A ⊕ B, or, if an optional binary accumulation operator (�) is provided, C = C � (A⊕ B).3017

Logically, this operation occurs in three steps:3018

Setup The internal matrices and mask used in the computation are formed and their domains3019

and dimensions are tested for compatibility.3020

Compute The indicated computations are carried out.3021

Output The result is written into the output matrix, possibly under control of a mask.3022

Up to four argument matrices are used in the GrB eWiseMult operation:3023

1. C = 〈D(C),nrows(C),ncols(C),L(C) = {(i, j, Cij)}〉3024

2. Mask = 〈D(Mask),nrows(Mask),ncols(Mask),L(Mask) = {(i, j,Mij)}〉 (optional)3025

3. A = 〈D(A),nrows(A),ncols(A),L(A) = {(i, j, Aij)}〉3026

4. B = 〈D(B),nrows(B),ncols(B),L(B) = {(i, j, Bij)}〉3027

The argument matrices, the “sum” operator (op), and the accumulation operator (if provided) are3028

tested for domain compatibility as follows:3029

1. If Mask is not GrB NULL, and desc[GrB MASK].GrB STRUCTURE is not set, then D(Mask)3030

must be from one of the pre-defined types of Table 2.2.3031

2. D(A) must be compatible with Din1(op).3032

3. D(B) must be compatible with Din2(op).3033

4. D(C) must be compatible with Dout(op).3034

5. D(A) and D(B) must be compatible with Dout(op).3035

6. If accum is not GrB NULL, then D(C) must be compatible with Din1(accum) and Dout(accum)3036

of the accumulation operator and Dout(op) of op must be compatible with Din2(accum) of3037

the accumulation operator.3038

118

Two domains are compatible with each other if values from one domain can be cast to values3039

in the other domain as per the rules of the C language. In particular, domains from Table 2.23040

are all compatible with each other. A domain from a user-defined type is only compatible with3041

itself. If any compatibility rule above is violated, execution of GrB eWiseMult ends and the domain3042

mismatch error listed above is returned.3043

From the argument matrices, the internal matrices and mask used in the computation are formed3044

(← denotes copy):3045

1. Matrix C̃← C.3046

2. Two-dimensional mask, M̃, is computed from argument Mask as follows:3047

(a) If Mask = GrB NULL, then M̃ = 〈nrows(C),ncols(C), {(i, j), ∀i, j : 0 ≤ i < nrows(C), 0 ≤3048

j < ncols(C)}〉.3049

(b) If Mask 6= GrB NULL,3050

i. If desc[GrB MASK].GrB STRUCTURE is set, then M̃ = 〈nrows(Mask),ncols(Mask), {(i, j) :3051

(i, j) ∈ ind(Mask)}〉,3052

ii. Otherwise, M̃ = 〈nrows(Mask),ncols(Mask),3053

{(i, j) : (i, j) ∈ ind(Mask) ∧ (bool)Mask(i, j) = true}〉.3054

(c) If desc[GrB MASK].GrB COMP is set, then M̃← ¬M̃.3055

3. Matrix Ã← desc[GrB INP0].GrB TRAN ? AT : A.3056

4. Matrix B̃← desc[GrB INP1].GrB TRAN ? BT : B.3057

The internal matrices and masks are checked for dimension compatibility. The following conditions3058

must hold:3059

1. nrows(C̃) = nrows(M̃) = nrows(Ã) = nrows(C̃).3060

2. ncols(C̃) = ncols(M̃) = ncols(Ã) = ncols(C̃).3061

If any compatibility rule above is violated, execution of GrB eWiseMult ends and the dimension3062

mismatch error listed above is returned.3063

From this point forward, in GrB NONBLOCKING mode, the method can optionally exit with3064

GrB SUCCESS return code and defer any computation and/or execution error codes.3065

We are now ready to carry out the element-wise “sum” and any additional associated operations.3066

We describe this in terms of two intermediate matrices:3067

• T̃: The matrix holding the element-wise sum of Ã and B̃.3068

• Z̃: The matrix holding the result after application of the (optional) accumulation operator.3069

119

The intermediate matrix T̃ = 〈Dout(op),nrows(Ã),ncols(Ã), {(i, j, Tij) : ind(Ã) ∩ ind(B̃) 6= ∅}〉3070

is created. The value of each of its elements is computed by3071

Tij = (Ã(i, j)⊕ B̃(i, j)),∀(i, j) ∈ ind(Ã) ∩ ind(B̃)3072

3073

Tij = Ã(i, j),∀(i, j) ∈ (ind(Ã)− (ind(B̃) ∩ ind(Ã)))3074

3075

Tij = B̃(i.j),∀(i, j) ∈ (ind(B̃)− (ind(B̃) ∩ ind(Ã)))3076

where the difference operator in the previous expressions refers to set difference.3077

The intermediate matrix Z̃ is created as follows, using what is called a standard matrix accumulate:3078

• If accum = GrB NULL, then Z̃ = T̃.3079

• If accum is a binary operator, then Z̃ is defined as3080

Z̃ = 〈Dout(accum),nrows(C̃),ncols(C̃), {(i, j, Zij)∀(i, j) ∈ ind(C̃) ∪ ind(T̃)}〉.3081

The values of the elements of Z̃ are computed based on the relationships between the sets of3082

indices in C̃ and T̃.3083

Zij = C̃(i, j)� T̃(i, j), if (i, j) ∈ (ind(T̃) ∩ ind(C̃)),3084

3085

Zij = C̃(i, j), if (i, j) ∈ (ind(C̃)− (ind(T̃) ∩ ind(C̃))),3086

3087

Zij = T̃(i, j), if (i, j) ∈ (ind(T̃)− (ind(T̃) ∩ ind(C̃))),3088

where � =
⊙

(accum), and the difference operator refers to set difference.3089

Finally, the set of output values that make up matrix Z̃ are written into the final result matrix C,3090

using what is called a standard matrix mask and replace. This is carried out under control of the3091

mask which acts as a “write mask”.3092

• If desc[GrB OUTP].GrB REPLACE is set, then any values in C on input to this operation are3093

deleted and the content of the new output matrix, C, is defined as,3094

L(C) = {(i, j, Zij) : (i, j) ∈ (ind(Z̃) ∩ ind(M̃))}.3095

• If desc[GrB OUTP].GrB REPLACE is not set, the elements of Z̃ indicated by the mask are3096

copied into the result matrix, C, and elements of C that fall outside the set indicated by the3097

mask are unchanged:3098

L(C) = {(i, j, Cij) : (i, j) ∈ (ind(C) ∩ ind(¬M̃))} ∪ {(i, j, Zij) : (i, j) ∈ (ind(Z̃) ∩ ind(M̃))}.3099

In GrB BLOCKING mode, the method exits with return value GrB SUCCESS and the new content3100

of matrix C is as defined above and fully computed. In GrB NONBLOCKING mode, the method3101

exits with return value GrB SUCCESS and the new content of matrix C is as defined above but3102

may not be fully computed. However, it can be used in the next GraphBLAS method call in a3103

sequence.3104

120

4.3.6 extract: Selecting Sub-Graphs3105

Extract a subset of a matrix or vector.3106

4.3.6.1 extract: Standard vector variant3107

Extract a sub-vector from a larger vector as specified by a set of indices. The result is a vector3108

whose size is equal to the number of indices.3109

C Syntax3110

GrB_Info GrB_extract(GrB_Vector w,3111

const GrB_Vector mask,3112

const GrB_BinaryOp accum,3113

const GrB_Vector u,3114

const GrB_Index *indices,3115

GrB_Index nindices,3116

const GrB_Descriptor desc);3117

Parameters3118

w (INOUT) An existing GraphBLAS vector. On input, the vector provides values3119

that may be accumulated with the result of the extract operation. On output, this3120

vector holds the results of the operation.3121

mask (IN) An optional “write” mask that controls which results from this operation are3122

stored into the output vector w. The mask dimensions must match those of the3123

vector w. If the GrB STRUCTURE descriptor is not set for the mask, the domain3124

of the mask vector must be of type bool or any of the predefined “built-in” types3125

in Table 2.2. If the default mask is desired (i.e., a mask that is all true with the3126

dimensions of w), GrB NULL should be specified.3127

accum (IN) An optional binary operator used for accumulating entries into existing w3128

entries. If assignment rather than accumulation is desired, GrB NULL should be3129

specified.3130

u (IN) The GraphBLAS vector from which the subset is extracted.3131

indices (IN) Pointer to the ordered set (array) of indices corresponding to the locations of3132

elements from u that are extracted. If all elements of u are to be extracted in order3133

from 0 to nindices− 1, then GrB ALL should be specified. Regardless of execution3134

mode and return value, this array may be manipulated by the caller after this3135

operation returns without affecting any deferred computations for this operation.3136

nindices (IN) The number of values in indices array. Must be equal to size(w).3137

121

desc (IN) An optional operation descriptor. If a default descriptor is desired, GrB NULL3138

should be specified. Non-default field/value pairs are listed as follows:3139

3140

Param Field Value Description

w GrB OUTP GrB REPLACE Output vector w is cleared (all elements
removed) before the result is stored in it.

mask GrB MASK GrB STRUCTURE The write mask is constructed from the
structure (pattern of stored values) of the
input mask vector. The stored values are
not examined.

mask GrB MASK GrB COMP Use the complement of mask.

3141

Return Values3142

GrB SUCCESS In blocking mode, the operation completed successfully. In non-3143

blocking mode, this indicates that the compatibility tests on di-3144

mensions and domains for the input arguments passed successfully.3145

Either way, output vector w is ready to be used in the next method3146

of the sequence.3147

GrB PANIC Unknown internal error.3148

GrB INVALID OBJECT This is returned in any execution mode whenever one of the opaque3149

GraphBLAS objects (input or output) is in an invalid state caused3150

by a previous execution error. Call GrB error() to access any error3151

messages generated by the implementation.3152

GrB OUT OF MEMORY Not enough memory available for operation.3153

GrB UNINITIALIZED OBJECT One or more of the GraphBLAS objects has not been initialized by3154

a call to new (or dup for vector parameters).3155

GrB INDEX OUT OF BOUNDS A value in indices is greater than or equal to size(u). In non-3156

blocking mode, this error can be deferred.3157

GrB DIMENSION MISMATCH mask and w dimensions are incompatible, or nindices 6= size(w).3158

GrB DOMAIN MISMATCH The domains of the various vectors are incompatible with each3159

other or the corresponding domains of the accumulation operator,3160

or the mask’s domain is not compatible with bool (in the case where3161

desc[GrB MASK].GrB STRUCTURE is not set).3162

GrB NULL POINTER Argument row indices is a NULL pointer.3163

Description3164

This variant of GrB extract computes the result of extracting a subset of locations from a Graph-3165

BLAS vector in a specific order: w = u(indices); or, if an optional binary accumulation operator3166

122

(�) is provided, w = w � u(indices). More explicitly:3167

w(i) = u(indices[i]), ∀ i : 0 ≤ i < nindices, or

w(i) = w(i)� u(indices[i]), ∀ i : 0 ≤ i < nindices
3168

Logically, this operation occurs in three steps:3169

Setup The internal vectors and mask used in the computation are formed and their domains3170

and dimensions are tested for compatibility.3171

Compute The indicated computations are carried out.3172

Output The result is written into the output vector, possibly under control of a mask.3173

Up to three argument vectors are used in this GrB extract operation:3174

1. w = 〈D(w), size(w),L(w) = {(i, wi)}〉3175

2. mask = 〈D(mask), size(mask),L(mask) = {(i,mi)}〉 (optional)3176

3. u = 〈D(u), size(u),L(u) = {(i, ui)}〉3177

The argument vectors and the accumulation operator (if provided) are tested for domain compati-3178

bility as follows:3179

1. If mask is not GrB NULL, and desc[GrB MASK].GrB STRUCTURE is not set, then D(mask)3180

must be from one of the pre-defined types of Table 2.2.3181

2. D(w) must be compatible with D(u).3182

3. If accum is not GrB NULL, then D(w) must be compatible with Din1(accum) and Dout(accum)3183

of the accumulation operator and D(u) must be compatible with Din2(accum) of the accu-3184

mulation operator.3185

Two domains are compatible with each other if values from one domain can be cast to values in3186

the other domain as per the rules of the C language. In particular, domains from Table 2.2 are all3187

compatible with each other. A domain from a user-defined type is only compatible with itself. If3188

any compatibility rule above is violated, execution of GrB extract ends and the domain mismatch3189

error listed above is returned.3190

From the arguments, the internal vectors, mask, and index array used in the computation are3191

formed (← denotes copy):3192

1. Vector w̃← w.3193

2. One-dimensional mask, m̃, is computed from argument mask as follows:3194

(a) If mask = GrB NULL, then m̃ = 〈size(w), {i, ∀ i : 0 ≤ i < size(w)}〉.3195

123

(b) If mask 6= GrB NULL,3196

i. If desc[GrB MASK].GrB STRUCTURE is set, then m̃ = 〈size(mask), {i : i ∈ ind(mask)}〉,3197

ii. Otherwise, m̃ = 〈size(mask), {i : i ∈ ind(mask) ∧ (bool)mask(i) = true}〉.3198

(c) If desc[GrB MASK].GrB COMP is set, then m̃← ¬m̃.3199

3. Vector ũ← u.3200

4. The internal index array, Ĩ, is computed from argument indices as follows:3201

(a) If indices = GrB ALL, then Ĩ[i] = i, ∀ i : 0 ≤ i < nindices.3202

(b) Otherwise, Ĩ[i] = indices[i], ∀ i : 0 ≤ i < nindices.3203

The internal vectors and mask are checked for dimension compatibility. The following conditions3204

must hold:3205

1. size(w̃) = size(m̃)3206

2. nindices = size(w̃).3207

If any compatibility rule above is violated, execution of GrB extract ends and the dimension mis-3208

match error listed above is returned.3209

From this point forward, in GrB NONBLOCKING mode, the method can optionally exit with3210

GrB SUCCESS return code and defer any computation and/or execution error codes.3211

We are now ready to carry out the extract and any additional associated operations. We describe3212

this in terms of two intermediate vectors:3213

• t̃: The vector holding the extraction from ũ in their destination locations relative to w̃.3214

• z̃: The vector holding the result after application of the (optional) accumulation operator.3215

The intermediate vector, t̃, is created as follows:3216

t̃ = 〈D(u), size(w̃), {(i, ũ(Ĩ[i])) ∀ i, 0 ≤ i < nindices : Ĩ[i] ∈ ind(ũ)}〉.3217

At this point, if any value in Ĩ is not in the valid range of indices for vector ũ, the execution of3218

GrB extract ends and the index-out-of-bounds error listed above is generated. In GrB NONBLOCKING3219

mode, the error can be deferred until a sequence-terminating GrB wait() is called. Regardless, the3220

result vector, w, is invalid from this point forward in the sequence.3221

The intermediate vector z̃ is created as follows, using what is called a standard vector accumulate:3222

• If accum = GrB NULL, then z̃ = t̃.3223

• If accum is a binary operator, then z̃ is defined as3224

z̃ = 〈Dout(accum), size(w̃), {(i, zi) ∀ i ∈ ind(w̃) ∪ ind(t̃)}〉.3225

124

The values of the elements of z̃ are computed based on the relationships between the sets of3226

indices in w̃ and t̃.3227

zi = w̃(i)� t̃(i), if i ∈ (ind(t̃) ∩ ind(w̃)),3228

3229

zi = w̃(i), if i ∈ (ind(w̃)− (ind(t̃) ∩ ind(w̃))),3230

3231

zi = t̃(i), if i ∈ (ind(t̃)− (ind(t̃) ∩ ind(w̃))),3232

where � =
⊙

(accum), and the difference operator refers to set difference.3233

Finally, the set of output values that make up vector z̃ are written into the final result vector w,3234

using what is called a standard vector mask and replace. This is carried out under control of the3235

mask which acts as a “write mask”.3236

• If desc[GrB OUTP].GrB REPLACE is set, then any values in w on input to this operation are3237

deleted and the content of the new output vector, w, is defined as,3238

L(w) = {(i, zi) : i ∈ (ind(z̃) ∩ ind(m̃))}.3239

• If desc[GrB OUTP].GrB REPLACE is not set, the elements of z̃ indicated by the mask are3240

copied into the result vector, w, and elements of w that fall outside the set indicated by the3241

mask are unchanged:3242

L(w) = {(i, wi) : i ∈ (ind(w) ∩ ind(¬m̃))} ∪ {(i, zi) : i ∈ (ind(z̃) ∩ ind(m̃))}.3243

In GrB BLOCKING mode, the method exits with return value GrB SUCCESS and the new content of3244

vector w is as defined above and fully computed. In GrB NONBLOCKING mode, the method exits3245

with return value GrB SUCCESS and the new content of vector w is as defined above but may not3246

be fully computed. However, it can be used in the next GraphBLAS method call in a sequence.3247

4.3.6.2 extract: Standard matrix variant3248

Extract a sub-matrix from a larger matrix as specified by a set of row indices and a set of column3249

indices. The result is a matrix whose size is equal to size of the sets of indices.3250

C Syntax3251

GrB_Info GrB_extract(GrB_Matrix C,3252

const GrB_Matrix Mask,3253

const GrB_BinaryOp accum,3254

const GrB_Matrix A,3255

const GrB_Index *row_indices,3256

GrB_Index nrows,3257

const GrB_Index *col_indices,3258

GrB_Index ncols,3259

const GrB_Descriptor desc);3260

125

Parameters3261

C (INOUT) An existing GraphBLAS matrix. On input, the matrix provides values3262

that may be accumulated with the result of the extract operation. On output, the3263

matrix holds the results of the operation.3264

Mask (IN) An optional “write” mask that controls which results from this operation are3265

stored into the output matrix C. The mask dimensions must match those of the3266

matrix C. If the GrB STRUCTURE descriptor is not set for the mask, the domain3267

of the Mask matrix must be of type bool or any of the predefined “built-in” types3268

in Table 2.2. If the default mask is desired (i.e., a mask that is all true with the3269

dimensions of C), GrB NULL should be specified.3270

accum (IN) An optional binary operator used for accumulating entries into existing C3271

entries. If assignment rather than accumulation is desired, GrB NULL should be3272

specified.3273

A (IN) The GraphBLAS matrix from which the subset is extracted.3274

row indices (IN) Pointer to the ordered set (array) of indices corresponding to the rows of A3275

from which elements are extracted. If elements in all rows of A are to be extracted3276

in order, GrB ALL should be specified. Regardless of execution mode and return3277

value, this array may be manipulated by the caller after this operation returns3278

without affecting any deferred computations for this operation.3279

nrows (IN) The number of values in the row indices array. Must be equal to nrows(C).3280

col indices (IN) Pointer to the ordered set (array) of indices corresponding to the columns3281

of A from which elements are extracted. If elements in all columns of A are to3282

be extracted in order, then GrB ALL should be specified. Regardless of execution3283

mode and return value, this array may be manipulated by the caller after this3284

operation returns without affecting any deferred computations for this operation.3285

ncols (IN) The number of values in the col indices array. Must be equal to ncols(C).3286

desc (IN) An optional operation descriptor. If a default descriptor is desired, GrB NULL3287

should be specified. Non-default field/value pairs are listed as follows:3288

3289

Param Field Value Description

C GrB OUTP GrB REPLACE Output matrix C is cleared (all elements
removed) before the result is stored in it.

Mask GrB MASK GrB STRUCTURE The write mask is constructed from the
structure (pattern of stored values) of the
input Mask matrix. The stored values are
not examined.

Mask GrB MASK GrB COMP Use the complement of Mask.
A GrB INP0 GrB TRAN Use transpose of A for the operation.

3290

126

Return Values3291

GrB SUCCESS In blocking mode, the operation completed successfully. In non-3292

blocking mode, this indicates that the compatibility tests on di-3293

mensions and domains for the input arguments passed successfully.3294

Either way, output matrix C is ready to be used in the next method3295

of the sequence.3296

GrB PANIC Unknown internal error.3297

GrB INVALID OBJECT This is returned in any execution mode whenever one of the opaque3298

GraphBLAS objects (input or output) is in an invalid state caused3299

by a previous execution error. Call GrB error() to access any error3300

messages generated by the implementation.3301

GrB OUT OF MEMORY Not enough memory available for the operation.3302

GrB UNINITIALIZED OBJECT One or more of the GraphBLAS objects has not been initialized by3303

a call to new (or Matrix dup for matrix parameters).3304

GrB INDEX OUT OF BOUNDS A value in row indices is greater than or equal to nrows(A), or a3305

value in col indices is greater than or equal to ncols(A). In non-3306

blocking mode, this error can be deferred.3307

GrB DIMENSION MISMATCH Mask and C dimensions are incompatible, nrows 6= nrows(C), or3308

ncols 6= ncols(C).3309

GrB DOMAIN MISMATCH The domains of the various matrices are incompatible with each3310

other or the corresponding domains of the accumulation operator,3311

or the mask’s domain is not compatible with bool (in the case where3312

desc[GrB MASK].GrB STRUCTURE is not set).3313

GrB NULL POINTER Either argument row indices is a NULL pointer, argument col indices3314

is a NULL pointer, or both.3315

Description3316

This variant of GrB extract computes the result of extracting a subset of locations from specified3317

rows and columns of a GraphBLAS matrix in a specific order: C = A(row indices, col indices); or, if3318

an optional binary accumulation operator (�) is provided, C = C�A(row indices, col indices). More3319

explicitly (not accounting for an optional transpose of A):3320

C(i, j) = A(row indices[i], col indices[j]) ∀ i, j : 0 ≤ i < nrows, 0 ≤ j < ncols, or

C(i, j) = C(i, j)� A(row indices[i], col indices[j]) ∀ i, j : 0 ≤ i < nrows, 0 ≤ j < ncols
3321

Logically, this operation occurs in three steps:3322

Setup The internal matrices and mask used in the computation are formed and their domains3323

and dimensions are tested for compatibility.3324

127

Compute The indicated computations are carried out.3325

Output The result is written into the output matrix, possibly under control of a mask.3326

Up to three argument matrices are used in the GrB extract operation:3327

1. C = 〈D(C),nrows(C),ncols(C),L(C) = {(i, j, Cij)}〉3328

2. Mask = 〈D(Mask),nrows(Mask),ncols(Mask),L(Mask) = {(i, j,Mij)}〉 (optional)3329

3. A = 〈D(A),nrows(A),ncols(A),L(A) = {(i, j, Aij)}〉3330

The argument matrices and the accumulation operator (if provided) are tested for domain compat-3331

ibility as follows:3332

1. If Mask is not GrB NULL, and desc[GrB MASK].GrB STRUCTURE is not set, then D(Mask)3333

must be from one of the pre-defined types of Table 2.2.3334

2. D(C) must be compatible with D(A).3335

3. If accum is not GrB NULL, then D(C) must be compatible with Din1(accum) and Dout(accum)3336

of the accumulation operator and D(A) must be compatible with Din2(accum) of the accu-3337

mulation operator.3338

Two domains are compatible with each other if values from one domain can be cast to values in3339

the other domain as per the rules of the C language. In particular, domains from Table 2.2 are all3340

compatible with each other. A domain from a user-defined type is only compatible with itself. If3341

any compatibility rule above is violated, execution of GrB extract ends and the domain mismatch3342

error listed above is returned.3343

From the arguments, the internal matrices, mask, and index arrays used in the computation are3344

formed (← denotes copy):3345

1. Matrix C̃← C.3346

2. Two-dimensional mask, M̃, is computed from argument Mask as follows:3347

(a) If Mask = GrB NULL, then M̃ = 〈nrows(C),ncols(C), {(i, j), ∀i, j : 0 ≤ i < nrows(C), 0 ≤3348

j < ncols(C)}〉.3349

(b) If Mask 6= GrB NULL,3350

i. If desc[GrB MASK].GrB STRUCTURE is set, then M̃ = 〈nrows(Mask),ncols(Mask), {(i, j) :3351

(i, j) ∈ ind(Mask)}〉,3352

ii. Otherwise, M̃ = 〈nrows(Mask),ncols(Mask),3353

{(i, j) : (i, j) ∈ ind(Mask) ∧ (bool)Mask(i, j) = true}〉.3354

(c) If desc[GrB MASK].GrB COMP is set, then M̃← ¬M̃.3355

3. Matrix Ã← desc[GrB INP0].GrB TRAN ? AT : A.3356

128

4. The internal row index array, Ĩ, is computed from argument row indices as follows:3357

(a) If row indices = GrB ALL, then Ĩ[i] = i,∀i : 0 ≤ i < nrows.3358

(b) Otherwise, Ĩ[i] = row indices[i],∀i : 0 ≤ i < nrows.3359

5. The internal column index array, J̃ , is computed from argument col indices as follows:3360

(a) If col indices = GrB ALL, then J̃ [j] = j,∀j : 0 ≤ j < ncols.3361

(b) Otherwise, J̃ [j] = col indices[j], ∀j : 0 ≤ j < ncols.3362

The internal matrices and mask are checked for dimension compatibility. The following conditions3363

must hold:3364

1. nrows(C̃) = nrows(M̃).3365

2. ncols(C̃) = ncols(M̃).3366

3. nrows(C̃) = nrows.3367

4. ncols(C̃) = ncols.3368

If any compatibility rule above is violated, execution of GrB extract ends and the dimension mis-3369

match error listed above is returned.3370

From this point forward, in GrB NONBLOCKING mode, the method can optionally exit with3371

GrB SUCCESS return code and defer any computation and/or execution error codes.3372

We are now ready to carry out the extract and any additional associated operations. We describe3373

this in terms of two intermediate matrices:3374

• T̃: The matrix holding the extraction from Ã.3375

• Z̃: The matrix holding the result after application of the (optional) accumulation operator.3376

The intermediate matrix, T̃, is created as follows:3377

T̃ = 〈D(A),nrows(C̃),ncols(C̃),

{(i, j, Ã(Ĩ[i], J̃ [j])) ∀ (i, j), 0 ≤ i < nrows, 0 ≤ j < ncols : (Ĩ[i], J̃ [j]) ∈ ind(Ã)}〉.
3378

At this point, if any value in the Ĩ array is not in the range [0, nrows(Ã)) or any value in the J̃3379

array is not in the range [0, ncols(Ã)), the execution of GrB extract ends and the index out-of-3380

bounds error listed above is generated. In GrB NONBLOCKING mode, the error can be deferred3381

until a sequence-terminating GrB wait() is called. Regardless, the result matrix C is invalid from3382

this point forward in the sequence.3383

The intermediate matrix Z̃ is created as follows, using what is called a standard matrix accumulate:3384

• If accum = GrB NULL, then Z̃ = T̃.3385

129

• If accum is a binary operator, then Z̃ is defined as3386

Z̃ = 〈Dout(accum),nrows(C̃),ncols(C̃), {(i, j, Zij)∀(i, j) ∈ ind(C̃) ∪ ind(T̃)}〉.3387

The values of the elements of Z̃ are computed based on the relationships between the sets of3388

indices in C̃ and T̃.3389

Zij = C̃(i, j)� T̃(i, j), if (i, j) ∈ (ind(T̃) ∩ ind(C̃)),3390

3391

Zij = C̃(i, j), if (i, j) ∈ (ind(C̃)− (ind(T̃) ∩ ind(C̃))),3392

3393

Zij = T̃(i, j), if (i, j) ∈ (ind(T̃)− (ind(T̃) ∩ ind(C̃))),3394

where � =
⊙

(accum), and the difference operator refers to set difference.3395

Finally, the set of output values that make up matrix Z̃ are written into the final result matrix C,3396

using what is called a standard matrix mask and replace. This is carried out under control of the3397

mask which acts as a “write mask”.3398

• If desc[GrB OUTP].GrB REPLACE is set, then any values in C on input to this operation are3399

deleted and the content of the new output matrix, C, is defined as,3400

L(C) = {(i, j, Zij) : (i, j) ∈ (ind(Z̃) ∩ ind(M̃))}.3401

• If desc[GrB OUTP].GrB REPLACE is not set, the elements of Z̃ indicated by the mask are3402

copied into the result matrix, C, and elements of C that fall outside the set indicated by the3403

mask are unchanged:3404

L(C) = {(i, j, Cij) : (i, j) ∈ (ind(C) ∩ ind(¬M̃))} ∪ {(i, j, Zij) : (i, j) ∈ (ind(Z̃) ∩ ind(M̃))}.3405

In GrB BLOCKING mode, the method exits with return value GrB SUCCESS and the new content3406

of matrix C is as defined above and fully computed. In GrB NONBLOCKING mode, the method3407

exits with return value GrB SUCCESS and the new content of matrix C is as defined above but3408

may not be fully computed. However, it can be used in the next GraphBLAS method call in a3409

sequence.3410

4.3.6.3 extract: Column (and row) variant3411

Extract from one column of a matrix into a vector. Note that with the transpose descriptor for the3412

source matrix, elements of an arbitrary row of the matrix can be extracted with this function as3413

well.3414

130

C Syntax3415

GrB_Info GrB_extract(GrB_Vector w,3416

const GrB_Vector mask,3417

const GrB_BinaryOp accum,3418

const GrB_Matrix A,3419

const GrB_Index *row_indices,3420

GrB_Index nrows,3421

GrB_Index col_index,3422

const GrB_Descriptor desc);3423

Parameters3424

w (INOUT) An existing GraphBLAS vector. On input, the vector provides values3425

that may be accumulated with the result of the extract operation. On output, this3426

vector holds the results of the operation.3427

mask (IN) An optional “write” mask that controls which results from this operation are3428

stored into the output vector w. The mask dimensions must match those of the3429

vector w. If the GrB STRUCTURE descriptor is not set for the mask, the domain3430

of the mask vector must be of type bool or any of the predefined “built-in” types3431

in Table 2.2. If the default mask is desired (i.e., a mask that is all true with the3432

dimensions of w), GrB NULL should be specified.3433

accum (IN) An optional binary operator used for accumulating entries into existing w3434

entries. If assignment rather than accumulation is desired, GrB NULL should be3435

specified.3436

A (IN) The GraphBLAS matrix from which the column subset is extracted.3437

row indices (IN) Pointer to the ordered set (array) of indices corresponding to the locations3438

within the specified column of A from which elements are extracted. If elements in3439

all rows of A are to be extracted in order, GrB ALL should be specified. Regardless3440

of execution mode and return value, this array may be manipulated by the caller3441

after this operation returns without affecting any deferred computations for this3442

operation.3443

nrows (IN) The number of indices in the row indices array. Must be equal to size(w).3444

col index (IN) The index of the column of A from which to extract values. It must be in the3445

range [0, ncols(A)).3446

desc (IN) An optional operation descriptor. If a default descriptor is desired, GrB NULL3447

should be specified. Non-default field/value pairs are listed as follows:3448

3449

131

Param Field Value Description

w GrB OUTP GrB REPLACE Output vector w is cleared (all elements
removed) before the result is stored in it.

mask GrB MASK GrB STRUCTURE The write mask is constructed from the
structure (pattern of stored values) of the
input mask vector. The stored values are
not examined.

mask GrB MASK GrB COMP Use the complement of mask.
A GrB INP0 GrB TRAN Use transpose of A for the operation.

3450

Return Values3451

GrB SUCCESS In blocking mode, the operation completed successfully. In non-3452

blocking mode, this indicates that the compatibility tests on di-3453

mensions and domains for the input arguments passed successfully.3454

Either way, output vector w is ready to be used in the next method3455

of the sequence.3456

GrB PANIC Unknown internal error.3457

GrB INVALID OBJECT This is returned in any execution mode whenever one of the opaque3458

GraphBLAS objects (input or output) is in an invalid state caused3459

by a previous execution error. Call GrB error() to access any error3460

messages generated by the implementation.3461

GrB OUT OF MEMORY Not enough memory available for operation.3462

GrB UNINITIALIZED OBJECT One or more of the GraphBLAS objects has not been initialized by3463

a call to new (or dup for vector or matrix parameters).3464

GrB INVALID INDEX col index is outside the allowable range (i.e., greater than ncols(A)).3465

GrB INDEX OUT OF BOUNDS A value in row indices is greater than or equal to nrows(A). In3466

non-blocking mode, this error can be deferred.3467

GrB DIMENSION MISMATCH mask and w dimensions are incompatible, or nrows 6= size(w).3468

GrB DOMAIN MISMATCH The domains of the vector or matrix are incompatible with each3469

other or the corresponding domains of the accumulation operator,3470

or the mask’s domain is not compatible with bool (in the case where3471

desc[GrB MASK].GrB STRUCTURE is not set).3472

GrB NULL POINTER Argument row indices is a NULL pointer.3473

Description3474

This variant of GrB extract computes the result of extracting a subset of locations (in a specific3475

order) from a specified column of a GraphBLAS matrix: w = A(:, col index)(row indices); or, if an3476

132

optional binary accumulation operator (�) is provided, w = w � A(:, col index)(row indices). More3477

explicitly:3478

w(i) = A(row indices[i], col index) ∀ i : 0 ≤ i < nrows, or

w(i) = w(i)� A(row indices[i], col index) ∀ i : 0 ≤ i < nrows
3479

Logically, this operation occurs in three steps:3480

Setup The internal matrices, vectors, and mask used in the computation are formed and their3481

domains and dimensions are tested for compatibility.3482

Compute The indicated computations are carried out.3483

Output The result is written into the output vector, possibly under control of a mask.3484

Up to three argument vectors and matrices are used in this GrB extract operation:3485

1. w = 〈D(w), size(w),L(w) = {(i, wi)}〉3486

2. mask = 〈D(mask), size(mask),L(mask) = {(i,mi)}〉 (optional)3487

3. A = 〈D(A),nrows(A),ncols(A),L(A) = {(i, j, Aij)}〉3488

The argument vectors, matrix and the accumulation operator (if provided) are tested for domain3489

compatibility as follows:3490

1. If mask is not GrB NULL, and desc[GrB MASK].GrB STRUCTURE is not set, then D(mask)3491

must be from one of the pre-defined types of Table 2.2.3492

2. D(w) must be compatible with D(A).3493

3. If accum is not GrB NULL, then D(w) must be compatible with Din1(accum) and Dout(accum)3494

of the accumulation operator and D(A) must be compatible with Din2(accum) of the accu-3495

mulation operator.3496

Two domains are compatible with each other if values from one domain can be cast to values in3497

the other domain as per the rules of the C language. In particular, domains from Table 2.2 are all3498

compatible with each other. A domain from a user-defined type is only compatible with itself. If3499

any compatibility rule above is violated, execution of GrB extract ends and the domain mismatch3500

error listed above is returned.3501

From the arguments, the internal vector, matrix, mask, and index array used in the computation3502

are formed (← denotes copy):3503

1. Vector w̃← w.3504

2. One-dimensional mask, m̃, is computed from argument mask as follows:3505

(a) If mask = GrB NULL, then m̃ = 〈size(w), {i, ∀ i : 0 ≤ i < size(w)}〉.3506

133

(b) If mask 6= GrB NULL,3507

i. If desc[GrB MASK].GrB STRUCTURE is set, then m̃ = 〈size(mask), {i : i ∈ ind(mask)}〉,3508

ii. Otherwise, m̃ = 〈size(mask), {i : i ∈ ind(mask) ∧ (bool)mask(i) = true}〉.3509

(c) If desc[GrB MASK].GrB COMP is set, then m̃← ¬m̃.3510

3. Matrix Ã← desc[GrB INP0].GrB TRAN ? AT : A.3511

4. The internal row index array, Ĩ, is computed from argument row indices as follows:3512

(a) If indices = GrB ALL, then Ĩ[i] = i, ∀ i : 0 ≤ i < nrows.3513

(b) Otherwise, Ĩ[i] = indices[i], ∀ i : 0 ≤ i < nrows.3514

The internal vector, mask, and index array are checked for dimension compatibility. The following3515

conditions must hold:3516

1. size(w̃) = size(m̃)3517

2. size(w̃) = nrows.3518

If any compatibility rule above is violated, execution of GrB extract ends and the dimension mis-3519

match error listed above is returned.3520

The col index parameter is checked for a valid value. The following condition must hold:3521

1. 0 ≤ col index < ncols(A)3522

If the rule above is violated, execution of GrB extract ends and the invalid index error listed above3523

is returned.3524

From this point forward, in GrB NONBLOCKING mode, the method can optionally exit with3525

GrB SUCCESS return code and defer any computation and/or execution error codes.3526

We are now ready to carry out the extract and any additional associated operations. We describe3527

this in terms of two intermediate vectors:3528

• t̃: The vector holding the extraction from a column of Ã.3529

• z̃: The vector holding the result after application of the (optional) accumulation operator.3530

The intermediate vector, t̃, is created as follows:3531

t̃ = 〈D(A), nrows, {(i, Ã(Ĩ[i], col index)) ∀ i, 0 ≤ i < nrows : (Ĩ[i], col index) ∈ ind(Ã)}〉.3532

At this point, if any value in Ĩ is not in the range [0, nrows(Ã)), the execution of GrB extract3533

ends and the index-out-of-bounds error listed above is generated. In GrB NONBLOCKING mode,3534

the error can be deferred until a sequence-terminating GrB wait() is called. Regardless, the result3535

vector, w, is invalid from this point forward in the sequence.3536

The intermediate vector z̃ is created as follows, using what is called a standard vector accumulate:3537

134

• If accum = GrB NULL, then z̃ = t̃.3538

• If accum is a binary operator, then z̃ is defined as3539

z̃ = 〈Dout(accum), size(w̃), {(i, zi) ∀ i ∈ ind(w̃) ∪ ind(t̃)}〉.3540

The values of the elements of z̃ are computed based on the relationships between the sets of3541

indices in w̃ and t̃.3542

zi = w̃(i)� t̃(i), if i ∈ (ind(t̃) ∩ ind(w̃)),3543

3544

zi = w̃(i), if i ∈ (ind(w̃)− (ind(t̃) ∩ ind(w̃))),3545

3546

zi = t̃(i), if i ∈ (ind(t̃)− (ind(t̃) ∩ ind(w̃))),3547

where � =
⊙

(accum), and the difference operator refers to set difference.3548

Finally, the set of output values that make up vector z̃ are written into the final result vector w,3549

using what is called a standard vector mask and replace. This is carried out under control of the3550

mask which acts as a “write mask”.3551

• If desc[GrB OUTP].GrB REPLACE is set, then any values in w on input to this operation are3552

deleted and the content of the new output vector, w, is defined as,3553

L(w) = {(i, zi) : i ∈ (ind(z̃) ∩ ind(m̃))}.3554

• If desc[GrB OUTP].GrB REPLACE is not set, the elements of z̃ indicated by the mask are3555

copied into the result vector, w, and elements of w that fall outside the set indicated by the3556

mask are unchanged:3557

L(w) = {(i, wi) : i ∈ (ind(w) ∩ ind(¬m̃))} ∪ {(i, zi) : i ∈ (ind(z̃) ∩ ind(m̃))}.3558

In GrB BLOCKING mode, the method exits with return value GrB SUCCESS and the new content of3559

vector w is as defined above and fully computed. In GrB NONBLOCKING mode, the method exits3560

with return value GrB SUCCESS and the new content of vector w is as defined above but may not3561

be fully computed. However, it can be used in the next GraphBLAS method call in a sequence.3562

4.3.7 assign: Modifying Sub-Graphs3563

Assign the contents of a subset of a matrix or vector.3564

4.3.7.1 assign: Standard vector variant3565

Assign values from one GraphBLAS vector to a subset of a vector as specified by a set of indices.3566

The size of the input vector is the same size as the index array provided.3567

135

C Syntax3568

GrB_Info GrB_assign(GrB_Vector w,3569

const GrB_Vector mask,3570

const GrB_BinaryOp accum,3571

const GrB_Vector u,3572

const GrB_Index *indices,3573

GrB_Index nindices,3574

const GrB_Descriptor desc);3575

Parameters3576

w (INOUT) An existing GraphBLAS vector. On input, the vector provides values3577

that may be accumulated with the result of the assign operation. On output, this3578

vector holds the results of the operation.3579

mask (IN) An optional “write” mask that controls which results from this operation are3580

stored into the output vector w. The mask dimensions must match those of the3581

vector w If the GrB STRUCTURE descriptor is not set for the mask, the domain3582

of the mask vector must be of type bool or any of the predefined “built-in” types3583

in Table 2.2. If the default mask is desired (i.e., a mask that is all true with the3584

dimensions of w), GrB NULL should be specified.3585

accum (IN) An optional binary operator used for accumulating entries into existing w3586

entries. If assignment rather than accumulation is desired, GrB NULL should be3587

specified.3588

u (IN) The GraphBLAS vector whose contents are assigned to a subset of w.3589

indices (IN) Pointer to the ordered set (array) of indices corresponding to the locations in3590

w that are to be assigned. If all elements of w are to be assigned in order from 03591

to nindices − 1, then GrB ALL should be specified. Regardless of execution mode3592

and return value, this array may be manipulated by the caller after this operation3593

returns without affecting any deferred computations for this operation. If this3594

array contains duplicate values, it implies in assignment of more than one value to3595

the same location which leads to undefined results.3596

nindices (IN) The number of values in indices array. Must be equal to size(u).3597

desc (IN) An optional operation descriptor. If a default descriptor is desired, GrB NULL3598

should be specified. Non-default field/value pairs are listed as follows:3599

3600

136

Param Field Value Description

w GrB OUTP GrB REPLACE Output vector w is cleared (all elements
removed) before the result is stored in it.

mask GrB MASK GrB STRUCTURE The write mask is constructed from the
structure (pattern of stored values) of the
input mask vector. The stored values are
not examined.

mask GrB MASK GrB COMP Use the complement of mask.

3601

Return Values3602

GrB SUCCESS In blocking mode, the operation completed successfully. In non-3603

blocking mode, this indicates that the compatibility tests on di-3604

mensions and domains for the input arguments passed successfully.3605

Either way, output vector w is ready to be used in the next method3606

of the sequence.3607

GrB PANIC Unknown internal error.3608

GrB INVALID OBJECT This is returned in any execution mode whenever one of the opaque3609

GraphBLAS objects (input or output) is in an invalid state caused3610

by a previous execution error. Call GrB error() to access any error3611

messages generated by the implementation.3612

GrB OUT OF MEMORY Not enough memory available for operation.3613

GrB UNINITIALIZED OBJECT One or more of the GraphBLAS objects has not been initialized by3614

a call to new (or dup for vector parameters).3615

GrB INDEX OUT OF BOUNDS A value in indices is greater than or equal to size(w). In non-3616

blocking mode, this can be reported as an execution error.3617

GrB DIMENSION MISMATCH mask and w dimensions are incompatible, or nindices 6= size(u).3618

GrB DOMAIN MISMATCH The domains of the various vectors are incompatible with each3619

other or the corresponding domains of the accumulation operator,3620

or the mask’s domain is not compatible with bool (in the case where3621

desc[GrB MASK].GrB STRUCTURE is not set).3622

GrB NULL POINTER Argument indices is a NULL pointer.3623

Description3624

This variant of GrB assign computes the result of assigning elements from a source GraphBLAS3625

vector to a destination GraphBLAS vector in a specific order: w(indices) = u; or, if an optional3626

binary accumulation operator (�) is provided, w(indices) = w(indices)� u. More explicitly:3627

w(indices[i]) = u(i), ∀ i : 0 ≤ i < nindices, or

w(indices[i]) = w(indices[i])� u(i), ∀ i : 0 ≤ i < nindices.
3628

137

Logically, this operation occurs in three steps:3629

Setup The internal vectors and mask used in the computation are formed and their domains3630

and dimensions are tested for compatibility.3631

Compute The indicated computations are carried out.3632

Output The result is written into the output vector, possibly under control of a mask.3633

Up to three argument vectors are used in the GrB assign operation:3634

1. w = 〈D(w), size(w),L(w) = {(i, wi)}〉3635

2. mask = 〈D(mask), size(mask),L(mask) = {(i,mi)}〉 (optional)3636

3. u = 〈D(u), size(u),L(u) = {(i, ui)}〉3637

The argument vectors and the accumulation operator (if provided) are tested for domain compati-3638

bility as follows:3639

1. If mask is not GrB NULL, and desc[GrB MASK].GrB STRUCTURE is not set, then D(mask)3640

must be from one of the pre-defined types of Table 2.2.3641

2. D(w) must be compatible with D(u).3642

3. If accum is not GrB NULL, then D(w) must be compatible with Din1(accum) and Dout(accum)3643

of the accumulation operator and D(u) must be compatible with Din2(accum) of the accu-3644

mulation operator.3645

Two domains are compatible with each other if values from one domain can be cast to values in3646

the other domain as per the rules of the C language. In particular, domains from Table 2.2 are all3647

compatible with each other. A domain from a user-defined type is only compatible with itself. If3648

any compatibility rule above is violated, execution of GrB assign ends and the domain mismatch3649

error listed above is returned.3650

From the arguments, the internal vectors, mask and index array used in the computation are formed3651

(← denotes copy):3652

1. Vector w̃← w.3653

2. One-dimensional mask, m̃, is computed from argument mask as follows:3654

(a) If mask = GrB NULL, then m̃ = 〈size(w), {i, ∀ i : 0 ≤ i < size(w)}〉.3655

(b) If mask 6= GrB NULL,3656

i. If desc[GrB MASK].GrB STRUCTURE is set, then m̃ = 〈size(mask), {i : i ∈ ind(mask)}〉,3657

ii. Otherwise, m̃ = 〈size(mask), {i : i ∈ ind(mask) ∧ (bool)mask(i) = true}〉.3658

(c) If desc[GrB MASK].GrB COMP is set, then m̃← ¬m̃.3659

138

3. Vector ũ← u.3660

4. The internal index array, Ĩ, is computed from argument indices as follows:3661

(a) If indices = GrB ALL, then Ĩ[i] = i, ∀ i : 0 ≤ i < nindices.3662

(b) Otherwise, Ĩ[i] = indices[i], ∀ i : 0 ≤ i < nindices.3663

The internal vector and mask are checked for dimension compatibility. The following conditions3664

must hold:3665

1. size(w̃) = size(m̃)3666

2. nindices = size(ũ).3667

If any compatibility rule above is violated, execution of GrB assign ends and the dimension mismatch3668

error listed above is returned.3669

From this point forward, in GrB NONBLOCKING mode, the method can optionally exit with3670

GrB SUCCESS return code and defer any computation and/or execution error codes.3671

We are now ready to carry out the assign and any additional associated operations. We describe3672

this in terms of two intermediate vectors:3673

• t̃: The vector holding the elements from ũ in their destination locations relative to w̃.3674

• z̃: The vector holding the result after application of the (optional) accumulation operator.3675

The intermediate vector, t̃, is created as follows:3676

t̃ = 〈D(u), size(w̃), {(Ĩ[i], ũ(i))∀i, 0 ≤ i < nindices : i ∈ ind(ũ)}〉.3677

At this point, if any value of Ĩ[i] is outside the valid range of indices for vector w̃, computation3678

ends and the method returns the index-out-of-bounds error listed above. In GrB NONBLOCKING3679

mode, the error can be deferred until a sequence-terminating GrB wait() is called. Regardless, the3680

result vector, w, is invalid from this point forward in the sequence.3681

The intermediate vector z̃ is created as follows:3682

• If accum = GrB NULL, then z̃ is defined as3683

z̃ = 〈D(w), size(w̃), {(i, zi),∀i ∈ (ind(w̃)− ({Ĩ[k], ∀k} ∩ ind(w̃))) ∪ ind(t̃)}〉.3684

The above expression defines the structure of vector z̃ as follows: We start with the structure3685

of w̃ (ind(w̃)) and remove from it all the indices of w̃ that are in the set of indices being3686

assigned ({Ĩ[k],∀k} ∩ ind(w̃)). Finally, we add the structure of t̃ (ind(t̃)).3687

The values of the elements of z̃ are computed based on the relationships between the sets of3688

indices in w̃ and t̃.3689

zi = w̃(i), if i ∈ (ind(w̃)− ({Ĩ[k], ∀k} ∩ ind(w̃))),3690

3691

zi = t̃(i), if i ∈ ind(t̃),3692

where the difference operator refers to set difference.3693

139

• If accum is a binary operator, then z̃ is defined as3694

〈Dout(accum), size(w̃), {(i, zi) ∀ i ∈ ind(w̃) ∪ ind(t̃)}〉.3695

The values of the elements of z̃ are computed based on the relationships between the sets of3696

indices in w̃ and t̃.3697

zi = w̃(i)� t̃(i), if i ∈ (ind(t̃) ∩ ind(w̃)),3698
3699

zi = w̃(i), if i ∈ (ind(w̃)− (ind(t̃) ∩ ind(w̃))),3700
3701

zi = t̃(i), if i ∈ (ind(t̃)− (ind(t̃) ∩ ind(w̃))),3702

where � =
⊙

(accum), and the difference operator refers to set difference.3703

Finally, the set of output values that make up vector z̃ are written into the final result vector w,3704

using what is called a standard vector mask and replace. This is carried out under control of the3705

mask which acts as a “write mask”.3706

• If desc[GrB OUTP].GrB REPLACE is set, then any values in w on input to this operation are3707

deleted and the content of the new output vector, w, is defined as,3708

L(w) = {(i, zi) : i ∈ (ind(z̃) ∩ ind(m̃))}.3709

• If desc[GrB OUTP].GrB REPLACE is not set, the elements of z̃ indicated by the mask are3710

copied into the result vector, w, and elements of w that fall outside the set indicated by the3711

mask are unchanged:3712

L(w) = {(i, wi) : i ∈ (ind(w) ∩ ind(¬m̃))} ∪ {(i, zi) : i ∈ (ind(z̃) ∩ ind(m̃))}.3713

In GrB BLOCKING mode, the method exits with return value GrB SUCCESS and the new content of3714

vector w is as defined above and fully computed. In GrB NONBLOCKING mode, the method exits3715

with return value GrB SUCCESS and the new content of vector w is as defined above but may not3716

be fully computed. However, it can be used in the next GraphBLAS method call in a sequence.3717

4.3.7.2 assign: Standard matrix variant3718

Assign values from one GraphBLAS matrix to a subset of a matrix as specified by a set of indices.3719

The dimensions of the input matrix are the same size as the row and column index arrays provided.3720

C Syntax3721

GrB_Info GrB_assign(GrB_Matrix C,3722

const GrB_Matrix Mask,3723

const GrB_BinaryOp accum,3724

const GrB_Matrix A,3725

const GrB_Index *row_indices,3726

GrB_Index nrows,3727

const GrB_Index *col_indices,3728

GrB_Index ncols,3729

const GrB_Descriptor desc);3730

140

Parameters3731

C (INOUT) An existing GraphBLAS matrix. On input, the matrix provides values3732

that may be accumulated with the result of the assign operation. On output, the3733

matrix holds the results of the operation.3734

Mask (IN) An optional “write” mask that controls which results from this operation are3735

stored into the output matrix C. The mask dimensions must match those of the3736

matrix C. If the GrB STRUCTURE descriptor is not set for the mask, the domain3737

of the Mask matrix must be of type bool or any of the predefined “built-in” types3738

in Table 2.2. If the default mask is desired (i.e., a mask that is all true with the3739

dimensions of C), GrB NULL should be specified.3740

accum (IN) An optional binary operator used for accumulating entries into existing C3741

entries. If assignment rather than accumulation is desired, GrB NULL should be3742

specified.3743

A (IN) The GraphBLAS matrix whose contents are assigned to a subset of C.3744

row indices (IN) Pointer to the ordered set (array) of indices corresponding to the rows of C3745

that are assigned. If all rows of C are to be assigned in order from 0 to nrows− 1,3746

then GrB ALL can be specified. Regardless of execution mode and return value,3747

this array may be manipulated by the caller after this operation returns without3748

affecting any deferred computations for this operation. If this array contains du-3749

plicate values, it implies assignment of more than one value to the same location3750

which leads to undefined results.3751

nrows (IN) The number of values in the row indices array. Must be equal to nrows(A) if3752

A is not tranposed, or equal to ncols(A) if A is transposed.3753

col indices (IN) Pointer to the ordered set (array) of indices corresponding to the columns3754

of C that are assigned. If all columns of C are to be assigned in order from 0 to3755

ncols − 1, then GrB ALL should be specified. Regardless of execution mode and3756

return value, this array may be manipulated by the caller after this operation3757

returns without affecting any deferred computations for this operation. If this3758

array contains duplicate values, it implies assignment of more than one value to3759

the same location which leads to undefined results.3760

ncols (IN) The number of values in col indices array. Must be equal to ncols(A) if A is3761

not tranposed, or equal to nrows(A) if A is transposed.3762

desc (IN) An optional operation descriptor. If a default descriptor is desired, GrB NULL3763

should be specified. Non-default field/value pairs are listed as follows:3764

3765

141

Param Field Value Description

C GrB OUTP GrB REPLACE Output matrix C is cleared (all elements
removed) before the result is stored in it.

Mask GrB MASK GrB STRUCTURE The write mask is constructed from the
structure (pattern of stored values) of the
input Mask matrix. The stored values are
not examined.

Mask GrB MASK GrB COMP Use the complement of Mask.
A GrB INP0 GrB TRAN Use transpose of A for the operation.

3766

Return Values3767

GrB SUCCESS In blocking mode, the operation completed successfully. In non-3768

blocking mode, this indicates that the compatibility tests on di-3769

mensions and domains for the input arguments passed successfully.3770

Either way, output matrix C is ready to be used in the next method3771

of the sequence.3772

GrB PANIC Unknown internal error.3773

GrB INVALID OBJECT This is returned in any execution mode whenever one of the opaque3774

GraphBLAS objects (input or output) is in an invalid state caused3775

by a previous execution error. Call GrB error() to access any error3776

messages generated by the implementation.3777

GrB OUT OF MEMORY Not enough memory available for the operation.3778

GrB UNINITIALIZED OBJECT One or more of the GraphBLAS objects has not been initialized by3779

a call to new (or Matrix dup for matrix parameters).3780

GrB INDEX OUT OF BOUNDS A value in row indices is greater than or equal to nrows(C), or a3781

value in col indices is greater than or equal to ncols(C). In non-3782

blocking mode, this can be reported as an execution error.3783

GrB DIMENSION MISMATCH Mask and C dimensions are incompatible, nrows 6= nrows(A), or3784

ncols 6= ncols(A).3785

GrB DOMAIN MISMATCH The domains of the various matrices are incompatible with each3786

other or the corresponding domains of the accumulation operator,3787

or the mask’s domain is not compatible with bool (in the case where3788

desc[GrB MASK].GrB STRUCTURE is not set).3789

GrB NULL POINTER Either argument row indices is a NULL pointer, argument col indices3790

is a NULL pointer, or both.3791

142

Description3792

This variant of GrB assign computes the result of assigning the contents of A to a subset of rows3793

and columns in C in a specified order: C(row indices, col indices) = A; or, if an optional binary3794

accumulation operator (�) is provided, C(row indices, col indices) = C(row indices, col indices) � A.3795

More explicitly (not accounting for an optional transpose of A):3796

C(row indices[i], col indices[j]) = A(i, j), ∀ i, j : 0 ≤ i < nrows, 0 ≤ j < ncols, or

C(row indices[i], col indices[j]) = C(row indices[i], col indices[j])� A(i, j),

∀ (i, j) : 0 ≤ i < nrows, 0 ≤ j < ncols

3797

Logically, this operation occurs in three steps:3798

Setup The internal matrices and mask used in the computation are formed and their domains3799

and dimensions are tested for compatibility.3800

Compute The indicated computations are carried out.3801

Output The result is written into the output matrix, possibly under control of a mask.3802

Up to three argument matrices are used in the GrB assign operation:3803

1. C = 〈D(C),nrows(C),ncols(C),L(C) = {(i, j, Cij)}〉3804

2. Mask = 〈D(Mask),nrows(Mask),ncols(Mask),L(Mask) = {(i, j,Mij)}〉 (optional)3805

3. A = 〈D(A),nrows(A),ncols(A),L(A) = {(i, j, Aij)}〉3806

The argument matrices and the accumulation operator (if provided) are tested for domain compat-3807

ibility as follows:3808

1. If Mask is not GrB NULL, and desc[GrB MASK].GrB STRUCTURE is not set, then D(Mask)3809

must be from one of the pre-defined types of Table 2.2.3810

2. D(C) must be compatible with D(A).3811

3. If accum is not GrB NULL, then D(C) must be compatible with Din1(accum) and Dout(accum)3812

of the accumulation operator and D(A) must be compatible with Din2(accum) of the accu-3813

mulation operator.3814

Two domains are compatible with each other if values from one domain can be cast to values in3815

the other domain as per the rules of the C language. In particular, domains from Table 2.2 are all3816

compatible with each other. A domain from a user-defined type is only compatible with itself. If3817

any compatibility rule above is violated, execution of GrB assign ends and the domain mismatch3818

error listed above is returned.3819

From the arguments, the internal matrices, mask, and index arrays used in the computation are3820

formed (← denotes copy):3821

143

1. Matrix C̃← C.3822

2. Two-dimensional mask M̃ is computed from argument Mask as follows:3823

(a) If Mask = GrB NULL, then M̃ = 〈nrows(C),ncols(C), {(i, j), ∀i, j : 0 ≤ i < nrows(C), 0 ≤3824

j < ncols(C)}〉.3825

(b) If Mask 6= GrB NULL,3826

i. If desc[GrB MASK].GrB STRUCTURE is set, then M̃ = 〈nrows(Mask),ncols(Mask), {(i, j) :3827

(i, j) ∈ ind(Mask)}〉,3828

ii. Otherwise, M̃ = 〈nrows(Mask),ncols(Mask),3829

{(i, j) : (i, j) ∈ ind(Mask) ∧ (bool)Mask(i, j) = true}〉.3830

(c) If desc[GrB MASK].GrB COMP is set, then M̃← ¬M̃.3831

3. Matrix Ã← desc[GrB INP0].GrB TRAN ? AT : A.3832

4. The internal row index array, Ĩ, is computed from argument row indices as follows:3833

(a) If row indices = GrB ALL, then Ĩ[i] = i,∀i : 0 ≤ i < nrows.3834

(b) Otherwise, Ĩ[i] = row indices[i],∀i : 0 ≤ i < nrows.3835

5. The internal column index array, J̃ , is computed from argument col indices as follows:3836

(a) If col indices = GrB ALL, then J̃ [j] = j,∀j : 0 ≤ j < ncols.3837

(b) Otherwise, J̃ [j] = col indices[j], ∀ j : 0 ≤ j < ncols.3838

The internal matrices and mask are checked for dimension compatibility. The following conditions3839

must hold:3840

1. nrows(C̃) = nrows(M̃).3841

2. ncols(C̃) = ncols(M̃).3842

3. nrows(Ã) = nrows.3843

4. ncols(Ã) = ncols.3844

If any compatibility rule above is violated, execution of GrB assign ends and the dimension mismatch3845

error listed above is returned.3846

From this point forward, in GrB NONBLOCKING mode, the method can optionally exit with3847

GrB SUCCESS return code and defer any computation and/or execution error codes.3848

We are now ready to carry out the assign and any additional associated operations. We describe3849

this in terms of two intermediate vectors:3850

• T̃: The matrix holding the contents from Ã in their destination locations relative to C̃.3851

• Z̃: The matrix holding the result after application of the (optional) accumulation operator.3852

144

The intermediate matrix, T̃, is created as follows:3853

T̃ = 〈D(A),nrows(C̃),ncols(C̃),

{(Ĩ[i], J̃ [j], Ã(i, j)) ∀ (i, j), 0 ≤ i < nrows, 0 ≤ j < ncols : (i, j) ∈ ind(Ã)}〉.
3854

At this point, if any value in the Ĩ array is not in the range [0, nrows(C̃)) or any value in the3855

J̃ array is not in the range [0, ncols(C̃)), the execution of GrB assign ends and the index out-of-3856

bounds error listed above is generated. In GrB NONBLOCKING mode, the error can be deferred3857

until a sequence-terminating GrB wait() is called. Regardless, the result matrix C is invalid from3858

this point forward in the sequence.3859

The intermediate matrix Z̃ is created as follows:3860

• If accum = GrB NULL, then Z̃ is defined as3861

Z̃ = 〈D(C),nrows(C̃),ncols(C̃),3862

{(i, j, Zij)∀(i, j) ∈ (ind(C̃)− ({(Ĩ[k], J̃ [l]),∀k, l} ∩ ind(C̃))) ∪ ind(T̃)}〉.3863

The above expression defines the structure of matrix Z̃ as follows: We start with the structure3864

of C̃ (ind(C̃)) and remove from it all the indices of C̃ that are in the set of indices being3865

assigned ({(Ĩ[k], J̃ [l]),∀k, l} ∩ ind(C̃)). Finally, we add the structure of T̃ (ind(T̃)).3866

The values of the elements of Z̃ are computed based on the relationships between the sets of3867

indices in C̃ and T̃.3868

Zij = C̃(i, j), if (i, j) ∈ (ind(C̃)− ({(Ĩ[k], J̃ [l]), ∀k, l} ∩ ind(C̃))),3869

3870

Zij = T̃(i, j), if (i, j) ∈ ind(T̃),3871

where the difference operator refers to set difference.3872

• If accum is a binary operator, then Z̃ is defined as3873

〈Dout(accum),nrows(C̃),ncols(C̃), {(i, j, Zij)∀(i, j) ∈ ind(C̃) ∪ ind(T̃)}〉.3874

The values of the elements of Z̃ are computed based on the relationships between the sets of3875

indices in C̃ and T̃.3876

Zij = C̃(i, j)� T̃(i, j), if (i, j) ∈ (ind(T̃) ∩ ind(C̃)),3877

3878

Zij = C̃(i, j), if (i, j) ∈ (ind(C̃)− (ind(T̃) ∩ ind(C̃))),3879

3880

Zij = T̃(i, j), if (i, j) ∈ (ind(T̃)− (ind(T̃) ∩ ind(C̃))),3881

where � =
⊙

(accum), and the difference operator refers to set difference.3882

Finally, the set of output values that make up matrix Z̃ are written into the final result matrix C,3883

using what is called a standard matrix mask and replace. This is carried out under control of the3884

mask which acts as a “write mask”.3885

145

• If desc[GrB OUTP].GrB REPLACE is set, then any values in C on input to this operation are3886

deleted and the content of the new output matrix, C, is defined as,3887

L(C) = {(i, j, Zij) : (i, j) ∈ (ind(Z̃) ∩ ind(M̃))}.3888

• If desc[GrB OUTP].GrB REPLACE is not set, the elements of Z̃ indicated by the mask are3889

copied into the result matrix, C, and elements of C that fall outside the set indicated by the3890

mask are unchanged:3891

L(C) = {(i, j, Cij) : (i, j) ∈ (ind(C) ∩ ind(¬M̃))} ∪ {(i, j, Zij) : (i, j) ∈ (ind(Z̃) ∩ ind(M̃))}.3892

In GrB BLOCKING mode, the method exits with return value GrB SUCCESS and the new content3893

of matrix C is as defined above and fully computed. In GrB NONBLOCKING mode, the method3894

exits with return value GrB SUCCESS and the new content of matrix C is as defined above but3895

may not be fully computed. However, it can be used in the next GraphBLAS method call in a3896

sequence.3897

4.3.7.3 assign: Column variant3898

Assign the contents a vector to a subset of elements in one column of a matrix. Note that since3899

the output cannot be transposed, a different variant of assign is provided to assign to a row of a3900

matrix.3901

C Syntax3902

GrB_Info GrB_assign(GrB_Matrix C,3903

const GrB_Vector mask,3904

const GrB_BinaryOp accum,3905

const GrB_Vector u,3906

const GrB_Index *row_indices,3907

GrB_Index nrows,3908

GrB_Index col_index,3909

const GrB_Descriptor desc);3910

Parameters3911

C (INOUT) An existing GraphBLAS matrix. On input, the matrix provides values3912

that may be accumulated with the result of the assign operation. On output, this3913

matrix holds the results of the operation.3914

mask (IN) An optional “write” mask that controls which results from this operation are3915

stored into the specified column of the output matrix C. The mask dimensions3916

must match those of a single column of the matrix C. If the GrB STRUCTURE3917

descriptor is not set for the mask, the domain of the Mask matrix must be of type3918

146

bool or any of the predefined “built-in” types in Table 2.2. If the default mask3919

is desired (i.e., a mask that is all true with the dimensions of a column of C),3920

GrB NULL should be specified.3921

accum (IN) An optional binary operator used for accumulating entries into existing C3922

entries. If assignment rather than accumulation is desired, GrB NULL should be3923

specified.3924

u (IN) The GraphBLAS vector whose contents are assigned to (a subset of) a column3925

of C.3926

row indices (IN) Pointer to the ordered set (array) of indices corresponding to the locations in3927

the specified column of C that are to be assigned. If all elements of the column3928

in C are to be assigned in order from index 0 to nrows − 1, then GrB ALL should3929

be specified. Regardless of execution mode and return value, this array may be3930

manipulated by the caller after this operation returns without affecting any de-3931

ferred computations for this operation. If this array contains duplicate values, it3932

implies in assignment of more than one value to the same location which leads to3933

undefined results.3934

nrows (IN) The number of values in row indices array. Must be equal to size(u).3935

col index (IN) The index of the column in C to assign. Must be in the range [0,ncols(C)).3936

desc (IN) An optional operation descriptor. If a default descriptor is desired, GrB NULL3937

should be specified. Non-default field/value pairs are listed as follows:3938

3939

Param Field Value Description

C GrB OUTP GrB REPLACE Output column in C is cleared (all ele-
ments removed) before result is stored in
it.

mask GrB MASK GrB STRUCTURE The write mask is constructed from the
structure (pattern of stored values) of the
input mask vector. The stored values are
not examined.

mask GrB MASK GrB COMP Use the complement of mask.

3940

Return Values3941

GrB SUCCESS In blocking mode, the operation completed successfully. In non-3942

blocking mode, this indicates that the compatibility tests on di-3943

mensions and domains for the input arguments passed successfully.3944

Either way, output matrix C is ready to be used in the next method3945

of the sequence.3946

GrB PANIC Unknown internal error.3947

147

GrB INVALID OBJECT This is returned in any execution mode whenever one of the opaque3948

GraphBLAS objects (input or output) is in an invalid state caused3949

by a previous execution error. Call GrB error() to access any error3950

messages generated by the implementation.3951

GrB OUT OF MEMORY Not enough memory available for operation.3952

GrB UNINITIALIZED OBJECT One or more of the GraphBLAS objects has not been initialized by3953

a call to new (or dup for vector or matrix parameters).3954

GrB INVALID INDEX col index is outside the allowable range (i.e., greater than ncols(C)).3955

GrB INDEX OUT OF BOUNDS A value in row indices is greater than or equal to nrows(C). In3956

non-blocking mode, this can be reported as an execution error.3957

GrB DIMENSION MISMATCH mask size and number of rows in C are not the same, or nrows 6=3958

size(u).3959

GrB DOMAIN MISMATCH The domains of the matrix and vector are incompatible with each3960

other or the corresponding domains of the accumulation operator,3961

or the mask’s domain is not compatible with bool (in the case where3962

desc[GrB MASK].GrB STRUCTURE is not set).3963

GrB NULL POINTER Argument row indices is a NULL pointer.3964

Description3965

This variant of GrB assign computes the result of assigning a subset of locations in a column of a3966

GraphBLAS matrix (in a specific order) from the contents of a GraphBLAS vector:3967

C(:, col index) = u; or, if an optional binary accumulation operator (�) is provided, C(:, col index) =3968

C(:, col index)� u. Taking order of row indices into account, it is more explicitly written as:3969

C(row indices[i], col index) = u(i), ∀ i : 0 ≤ i < nrows, or

C(row indices[i], col index) = C(row indices[i], col index)� u(i), ∀ i : 0 ≤ i < nrows.
3970

Logically, this operation occurs in three steps:3971

Setup The internal matrices, vectors and mask used in the computation are formed and their3972

domains and dimensions are tested for compatibility.3973

Compute The indicated computations are carried out.3974

Output The result is written into the output matrix, possibly under control of a mask.3975

Up to three argument vectors and matrices are used in this GrB assign operation:3976

1. C = 〈D(C),nrows(C),ncols(C),L(C) = {(i, j, Cij)}〉3977

2. mask = 〈D(mask), size(mask),L(mask) = {(i,mi)}〉 (optional)3978

148

3. u = 〈D(u), size(u),L(u) = {(i, ui)}〉3979

The argument vectors, matrix, and the accumulation operator (if provided) are tested for domain3980

compatibility as follows:3981

1. If mask is not GrB NULL, and desc[GrB MASK].GrB STRUCTURE is not set, then D(mask)3982

must be from one of the pre-defined types of Table 2.2.3983

2. D(C) must be compatible with D(u).3984

3. If accum is not GrB NULL, then D(C) must be compatible with Din1(accum) and Dout(accum)3985

of the accumulation operator and D(u) must be compatible with Din2(accum) of the accu-3986

mulation operator.3987

Two domains are compatible with each other if values from one domain can be cast to values in3988

the other domain as per the rules of the C language. In particular, domains from Table 2.2 are all3989

compatible with each other. A domain from a user-defined type is only compatible with itself. If3990

any compatibility rule above is violated, execution of GrB assign ends and the domain mismatch3991

error listed above is returned.3992

The col index parameter is checked for a valid value. The following condition must hold:3993

1. 0 ≤ col index < ncols(C)3994

If the rule above is violated, execution of GrB assign ends and the invalid index error listed above3995

is returned.3996

From the arguments, the internal vectors, mask, and index array used in the computation are3997

formed (← denotes copy):3998

1. The vector, c̃, is extracted from a column of C as follows:3999

c̃ = 〈D(C),nrows(C), {(i, Cij) ∀ i : 0 ≤ i < nrows(C), j = col index, (i, j) ∈ ind(C)}〉4000

2. One-dimensional mask, m̃, is computed from argument mask as follows:4001

(a) If mask = GrB NULL, then m̃ = 〈nrows(C), {i, ∀ i : 0 ≤ i < nrows(C)}〉.4002

(b) If mask 6= GrB NULL,4003

i. If desc[GrB MASK].GrB STRUCTURE is set, then m̃ = 〈size(mask), {i : i ∈ ind(mask)}〉,4004

ii. Otherwise, m̃ = 〈size(mask), {i : i ∈ ind(mask) ∧ (bool)mask(i) = true}〉.4005

(c) If desc[GrB MASK].GrB COMP is set, then m̃← ¬m̃.4006

3. Vector ũ← u.4007

4. The internal row index array, Ĩ, is computed from argument row indices as follows:4008

(a) If row indices = GrB ALL, then Ĩ[i] = i, ∀ i : 0 ≤ i < nrows.4009

149

(b) Otherwise, Ĩ[i] = row indices[i], ∀ i : 0 ≤ i < nrows.4010

The internal vectors, matrices, and masks are checked for dimension compatibility. The following4011

conditions must hold:4012

1. size(c̃) = size(m̃)4013

2. nrows = size(ũ).4014

If any compatibility rule above is violated, execution of GrB assign ends and the dimension mismatch4015

error listed above is returned.4016

From this point forward, in GrB NONBLOCKING mode, the method can optionally exit with4017

GrB SUCCESS return code and defer any computation and/or execution error codes.4018

We are now ready to carry out the assign and any additional associated operations. We describe4019

this in terms of two intermediate vectors:4020

• t̃: The vector holding the elements from ũ in their destination locations relative to c̃.4021

• z̃: The vector holding the result after application of the (optional) accumulation operator.4022

The intermediate vector, t̃, is created as follows:4023

t̃ = 〈D(u), size(c̃), {(Ĩ[i], ũ(i)) ∀ i, 0 ≤ i < nrows : i ∈ ind(ũ)}〉.4024

At this point, if any value of Ĩ[i] is outside the valid range of indices for vector c̃, computation4025

ends and the method returns the index out-of-bounds error listed above. In GrB NONBLOCKING4026

mode, the error can be deferred until a sequence-terminating GrB wait() is called. Regardless, the4027

result matrix, C, is invalid from this point forward in the sequence.4028

The intermediate vector z̃ is created as follows:4029

• If accum = GrB NULL, then z̃ is defined as4030

z̃ = 〈D(C), size(c̃), {(i, zi), ∀i ∈ (ind(c̃)− ({Ĩ[k],∀k} ∩ ind(c̃))) ∪ ind(t̃)}〉.4031

The above expression defines the structure of vector z̃ as follows: We start with the structure4032

of c̃ (ind(c̃)) and remove from it all the indices of c̃ that are in the set of indices being4033

assigned ({Ĩ[k],∀k} ∩ ind(c̃)). Finally, we add the structure of t̃ (ind(t̃)).4034

The values of the elements of z̃ are computed based on the relationships between the sets of4035

indices in c̃ and t̃.4036

zi = c̃(i), if i ∈ (ind(c̃)− ({Ĩ[k],∀k} ∩ ind(c̃))),4037

4038

zi = t̃(i), if i ∈ ind(t̃),4039

where the difference operator refers to set difference.4040

150

• If accum is a binary operator, then z̃ is defined as4041

〈Dout(accum), size(c̃), {(i, zi) ∀ i ∈ ind(c̃) ∪ ind(t̃)}〉.4042

The values of the elements of z̃ are computed based on the relationships between the sets of4043

indices in w̃ and t̃.4044

zi = c̃(i)� t̃(i), if i ∈ (ind(t̃) ∩ ind(c̃)),4045

4046

zi = c̃(i), if i ∈ (ind(c̃)− (ind(t̃) ∩ ind(c̃))),4047

4048

zi = t̃(i), if i ∈ (ind(t̃)− (ind(t̃) ∩ ind(c̃))),4049

where � =
⊙

(accum), and the difference operator refers to set difference.4050

Finally, the set of output values that make up the z̃ vector are written into the column of the final4051

result matrix, C(:, col index). This is carried out under control of the mask which acts as a “write4052

mask”.4053

• If desc[GrB OUTP].GrB REPLACE is set, then any values in C(:, col index) on input to this4054

operation are deleted and the new contents of the column is given by:4055

L(C) = {(i, j, Cij) : j 6= col index} ∪ {(i, col index, zi) : i ∈ (ind(z̃) ∩ ind(m̃))}.4056

• If desc[GrB OUTP].GrB REPLACE is not set, the elements of z̃ indicated by the mask are4057

copied into the column of the final result matrix, C(:, col index), and elements of this column4058

that fall outside the set indicated by the mask are unchanged:4059

L(C) = {(i, j, Cij) : j 6= col index} ∪4060

{(i, col index, c̃(i)) : i ∈ (ind(c̃) ∩ ind(¬m̃))} ∪4061

{(i, col index, zi) : i ∈ (ind(z̃) ∩ ind(m̃))}.4062

In GrB BLOCKING mode, the method exits with return value GrB SUCCESS and the new content4063

of vector w is as defined above and fully computed. In GrB NONBLOCKING mode, the method4064

exits with return value GrB SUCCESS and the new content of vector w is as defined above but may4065

not be fully computed; however, it can be used in the next GraphBLAS method call in a sequence.4066

4.3.7.4 assign: Row variant4067

Assign the contents a vector to a subset of elements in one row of a matrix. Note that since the4068

output cannot be transposed, a different variant of assign is provided to assign to a column of a4069

matrix.4070

151

C Syntax4071

GrB_Info GrB_assign(GrB_Matrix C,4072

const GrB_Vector mask,4073

const GrB_BinaryOp accum,4074

const GrB_Vector u,4075

GrB_Index row_index,4076

const GrB_Index *col_indices,4077

GrB_Index ncols,4078

const GrB_Descriptor desc);4079

Parameters4080

C (INOUT) An existing GraphBLAS Matrix. On input, the matrix provides values4081

that may be accumulated with the result of the assign operation. On output, this4082

matrix holds the results of the operation.4083

mask (IN) An optional “write” mask that controls which results from this operation are4084

stored into the specified row of the output matrix C. The mask dimensions must4085

match those of a single row of the matrix C. If the GrB STRUCTURE descriptor is4086

not set for the mask, the domain of the Mask matrix must be of type bool or any4087

of the predefined “built-in” types in Table 2.2. If the default mask is desired (i.e.,4088

a mask that is all true with the dimensions of a row of C), GrB NULL should be4089

specified.4090

accum (IN) An optional binary operator used for accumulating entries into existing C4091

entries. If assignment rather than accumulation is desired, GrB NULL should be4092

specified.4093

u (IN) The GraphBLAS vector whose contents are assigned to (a subset of) a row of4094

C.4095

row index (IN) The index of the row in C to assign. Must be in the range [0,nrows(C)).4096

col indices (IN) Pointer to the ordered set (array) of indices corresponding to the locations in4097

the specified row of C that are to be assigned. If all elements of the row in C are to4098

be assigned in order from index 0 to ncols− 1, then GrB ALL should be specified.4099

Regardless of execution mode and return value, this array may be manipulated by4100

the caller after this operation returns without affecting any deferred computations4101

for this operation. If this array contains duplicate values, it implies in assignment4102

of more than one value to the same location which leads to undefined results.4103

ncols (IN) The number of values in col indices array. Must be equal to size(u).4104

desc (IN) An optional operation descriptor. If a default descriptor is desired, GrB NULL4105

should be specified. Non-default field/value pairs are listed as follows:4106

4107

152

Param Field Value Description

C GrB OUTP GrB REPLACE Output row in C is cleared (all elements
removed) before result is stored in it.

mask GrB MASK GrB STRUCTURE The write mask is constructed from the
structure (pattern of stored values) of the
input mask vector. The stored values are
not examined.

mask GrB MASK GrB COMP Use the complement of mask.

4108

Return Values4109

GrB SUCCESS In blocking mode, the operation completed successfully. In non-4110

blocking mode, this indicates that the compatibility tests on di-4111

mensions and domains for the input arguments passed successfully.4112

Either way, output matrix C is ready to be used in the next method4113

of the sequence.4114

GrB PANIC Unknown internal error.4115

GrB INVALID OBJECT This is returned in any execution mode whenever one of the opaque4116

GraphBLAS objects (input or output) is in an invalid state caused4117

by a previous execution error. Call GrB error() to access any error4118

messages generated by the implementation.4119

GrB OUT OF MEMORY Not enough memory available for operation.4120

GrB UNINITIALIZED OBJECT One or more of the GraphBLAS objects has not been initialized by4121

a call to new (or dup for vector or matrix parameters).4122

GrB INVALID INDEX row index is outside the allowable range (i.e., greater than nrows(C)).4123

GrB INDEX OUT OF BOUNDS A value in col indices is greater than or equal to ncols(C). In non-4124

blocking mode, this can be reported as an execution error.4125

GrB DIMENSION MISMATCH mask size and number of columns in C are not the same, or ncols 6=4126

size(u).4127

GrB DOMAIN MISMATCH The domains of the matrix and vector are incompatible with each4128

other or the corresponding domains of the accumulation operator,4129

or the mask’s domain is not compatible with bool (in the case where4130

desc[GrB MASK].GrB STRUCTURE is not set).4131

GrB NULL POINTER Argument col indices is a NULL pointer.4132

Description4133

This variant of GrB assign computes the result of assigning a subset of locations in a row of a4134

GraphBLAS matrix (in a specific order) from the contents of a GraphBLAS vector:4135

153

C(row index, :) = u; or, if an optional binary accumulation operator (�) is provided, C(row index, :4136

) = C(row index, :)� u. Taking order of col indices into account it is more explicitly written as:4137

C(row index, col indices[j]) = u(j), ∀ j : 0 ≤ j < ncols, or

C(row index, col indices[j]) = C(row index, col indices[j])� u(j), ∀ j : 0 ≤ j < ncols
4138

Logically, this operation occurs in three steps:4139

Setup The internal matrices, vectors and mask used in the computation are formed and their4140

domains and dimensions are tested for compatibility.4141

Compute The indicated computations are carried out.4142

Output The result is written into the output matrix, possibly under control of a mask.4143

Up to three argument vectors and matrices are used in this GrB assign operation:4144

1. C = 〈D(C),nrows(C),ncols(C),L(C) = {(i, j, Cij)}〉4145

2. mask = 〈D(mask), size(mask),L(mask) = {(i,mi)}〉 (optional)4146

3. u = 〈D(u), size(u),L(u) = {(i, ui)}〉4147

The argument vectors, matrix, and the accumulation operator (if provided) are tested for domain4148

compatibility as follows:4149

1. If mask is not GrB NULL, and desc[GrB MASK].GrB STRUCTURE is not set, then D(mask)4150

must be from one of the pre-defined types of Table 2.2.4151

2. D(C) must be compatible with D(u).4152

3. If accum is not GrB NULL, then D(C) must be compatible with Din1(accum) and Dout(accum)4153

of the accumulation operator and D(u) must be compatible with Din2(accum) of the accu-4154

mulation operator.4155

Two domains are compatible with each other if values from one domain can be cast to values in4156

the other domain as per the rules of the C language. In particular, domains from Table 2.2 are all4157

compatible with each other. A domain from a user-defined type is only compatible with itself. If4158

any compatibility rule above is violated, execution of GrB assign ends and the domain mismatch4159

error listed above is returned.4160

The row index parameter is checked for a valid value. The following condition must hold:4161

1. 0 ≤ row index < nrows(C)4162

If the rule above is violated, execution of GrB assign ends and the invalid index error listed above4163

is returned.4164

From the arguments, the internal vectors, mask, and index array used in the computation are4165

formed (← denotes copy):4166

154

1. The vector, c̃, is extracted from a row of C as follows:4167

c̃ = 〈D(C),ncols(C), {(j, Cij) ∀ j : 0 ≤ j < ncols(C), i = row index, (i, j) ∈ ind(C)}〉4168

2. One-dimensional mask, m̃, is computed from argument mask as follows:4169

(a) If mask = GrB NULL, then m̃ = 〈ncols(C), {i, ∀ i : 0 ≤ i < ncols(C)}〉.4170

(b) If mask 6= GrB NULL,4171

i. If desc[GrB MASK].GrB STRUCTURE is set, then m̃ = 〈size(mask), {i : i ∈ ind(mask)}〉,4172

ii. Otherwise, m̃ = 〈size(mask), {i : i ∈ ind(mask) ∧ (bool)mask(i) = true}〉.4173

(c) If desc[GrB MASK].GrB COMP is set, then m̃← ¬m̃.4174

3. Vector ũ← u.4175

4. The internal column index array, J̃ , is computed from argument col indices as follows:4176

(a) If col indices = GrB ALL, then J̃ [j] = j, ∀ j : 0 ≤ j < ncols.4177

(b) Otherwise, J̃ [j] = col indices[j], ∀ j : 0 ≤ j < ncols.4178

The internal vectors, matrices, and masks are checked for dimension compatibility. The following4179

conditions must hold:4180

1. size(c̃) = size(m̃)4181

2. ncols = size(ũ).4182

If any compatibility rule above is violated, execution of GrB assign ends and the dimension mismatch4183

error listed above is returned.4184

From this point forward, in GrB NONBLOCKING mode, the method can optionally exit with4185

GrB SUCCESS return code and defer any computation and/or execution error codes.4186

We are now ready to carry out the assign and any additional associated operations. We describe4187

this in terms of two intermediate vectors:4188

• t̃: The vector holding the elements from ũ in their destination locations relative to c̃.4189

• z̃: The vector holding the result after application of the (optional) accumulation operator.4190

The intermediate vector, t̃, is created as follows:4191

t̃ = 〈D(u), size(c̃), {(J̃ [j], ũ(j)) ∀ j, 0 ≤ j < ncols : j ∈ ind(ũ)}〉.4192

At this point, if any value of J̃ [j] is outside the valid range of indices for vector c̃, computation4193

ends and the method returns the index out-of-bounds error listed above. In GrB NONBLOCKING4194

mode, the error can be deferred until a sequence-terminating GrB wait() is called. Regardless, the4195

result matrix, C, is invalid from this point forward in the sequence.4196

The intermediate vector z̃ is created as follows:4197

155

• If accum = GrB NULL, then z̃ is defined as4198

z̃ = 〈D(C), size(c̃), {(i, zi), ∀i ∈ (ind(c̃)− ({Ĩ[k],∀k} ∩ ind(c̃))) ∪ ind(t̃)}〉.4199

The above expression defines the structure of vector z̃ as follows: We start with the structure4200

of c̃ (ind(c̃)) and remove from it all the indices of c̃ that are in the set of indices being4201

assigned ({Ĩ[k],∀k} ∩ ind(c̃)). Finally, we add the structure of t̃ (ind(t̃)).4202

The values of the elements of z̃ are computed based on the relationships between the sets of4203

indices in c̃ and t̃.4204

zi = c̃(i), if i ∈ (ind(c̃)− ({Ĩ[k],∀k} ∩ ind(c̃))),4205

4206

zi = t̃(i), if i ∈ ind(t̃),4207

where the difference operator refers to set difference.4208

• If accum is a binary operator, then z̃ is defined as4209

〈Dout(accum), size(c̃), {(j, zj) ∀ j ∈ ind(c̃) ∪ ind(t̃)}〉.4210

The values of the elements of z̃ are computed based on the relationships between the sets of4211

indices in w̃ and t̃.4212

zj = c̃(j)� t̃(j), if j ∈ (ind(t̃) ∩ ind(c̃)),4213

4214

zj = c̃(j), if j ∈ (ind(c̃)− (ind(t̃) ∩ ind(c̃))),4215

4216

zj = t̃(j), if j ∈ (ind(t̃)− (ind(t̃) ∩ ind(c̃))),4217

where � =
⊙

(accum), and the difference operator refers to set difference.4218

Finally, the set of output values that make up the z̃ vector are written into the column of the final4219

result matrix, C(row index, :). This is carried out under control of the mask which acts as a “write4220

mask”.4221

• If desc[GrB OUTP].GrB REPLACE is set, then any values in C(row index, :) on input to this4222

operation are deleted and the new contents of the column is given by:4223

L(C) = {(i, j, Cij) : i 6= row index} ∪ {(row index, j, zj) : j ∈ (ind(z̃) ∩ ind(m̃))}.4224

• If desc[GrB OUTP].GrB REPLACE is not set, the elements of z̃ indicated by the mask are4225

copied into the column of the final result matrix, C(row index, :), and elements of this column4226

that fall outside the set indicated by the mask are unchanged:4227

L(C) = {(i, j, Cij) : i 6= row index} ∪4228

{(row index, j, c̃(j)) : j ∈ (ind(c̃) ∩ ind(¬m̃))} ∪4229

{(row index, j, zj) : j ∈ (ind(z̃) ∩ ind(m̃))}.4230

In GrB BLOCKING mode, the method exits with return value GrB SUCCESS and the new content4231

of vector w is as defined above and fully computed. In GrB NONBLOCKING mode, the method4232

exits with return value GrB SUCCESS and the new content of vector w is as defined above but may4233

not be fully computed; however, it can be used in the next GraphBLAS method call in a sequence.4234

156

4.3.7.5 assign: Constant vector variant4235

Assign the same value to a specified subset of vector elements. With the use of GrB ALL, the entire4236

destination vector can be filled with the constant.4237

C Syntax4238

GrB_Info GrB_assign(GrB_Vector w,4239

const GrB_Vector mask,4240

const GrB_BinaryOp accum,4241

<type> val,4242

const GrB_Index *indices,4243

GrB_Index nindices,4244

const GrB_Descriptor desc);4245

Parameters4246

w (INOUT) An existing GraphBLAS vector. On input, the vector provides values4247

that may be accumulated with the result of the assign operation. On output, this4248

vector holds the results of the operation.4249

mask (IN) An optional “write” mask that controls which results from this operation are4250

stored into the output vector w. The mask dimensions must match those of the4251

vector w. If the GrB STRUCTURE descriptor is not set for the mask, the domain4252

of the mask vector must be of type bool or any of the predefined “built-in” types4253

in Table 2.2. If the default mask is desired (i.e., a mask that is all true with the4254

dimensions of w), GrB NULL should be specified.4255

accum (IN) An optional binary operator used for accumulating entries into existing w4256

entries. If assignment rather than accumulation is desired, GrB NULL should be4257

specified.4258

val (IN) Scalar value to assign to (a subset of) w.4259

indices (IN) Pointer to the ordered set (array) of indices corresponding to the locations in4260

w that are to be assigned. If all elements of w are to be assigned in order from 04261

to nindices − 1, then GrB ALL should be specified. Regardless of execution mode4262

and return value, this array may be manipulated by the caller after this operation4263

returns without affecting any deferred computations for this operation. In this4264

variant, the specific order of the values in the array has no effect on the result.4265

Unlike other variants, if there are duplicated values in this array the result is still4266

defined.4267

nindices (IN) The number of values in indices array. Must be in the range: [0, size(w)]. If4268

nindices is zero, the operation becomes a NO-OP.4269

157

desc (IN) An optional operation descriptor. If a default descriptor is desired, GrB NULL4270

should be specified. Non-default field/value pairs are listed as follows:4271

4272

Param Field Value Description

w GrB OUTP GrB REPLACE Output vector w is cleared (all elements
removed) before the result is stored in it.

mask GrB MASK GrB STRUCTURE The write mask is constructed from the
structure (pattern of stored values) of the
input mask vector. The stored values are
not examined.

mask GrB MASK GrB COMP Use the complement of mask.

4273

Return Values4274

GrB SUCCESS In blocking mode, the operation completed successfully. In non-4275

blocking mode, this indicates that the compatibility tests on di-4276

mensions and domains for the input arguments passed successfully.4277

Either way, output vector w is ready to be used in the next method4278

of the sequence.4279

GrB PANIC Unknown internal error.4280

GrB INVALID OBJECT This is returned in any execution mode whenever one of the opaque4281

GraphBLAS objects (input or output) is in an invalid state caused4282

by a previous execution error. Call GrB error() to access any error4283

messages generated by the implementation.4284

GrB OUT OF MEMORY Not enough memory available for operation.4285

GrB UNINITIALIZED OBJECT One or more of the GraphBLAS objects has not been initialized by4286

a call to new (or dup for vector parameters).4287

GrB INDEX OUT OF BOUNDS A value in indices is greater than or equal to size(w). In non-4288

blocking mode, this can be reported as an execution error.4289

GrB DIMENSION MISMATCH mask and w dimensions are incompatible, or nindices is not less than4290

size(w).4291

GrB DOMAIN MISMATCH The domains of the vector and scalar are incompatible with each4292

other or the corresponding domains of the accumulation operator,4293

or the mask’s domain is not compatible with bool (in the case where4294

desc[GrB MASK].GrB STRUCTURE is not set).4295

GrB NULL POINTER Argument indices is a NULL pointer.4296

158

Description4297

This variant of GrB assign computes the result of assigning a constant scalar value to locations in4298

a destination GraphBLAS vector: w(indices) = val; or, if an optional binary accumulation operator4299

(�) is provided, w(indices) = w(indices)� val. More explicitly:4300

w(indices[i]) = val, ∀ i : 0 ≤ i < nindices, or

w(indices[i]) = w(indices[i])� val, ∀ i : 0 ≤ i < nindices.
4301

Logically, this operation occurs in three steps:4302

Setup The internal vectors and mask used in the computation are formed and their domains4303

and dimensions are tested for compatibility.4304

Compute The indicated computations are carried out.4305

Output The result is written into the output vector, possibly under control of a mask.4306

Up to two argument vectors are used in the GrB assign operation:4307

1. w = 〈D(w), size(w),L(w) = {(i, wi)}〉4308

2. mask = 〈D(mask), size(mask),L(mask) = {(i,mi)}〉 (optional)4309

The argument scalar, vectors, and the accumulation operator (if provided) are tested for domain4310

compatibility as follows:4311

1. If mask is not GrB NULL, and desc[GrB MASK].GrB STRUCTURE is not set, then D(mask)4312

must be from one of the pre-defined types of Table 2.2.4313

2. D(w) must be compatible with D(val).4314

3. If accum is not GrB NULL, then D(w) must be compatible with Din1(accum) and Dout(accum)4315

of the accumulation operator and D(val) must be compatible with Din2(accum) of the accu-4316

mulation operator.4317

Two domains are compatible with each other if values from one domain can be cast to values in4318

the other domain as per the rules of the C language. In particular, domains from Table 2.2 are all4319

compatible with each other. A domain from a user-defined type is only compatible with itself. If4320

any compatibility rule above is violated, execution of GrB assign ends and the domain mismatch4321

error listed above is returned.4322

From the arguments, the internal vectors, mask and index array used in the computation are formed4323

(← denotes copy):4324

1. Vector w̃← w.4325

2. One-dimensional mask, m̃, is computed from argument mask as follows:4326

159

(a) If mask = GrB NULL, then m̃ = 〈size(w), {i, ∀ i : 0 ≤ i < size(w)}〉.4327

(b) If mask 6= GrB NULL,4328

i. If desc[GrB MASK].GrB STRUCTURE is set, then m̃ = 〈size(mask), {i : i ∈ ind(mask)}〉,4329

ii. Otherwise, m̃ = 〈size(mask), {i : i ∈ ind(mask) ∧ (bool)mask(i) = true}〉.4330

(c) If desc[GrB MASK].GrB COMP is set, then m̃← ¬m̃.4331

3. The internal index array, Ĩ, is computed from argument indices as follows:4332

(a) If indices = GrB ALL, then Ĩ[i] = i, ∀ i : 0 ≤ i < nindices.4333

(b) Otherwise, Ĩ[i] = indices[i], ∀ i : 0 ≤ i < nindices.4334

The internal vector and mask are checked for dimension compatibility. The following conditions4335

must hold:4336

1. size(w̃) = size(m̃)4337

2. 0 ≤ nindices ≤ size(w̃).4338

If any compatibility rule above is violated, execution of GrB assign ends and the dimension mismatch4339

error listed above is returned.4340

From this point forward, in GrB NONBLOCKING mode, the method can optionally exit with4341

GrB SUCCESS return code and defer any computation and/or execution error codes.4342

We are now ready to carry out the assign and any additional associated operations. We describe4343

this in terms of two intermediate vectors:4344

• t̃: The vector holding the copies of the scalar val in their destination locations relative to w̃.4345

• z̃: The vector holding the result after application of the (optional) accumulation operator.4346

The intermediate vector, t̃, is created as follows:4347

t̃ = 〈D(val), size(w̃), {(Ĩ[i], val) ∀ i, 0 ≤ i < nindices}〉.4348

If Ĩ is empty, this operation results in an empty vector, t̃. Otherwise, if any value in the Ĩ array4349

is not in the range [0, size(w̃)), the execution of GrB assign ends and the index out-of-bounds4350

error listed above is generated. In GrB NONBLOCKING mode, the error can be deferred until a4351

sequence-terminating GrB wait() is called. Regardless, the result vector, w, is invalid from this4352

point forward in the sequence.4353

The intermediate vector z̃ is created as follows:4354

• If accum = GrB NULL, then z̃ is defined as4355

z̃ = 〈D(w), size(w̃), {(i, zi),∀i ∈ (ind(w̃)− ({Ĩ[k], ∀k} ∩ ind(w̃))) ∪ ind(t̃)}〉.4356

160

The above expression defines the structure of vector z̃ as follows: We start with the structure4357

of w̃ (ind(w̃)) and remove from it all the indices of w̃ that are in the set of indices being4358

assigned ({Ĩ[k],∀k} ∩ ind(w̃)). Finally, we add the structure of t̃ (ind(t̃)).4359

The values of the elements of z̃ are computed based on the relationships between the sets of4360

indices in w̃ and t̃.4361

zi = w̃(i), if i ∈ (ind(w̃)− ({Ĩ[k], ∀k} ∩ ind(w̃))),4362

4363

zi = t̃(i), if i ∈ ind(t̃),4364

where the difference operator refers to set difference. We note that in this case of assigning4365

a constant, {Ĩ[k], ∀k} and ind(t̃) are identical.4366

• If accum is a binary operator, then z̃ is defined as4367

〈Dout(accum), size(w̃), {(i, zi) ∀ i ∈ ind(w̃) ∪ ind(t̃)}〉.4368

The values of the elements of z̃ are computed based on the relationships between the sets of4369

indices in w̃ and t̃.4370

zi = w̃(i)� t̃(i), if i ∈ (ind(t̃) ∩ ind(w̃)),4371

4372

zi = w̃(i), if i ∈ (ind(w̃)− (ind(t̃) ∩ ind(w̃))),4373

4374

zi = t̃(i), if i ∈ (ind(t̃)− (ind(t̃) ∩ ind(w̃))),4375

where � =
⊙

(accum), and the difference operator refers to set difference.4376

Finally, the set of output values that make up vector z̃ are written into the final result vector w,4377

using what is called a standard vector mask and replace. This is carried out under control of the4378

mask which acts as a “write mask”.4379

• If desc[GrB OUTP].GrB REPLACE is set, then any values in w on input to this operation are4380

deleted and the content of the new output vector, w, is defined as,4381

L(w) = {(i, zi) : i ∈ (ind(z̃) ∩ ind(m̃))}.4382

• If desc[GrB OUTP].GrB REPLACE is not set, the elements of z̃ indicated by the mask are4383

copied into the result vector, w, and elements of w that fall outside the set indicated by the4384

mask are unchanged:4385

L(w) = {(i, wi) : i ∈ (ind(w) ∩ ind(¬m̃))} ∪ {(i, zi) : i ∈ (ind(z̃) ∩ ind(m̃))}.4386

In GrB BLOCKING mode, the method exits with return value GrB SUCCESS and the new content of4387

vector w is as defined above and fully computed. In GrB NONBLOCKING mode, the method exits4388

with return value GrB SUCCESS and the new content of vector w is as defined above but may not4389

be fully computed. However, it can be used in the next GraphBLAS method call in a sequence.4390

161

4.3.7.6 assign: Constant matrix variant4391

Assign the same value to a specified subset of matrix elements. With the use of GrB ALL, the entire4392

destination matrix can be filled with the constant.4393

C Syntax4394

GrB_Info GrB_assign(GrB_Matrix C,4395

const GrB_Matrix Mask,4396

const GrB_BinaryOp accum,4397

<type> val,4398

const GrB_Index *row_indices,4399

GrB_Index nrows,4400

const GrB_Index *col_indices,4401

GrB_Index ncols,4402

const GrB_Descriptor desc);4403

Parameters4404

C (INOUT) An existing GraphBLAS matrix. On input, the matrix provides values4405

that may be accumulated with the result of the assign operation. On output, the4406

matrix holds the results of the operation.4407

Mask (IN) An optional “write” mask that controls which results from this operation are4408

stored into the output matrix C. The mask dimensions must match those of the4409

matrix C. If the GrB STRUCTURE descriptor is not set for the mask, the domain4410

of the Mask matrix must be of type bool or any of the predefined “built-in” types4411

in Table 2.2. If the default mask is desired (i.e., a mask that is all true with the4412

dimensions of C), GrB NULL should be specified.4413

accum (IN) An optional binary operator used for accumulating entries into existing C4414

entries. If assignment rather than accumulation is desired, GrB NULL should be4415

specified.4416

val (IN) Scalar value to assign to (a subset of) C.4417

row indices (IN) Pointer to the ordered set (array) of indices corresponding to the rows of C4418

that are assigned. If all rows of C are to be assigned in order from 0 to nrows− 1,4419

then GrB ALL can be specified. Regardless of execution mode and return value,4420

this array may be manipulated by the caller after this operation returns without4421

affecting any deferred computations for this operation. Unlike other variants, if4422

there are duplicated values in this array the result is still defined.4423

nrows (IN) The number of values in row indices array. Must be in the range: [0,nrows(C)].4424

If nrows is zero, the operation becomes a NO-OP.4425

162

col indices (IN) Pointer to the ordered set (array) of indices corresponding to the columns of C4426

that are assigned. If all columns of C are to be assigned in order from 0 to ncols−1,4427

then GrB ALL should be specified. Regardless of execution mode and return value,4428

this array may be manipulated by the caller after this operation returns without4429

affecting any deferred computations for this operation. Unlike other variants, if4430

there are duplicated values in this array the result is still defined.4431

ncols (IN) The number of values in col indices array. Must be in the range: [0,ncols(C)].4432

If ncols is zero, the operation becomes a NO-OP.4433

desc (IN) An optional operation descriptor. If a default descriptor is desired, GrB NULL4434

should be specified. Non-default field/value pairs are listed as follows:4435

4436

Param Field Value Description

C GrB OUTP GrB REPLACE Output matrix C is cleared (all elements
removed) before the result is stored in it.

Mask GrB MASK GrB STRUCTURE The write mask is constructed from the
structure (pattern of stored values) of the
input Mask matrix. The stored values are
not examined.

Mask GrB MASK GrB COMP Use the complement of Mask.

4437

Return Values4438

GrB SUCCESS In blocking mode, the operation completed successfully. In non-4439

blocking mode, this indicates that the compatibility tests on di-4440

mensions and domains for the input arguments passed successfully.4441

Either way, output matrix C is ready to be used in the next method4442

of the sequence.4443

GrB PANIC Unknown internal error.4444

GrB INVALID OBJECT This is returned in any execution mode whenever one of the opaque4445

GraphBLAS objects (input or output) is in an invalid state caused4446

by a previous execution error. Call GrB error() to access any error4447

messages generated by the implementation.4448

GrB OUT OF MEMORY Not enough memory available for the operation.4449

GrB UNINITIALIZED OBJECT One or more of the GraphBLAS objects has not been initialized by4450

a call to new (or dup for vector parameters).4451

GrB INDEX OUT OF BOUNDS A value in row indices is greater than or equal to nrows(C), or a4452

value in col indices is greater than or equal to ncols(C). In non-4453

blocking mode, this can be reported as an execution error.4454

GrB DIMENSION MISMATCH Mask and C dimensions are incompatible, nrows is not less than4455

nrows(C), or ncols is not less than ncols(C).4456

163

GrB DOMAIN MISMATCH The domains of the matrix and scalar are incompatible with each4457

other or the corresponding domains of the accumulation operator,4458

or the mask’s domain is not compatible with bool (in the case where4459

desc[GrB MASK].GrB STRUCTURE is not set).4460

GrB NULL POINTER Either argument row indices is a NULL pointer, argument col indices4461

is a NULL pointer, or both.4462

Description4463

This variant of GrB assign computes the result of assigning a constant scalar value to locations4464

in a destination GraphBLAS matrix: C(row indices, col indices) = val; or, if an optional binary4465

accumulation operator (�) is provided, C(row indices, col indices) = w(row indices, col indices)� val.4466

More explicitly:4467

C(row indices[i], col indices[j]) = val, or

C(row indices[i], col indices[j]) = C(row indices[i], col indices[j])� val

∀ (i, j) : 0 ≤ i < nrows, 0 ≤ j < ncols

4468

Logically, this operation occurs in three steps:4469

Setup The internal vectors and mask used in the computation are formed and their domains4470

and dimensions are tested for compatibility.4471

Compute The indicated computations are carried out.4472

Output The result is written into the output matrix, possibly under control of a mask.4473

Up to two argument matrices are used in the GrB assign operation:4474

1. C = 〈D(C),nrows(C),ncols(C),L(C) = {(i, j, Cij)}〉4475

2. Mask = 〈D(Mask),nrows(Mask),ncols(Mask),L(Mask) = {(i, j,Mij)}〉 (optional)4476

The argument scalar, matrices, and the accumulation operator (if provided) are tested for domain4477

compatibility as follows:4478

1. If Mask is not GrB NULL, and desc[GrB MASK].GrB STRUCTURE is not set, then D(Mask)4479

must be from one of the pre-defined types of Table 2.2.4480

2. D(C) must be compatible with D(val).4481

3. If accum is not GrB NULL, then D(C) must be compatible with Din1(accum) and Dout(accum)4482

of the accumulation operator and D(val) must be compatible with Din2(accum) of the accu-4483

mulation operator.4484

164

Two domains are compatible with each other if values from one domain can be cast to values in4485

the other domain as per the rules of the C language. In particular, domains from Table 2.2 are all4486

compatible with each other. A domain from a user-defined type is only compatible with itself. If4487

any compatibility rule above is violated, execution of GrB assign ends and the domain mismatch4488

error listed above is returned.4489

From the arguments, the internal matrices, index arrays, and mask used in the computation are4490

formed (← denotes copy):4491

1. Matrix C̃← C.4492

2. Two-dimensional mask M̃ is computed from argument Mask as follows:4493

(a) If Mask = GrB NULL, then M̃ = 〈nrows(C),ncols(C), {(i, j), ∀i, j : 0 ≤ i < nrows(C), 0 ≤4494

j < ncols(C)}〉.4495

(b) If Mask 6= GrB NULL,4496

i. If desc[GrB MASK].GrB STRUCTURE is set, then M̃ = 〈nrows(Mask),ncols(Mask), {(i, j) :4497

(i, j) ∈ ind(Mask)}〉,4498

ii. Otherwise, M̃ = 〈nrows(Mask),ncols(Mask),4499

{(i, j) : (i, j) ∈ ind(Mask) ∧ (bool)Mask(i, j) = true}〉.4500

(c) If desc[GrB MASK].GrB COMP is set, then M̃← ¬M̃.4501

3. The internal row index array, Ĩ, is computed from argument row indices as follows:4502

(a) If row indices = GrB ALL, then Ĩ[i] = i,∀i : 0 ≤ i < nrows.4503

(b) Otherwise, Ĩ[i] = row indices[i],∀i : 0 ≤ i < nrows.4504

4. The internal column index array, J̃ , is computed from argument col indices as follows:4505

(a) If col indices = GrB ALL, then J̃ [j] = j,∀j : 0 ≤ j < ncols.4506

(b) Otherwise, J̃ [j] = col indices[j], ∀j : 0 ≤ j < ncols.4507

The internal matrix and mask are checked for dimension compatibility. The following conditions4508

must hold:4509

1. nrows(C̃) = nrows(M̃).4510

2. ncols(C̃) = ncols(M̃).4511

3. 0 ≤ nrows ≤ nrows(C̃).4512

4. 0 ≤ ncols ≤ ncols(C̃).4513

If any compatibility rule above is violated, execution of GrB assign ends and the dimension mismatch4514

error listed above is returned.4515

From this point forward, in GrB NONBLOCKING mode, the method can optionally exit with4516

GrB SUCCESS return code and defer any computation and/or execution error codes.4517

165

We are now ready to carry out the assign and any additional associated operations. We describe4518

this in terms of two intermediate vectors:4519

• T̃: The matrix holding the copies of the scalar val in their destination locations relative to4520

C̃.4521

• Z̃: The matrix holding the result after application of the (optional) accumulation operator.4522

The intermediate matrix, T̃, is created as follows:4523

T̃ = 〈D(val),nrows(C̃),ncols(C̃),

{(Ĩ[i], J̃ [j], val) ∀ (i, j), 0 ≤ i < nrows, 0 ≤ j < ncols}〉.
4524

If either Ĩ or J̃ is empty, this operation results in an empty matrix, T̃. Otherwise, if any value4525

in the Ĩ array is not in the range [0, nrows(C̃)) or any value in the J̃ array is not in the range4526

[0, ncols(C̃)), the execution of GrB assign ends and the index out-of-bounds error listed above is4527

generated. In GrB NONBLOCKING mode, the error can be deferred until a sequence-terminating4528

GrB wait() is called. Regardless, the result matrix C is invalid from this point forward in the4529

sequence.4530

The intermediate matrix Z̃ is created as follows:4531

• If accum = GrB NULL, then Z̃ is defined as4532

Z̃ = 〈D(C),nrows(C̃),ncols(C̃),4533

{(i, j, Zij)∀(i, j) ∈ (ind(C̃)− ({(Ĩ[k], J̃ [l]),∀k, l} ∩ ind(C̃))) ∪ ind(T̃)}〉.4534

The above expression defines the structure of matrix Z̃ as follows: We start with the structure4535

of C̃ (ind(C̃)) and remove from it all the indices of C̃ that are in the set of indices being4536

assigned ({(Ĩ[k], J̃ [l]),∀k, l} ∩ ind(C̃)). Finally, we add the structure of T̃ (ind(T̃)).4537

The values of the elements of Z̃ are computed based on the relationships between the sets of4538

indices in C̃ and T̃.4539

Zij = C̃(i, j), if (i, j) ∈ (ind(C̃)− ({(Ĩ[k], J̃ [l]), ∀k, l} ∩ ind(C̃))),4540

4541

Zij = T̃(i, j), if (i, j) ∈ ind(T̃),4542

where the difference operator refers to set difference. We note that, in this particular case of4543

assigning a constant to a matrix, the sets {(Ĩ[k], J̃ [l]), ∀k, l} and ind(T̃) are identical.4544

• If accum is a binary operator, then Z̃ is defined as4545

〈Dout(accum),nrows(C̃),ncols(C̃), {(i, j, Zij)∀(i, j) ∈ ind(C̃) ∪ ind(T̃)}〉.4546

The values of the elements of Z̃ are computed based on the relationships between the sets of4547

indices in C̃ and T̃.4548

Zij = C̃(i, j)� T̃(i, j), if (i, j) ∈ (ind(T̃) ∩ ind(C̃)),4549

166

4550

Zij = C̃(i, j), if (i, j) ∈ (ind(C̃)− (ind(T̃) ∩ ind(C̃))),4551

4552

Zij = T̃(i, j), if (i, j) ∈ (ind(T̃)− (ind(T̃) ∩ ind(C̃))),4553

where � =
⊙

(accum), and the difference operator refers to set difference.4554

Finally, the set of output values that make up matrix Z̃ are written into the final result matrix C,4555

using what is called a standard matrix mask and replace. This is carried out under control of the4556

mask which acts as a “write mask”.4557

• If desc[GrB OUTP].GrB REPLACE is set, then any values in C on input to this operation are4558

deleted and the content of the new output matrix, C, is defined as,4559

L(C) = {(i, j, Zij) : (i, j) ∈ (ind(Z̃) ∩ ind(M̃))}.4560

• If desc[GrB OUTP].GrB REPLACE is not set, the elements of Z̃ indicated by the mask are4561

copied into the result matrix, C, and elements of C that fall outside the set indicated by the4562

mask are unchanged:4563

L(C) = {(i, j, Cij) : (i, j) ∈ (ind(C) ∩ ind(¬M̃))} ∪ {(i, j, Zij) : (i, j) ∈ (ind(Z̃) ∩ ind(M̃))}.4564

In GrB BLOCKING mode, the method exits with return value GrB SUCCESS and the new content4565

of matrix C is as defined above and fully computed. In GrB NONBLOCKING mode, the method4566

exits with return value GrB SUCCESS and the new content of matrix C is as defined above but4567

may not be fully computed. However, it can be used in the next GraphBLAS method call in a4568

sequence.4569

4.3.8 apply: Apply a function to the elements of an object4570

Computes the transformation of the values of the elements of a vector or a matrix using a unary4571

function, or a binary function where one argument is bound to a scalar.4572

4.3.8.1 apply: Vector variant4573

Computes the transformation of the values of the elements of a vector using a unary function.4574

C Syntax4575

GrB_Info GrB_apply(GrB_Vector w,4576

const GrB_Vector mask,4577

const GrB_BinaryOp accum,4578

const GrB_UnaryOp op,4579

const GrB_Vector u,4580

const GrB_Descriptor desc);4581

167

Parameters4582

w (INOUT) An existing GraphBLAS vector. On input, the vector provides values4583

that may be accumulated with the result of the apply operation. On output, this4584

vector holds the results of the operation.4585

mask (IN) An optional “write” mask that controls which results from this operation are4586

stored into the output vector w. The mask dimensions must match those of the4587

vector w. If the GrB STRUCTURE descriptor is not set for the mask, the domain4588

of the mask vector must be of type bool or any of the predefined “built-in” types4589

in Table 2.2. If the default mask is desired (i.e., a mask that is all true with the4590

dimensions of w), GrB NULL should be specified.4591

accum (IN) An optional binary operator used for accumulating entries into existing w4592

entries. If assignment rather than accumulation is desired, GrB NULL should be4593

specified.4594

op (IN) A unary operator applied to each element of input vector u.4595

u (IN) The GraphBLAS vector to which the unary function is applied.4596

desc (IN) An optional operation descriptor. If a default descriptor is desired, GrB NULL4597

should be specified. Non-default field/value pairs are listed as follows:4598

4599

Param Field Value Description

w GrB OUTP GrB REPLACE Output vector w is cleared (all elements
removed) before the result is stored in it.

mask GrB MASK GrB STRUCTURE The write mask is constructed from the
structure (pattern of stored values) of the
input mask vector. The stored values are
not examined.

mask GrB MASK GrB COMP Use the complement of mask.

4600

Return Values4601

GrB SUCCESS In blocking mode, the operation completed successfully. In non-4602

blocking mode, this indicates that the compatibility tests on di-4603

mensions and domains for the input arguments passed successfully.4604

Either way, output vector w is ready to be used in the next method4605

of the sequence.4606

GrB PANIC Unknown internal error.4607

GrB INVALID OBJECT This is returned in any execution mode whenever one of the opaque4608

GraphBLAS objects (input or output) is in an invalid state caused4609

by a previous execution error. Call GrB error() to access any error4610

messages generated by the implementation.4611

168

GrB OUT OF MEMORY Not enough memory available for operation.4612

GrB UNINITIALIZED OBJECT One or more of the GraphBLAS objects has not been initialized by4613

a call to new (or dup for vector parameters).4614

GrB DIMENSION MISMATCH mask, w and/or u dimensions are incompatible.4615

GrB DOMAIN MISMATCH The domains of the various vectors are incompatible with the corre-4616

sponding domains of the accumulation operator or unary function,4617

or the mask’s domain is not compatible with bool (in the case where4618

desc[GrB MASK].GrB STRUCTURE is not set).4619

Description4620

This variant of GrB apply computes the result of applying a unary function to the elements of a4621

GraphBLAS vector: w = f(u); or, if an optional binary accumulation operator (�) is provided,4622

w = w � f(u).4623

Logically, this operation occurs in three steps:4624

Setup The internal vectors and mask used in the computation are formed and their domains4625

and dimensions are tested for compatibility.4626

Compute The indicated computations are carried out.4627

Output The result is written into the output vector, possibly under control of a mask.4628

Up to three argument vectors are used in this GrB apply operation:4629

1. w = 〈D(w), size(w),L(w) = {(i, wi)}〉4630

2. mask = 〈D(mask), size(mask),L(mask) = {(i,mi)}〉 (optional)4631

3. u = 〈D(u), size(u),L(u) = {(i, ui)}〉4632

The argument vectors, unary operator and the accumulation operator (if provided) are tested for4633

domain compatibility as follows:4634

1. If mask is not GrB NULL, and desc[GrB MASK].GrB STRUCTURE is not set, then D(mask)4635

must be from one of the pre-defined types of Table 2.2.4636

2. D(w) must be compatible with Dout(op) of the unary operator.4637

3. If accum is not GrB NULL, then D(w) must be compatible with Din1(accum) and Dout(accum)4638

of the accumulation operator and Dout(op) of the unary operator must be compatible with4639

Din2(accum) of the accumulation operator.4640

4. D(u) must be compatible with Din(op).4641

169

Two domains are compatible with each other if values from one domain can be cast to values in4642

the other domain as per the rules of the C language. In particular, domains from Table 2.2 are4643

all compatible with each other. A domain from a user-defined type is only compatible with itself.4644

If any compatibility rule above is violated, execution of GrB apply ends and the domain mismatch4645

error listed above is returned.4646

From the argument vectors, the internal vectors and mask used in the computation are formed (←4647

denotes copy):4648

1. Vector w̃← w.4649

2. One-dimensional mask, m̃, is computed from argument mask as follows:4650

(a) If mask = GrB NULL, then m̃ = 〈size(w), {i, ∀ i : 0 ≤ i < size(w)}〉.4651

(b) If mask 6= GrB NULL,4652

i. If desc[GrB MASK].GrB STRUCTURE is set, then m̃ = 〈size(mask), {i : i ∈ ind(mask)}〉,4653

ii. Otherwise, m̃ = 〈size(mask), {i : i ∈ ind(mask) ∧ (bool)mask(i) = true}〉.4654

(c) If desc[GrB MASK].GrB COMP is set, then m̃← ¬m̃.4655

3. Vector ũ← u.4656

The internal vectors and masks are checked for dimension compatibility. The following conditions4657

must hold:4658

1. size(w̃) = size(m̃)4659

2. size(ũ) = size(w̃).4660

If any compatibility rule above is violated, execution of GrB apply ends and the dimension mismatch4661

error listed above is returned.4662

From this point forward, in GrB NONBLOCKING mode, the method can optionally exit with4663

GrB SUCCESS return code and defer any computation and/or execution error codes.4664

We are now ready to carry out the apply and any additional associated operations. We describe4665

this in terms of two intermediate vectors:4666

• t̃: The vector holding the result from applying the unary operator to the input vector ũ.4667

• z̃: The vector holding the result after application of the (optional) accumulation operator.4668

The intermediate vector, t̃, is created as follows:4669

t̃ = 〈Dout(op), size(ũ),L(t̃) = {(i, f(ũ(i)))∀i ∈ ind(ũ)}〉,4670

where f = f(op).4671

The intermediate vector z̃ is created as follows, using what is called a standard vector accumulate:4672

170

• If accum = GrB NULL, then z̃ = t̃.4673

• If accum is a binary operator, then z̃ is defined as4674

z̃ = 〈Dout(accum), size(w̃), {(i, zi) ∀ i ∈ ind(w̃) ∪ ind(t̃)}〉.4675

The values of the elements of z̃ are computed based on the relationships between the sets of4676

indices in w̃ and t̃.4677

zi = w̃(i)� t̃(i), if i ∈ (ind(t̃) ∩ ind(w̃)),4678

4679

zi = w̃(i), if i ∈ (ind(w̃)− (ind(t̃) ∩ ind(w̃))),4680

4681

zi = t̃(i), if i ∈ (ind(t̃)− (ind(t̃) ∩ ind(w̃))),4682

where � =
⊙

(accum), and the difference operator refers to set difference.4683

Finally, the set of output values that make up vector z̃ are written into the final result vector w,4684

using what is called a standard vector mask and replace. This is carried out under control of the4685

mask which acts as a “write mask”.4686

• If desc[GrB OUTP].GrB REPLACE is set, then any values in w on input to this operation are4687

deleted and the content of the new output vector, w, is defined as,4688

L(w) = {(i, zi) : i ∈ (ind(z̃) ∩ ind(m̃))}.4689

• If desc[GrB OUTP].GrB REPLACE is not set, the elements of z̃ indicated by the mask are4690

copied into the result vector, w, and elements of w that fall outside the set indicated by the4691

mask are unchanged:4692

L(w) = {(i, wi) : i ∈ (ind(w) ∩ ind(¬m̃))} ∪ {(i, zi) : i ∈ (ind(z̃) ∩ ind(m̃))}.4693

In GrB BLOCKING mode, the method exits with return value GrB SUCCESS and the new content of4694

vector w is as defined above and fully computed. In GrB NONBLOCKING mode, the method exits4695

with return value GrB SUCCESS and the new content of vector w is as defined above but may not4696

be fully computed. However, it can be used in the next GraphBLAS method call in a sequence.4697

4.3.8.2 apply: Matrix variant4698

Computes the transformation of the values of the elements of a matrix using a unary function.4699

C Syntax4700

GrB_Info GrB_apply(GrB_Matrix C,4701

const GrB_Matrix Mask,4702

const GrB_BinaryOp accum,4703

const GrB_UnaryOp op,4704

const GrB_Matrix A,4705

const GrB_Descriptor desc);4706

171

Parameters4707

C (INOUT) An existing GraphBLAS matrix. On input, the matrix provides values4708

that may be accumulated with the result of the apply operation. On output, the4709

matrix holds the results of the operation.4710

Mask (IN) An optional “write” mask that controls which results from this operation are4711

stored into the output matrix C. The mask dimensions must match those of the4712

matrix C. If the GrB STRUCTURE descriptor is not set for the mask, the domain4713

of the Mask matrix must be of type bool or any of the predefined “built-in” types4714

in Table 2.2. If the default mask is desired (i.e., a mask that is all true with the4715

dimensions of C), GrB NULL should be specified.4716

accum (IN) An optional binary operator used for accumulating entries into existing C4717

entries. If assignment rather than accumulation is desired, GrB NULL should be4718

specified.4719

op (IN) A unary operator applied to each element of input matrix A.4720

A (IN) The GraphBLAS matrix to which the unary function is applied.4721

desc (IN) An optional operation descriptor. If a default descriptor is desired, GrB NULL4722

should be specified. Non-default field/value pairs are listed as follows:4723

4724

Param Field Value Description

C GrB OUTP GrB REPLACE Output matrix C is cleared (all elements
removed) before the result is stored in it.

Mask GrB MASK GrB STRUCTURE The write mask is constructed from the
structure (pattern of stored values) of the
input Mask matrix. The stored values are
not examined.

Mask GrB MASK GrB COMP Use the complement of Mask.
A GrB INP0 GrB TRAN Use transpose of A for the operation.

4725

Return Values4726

GrB SUCCESS In blocking mode, the operation completed successfully. In non-4727

blocking mode, this indicates that the compatibility tests on di-4728

mensions and domains for the input arguments passed successfully.4729

Either way, output matrix C is ready to be used in the next method4730

of the sequence.4731

GrB PANIC Unknown internal error.4732

GrB INVALID OBJECT This is returned in any execution mode whenever one of the opaque4733

GraphBLAS objects (input or output) is in an invalid state caused4734

by a previous execution error. Call GrB error() to access any error4735

messages generated by the implementation.4736

172

GrB OUT OF MEMORY Not enough memory available for the operation.4737

GrB UNINITIALIZED OBJECT One or more of the GraphBLAS objects has not been initialized by4738

a call to new (or Matrix dup for matrix parameters).4739

GrB INDEX OUT OF BOUNDS A value in row indices is greater than or equal to nrows(A), or a4740

value in col indices is greater than or equal to ncols(A). In non-4741

blocking mode, this can be reported as an execution error.4742

GrB DIMENSION MISMATCH Mask and C dimensions are incompatible, nrows 6= nrows(C), or4743

ncols 6= ncols(C).4744

GrB DOMAIN MISMATCH The domains of the various matrices are incompatible with the cor-4745

responding domains of the accumulation operator or unary func-4746

tion, or the mask’s domain is not compatible with bool (in the case4747

where desc[GrB MASK].GrB STRUCTURE is not set).4748

Description4749

This variant of GrB apply computes the result of applying a unary function to the elements of a4750

GraphBLAS matrix: C = f(A); or, if an optional binary accumulation operator (�) is provided,4751

C = C� f(A).4752

Logically, this operation occurs in three steps:4753

Setup The internal matrices and mask used in the computation are formed and their domains4754

and dimensions are tested for compatibility.4755

Compute The indicated computations are carried out.4756

Output The result is written into the output matrix, possibly under control of a mask.4757

Up to three argument matrices are used in the GrB apply operation:4758

1. C = 〈D(C),nrows(C),ncols(C),L(C) = {(i, j, Cij)}〉4759

2. Mask = 〈D(Mask),nrows(Mask),ncols(Mask),L(Mask) = {(i, j,Mij)}〉 (optional)4760

3. A = 〈D(A),nrows(A),ncols(A),L(A) = {(i, j, Aij)}〉4761

The argument matrices, unary operator and the accumulation operator (if provided) are tested for4762

domain compatibility as follows:4763

1. If Mask is not GrB NULL, and desc[GrB MASK].GrB STRUCTURE is not set, then D(Mask)4764

must be from one of the pre-defined types of Table 2.2.4765

2. D(C) must be compatible with Dout(op) of the unary operator.4766

173

3. If accum is not GrB NULL, then D(C) must be compatible with Din1(accum) and Dout(accum)4767

of the accumulation operator and Dout(op) of the unary operator must be compatible with4768

Din2(accum) of the accumulation operator.4769

4. D(A) must be compatible with Din(op) of the unary operator.4770

Two domains are compatible with each other if values from one domain can be cast to values in4771

the other domain as per the rules of the C language. In particular, domains from Table 2.2 are4772

all compatible with each other. A domain from a user-defined type is only compatible with itself.4773

If any compatibility rule above is violated, execution of GrB apply ends and the domain mismatch4774

error listed above is returned.4775

From the argument matrices, the internal matrices, mask, and index arrays used in the computation4776

are formed (← denotes copy):4777

1. Matrix C̃← C.4778

2. Two-dimensional mask, M̃, is computed from argument Mask as follows:4779

(a) If Mask = GrB NULL, then M̃ = 〈nrows(C),ncols(C), {(i, j), ∀i, j : 0 ≤ i < nrows(C), 0 ≤4780

j < ncols(C)}〉.4781

(b) If Mask 6= GrB NULL,4782

i. If desc[GrB MASK].GrB STRUCTURE is set, then M̃ = 〈nrows(Mask),ncols(Mask), {(i, j) :4783

(i, j) ∈ ind(Mask)}〉,4784

ii. Otherwise, M̃ = 〈nrows(Mask),ncols(Mask),4785

{(i, j) : (i, j) ∈ ind(Mask) ∧ (bool)Mask(i, j) = true}〉.4786

(c) If desc[GrB MASK].GrB COMP is set, then M̃← ¬M̃.4787

3. Matrix Ã← desc[GrB INP0].GrB TRAN ? AT : A.4788

The internal matrices and mask are checked for dimension compatibility. The following conditions4789

must hold:4790

1. nrows(C̃) = nrows(M̃).4791

2. ncols(C̃) = ncols(M̃).4792

3. nrows(C̃) = nrows(Ã).4793

4. ncols(C̃) = ncols(Ã).4794

If any compatibility rule above is violated, execution of GrB apply ends and the dimension mismatch4795

error listed above is returned.4796

From this point forward, in GrB NONBLOCKING mode, the method can optionally exit with4797

GrB SUCCESS return code and defer any computation and/or execution error codes.4798

We are now ready to carry out the apply and any additional associated operations. We describe4799

this in terms of two intermediate matrices:4800

174

• T̃: The matrix holding the result from applying the unary operator to the input matrix Ã.4801

• Z̃: The matrix holding the result after application of the (optional) accumulation operator.4802

The intermediate matrix, T̃, is created as follows:4803

T̃ =〈Dout(op),nrows(C̃),ncols(C̃),L(T̃) = {(i, j, f(Ã(i, j))) ∀ (i, j) ∈ ind(Ã)}〉,4804

where f = f(op).4805

The intermediate matrix Z̃ is created as follows, using what is called a standard matrix accumulate:4806

• If accum = GrB NULL, then Z̃ = T̃.4807

• If accum is a binary operator, then Z̃ is defined as4808

Z̃ = 〈Dout(accum),nrows(C̃),ncols(C̃), {(i, j, Zij)∀(i, j) ∈ ind(C̃) ∪ ind(T̃)}〉.4809

The values of the elements of Z̃ are computed based on the relationships between the sets of4810

indices in C̃ and T̃.4811

Zij = C̃(i, j)� T̃(i, j), if (i, j) ∈ (ind(T̃) ∩ ind(C̃)),4812

4813

Zij = C̃(i, j), if (i, j) ∈ (ind(C̃)− (ind(T̃) ∩ ind(C̃))),4814

4815

Zij = T̃(i, j), if (i, j) ∈ (ind(T̃)− (ind(T̃) ∩ ind(C̃))),4816

where � =
⊙

(accum), and the difference operator refers to set difference.4817

Finally, the set of output values that make up matrix Z̃ are written into the final result matrix C,4818

using what is called a standard matrix mask and replace. This is carried out under control of the4819

mask which acts as a “write mask”.4820

• If desc[GrB OUTP].GrB REPLACE is set, then any values in C on input to this operation are4821

deleted and the content of the new output matrix, C, is defined as,4822

L(C) = {(i, j, Zij) : (i, j) ∈ (ind(Z̃) ∩ ind(M̃))}.4823

• If desc[GrB OUTP].GrB REPLACE is not set, the elements of Z̃ indicated by the mask are4824

copied into the result matrix, C, and elements of C that fall outside the set indicated by the4825

mask are unchanged:4826

L(C) = {(i, j, Cij) : (i, j) ∈ (ind(C) ∩ ind(¬M̃))} ∪ {(i, j, Zij) : (i, j) ∈ (ind(Z̃) ∩ ind(M̃))}.4827

In GrB BLOCKING mode, the method exits with return value GrB SUCCESS and the new content4828

of matrix C is as defined above and fully computed. In GrB NONBLOCKING mode, the method4829

exits with return value GrB SUCCESS and the new content of matrix C is as defined above but4830

may not be fully computed. However, it can be used in the next GraphBLAS method call in a4831

sequence.4832

175

4.3.8.3 apply: Vector-BinaryOp variants4833

Computes the transformation of the values of the stored elements of a vector using a binary operator4834

and a scalar value. In the bind-first variant, the specified scalar value is passed as the first argument4835

to the binary operator and stored elements of the vector are passed as the second argument. In the4836

bind-second variant, the elements of the vector are passed as the first argument and the specified4837

scalar value is passed as the second argument.4838

C Syntax4839

// bind-first4840

GrB_Info GrB_apply(GrB_Vector w,4841

const GrB_Vector mask,4842

const GrB_BinaryOp accum,4843

const GrB_BinaryOp op,4844

<type> val,4845

const GrB_Vector u,4846

const GrB_Descriptor desc);4847

4848

// bind-second4849

GrB_Info GrB_apply(GrB_Vector w,4850

const GrB_Vector mask,4851

const GrB_BinaryOp accum,4852

const GrB_BinaryOp op,4853

const GrB_Vector u,4854

<type> val,4855

const GrB_Descriptor desc);4856

Parameters4857

w (INOUT) An existing GraphBLAS vector. On input, the vector provides values4858

that may be accumulated with the result of the apply operation. On output, this4859

vector holds the results of the operation.4860

mask (IN) An optional “write” mask that controls which results from this operation are4861

stored into the output vector w. The mask dimensions must match those of the4862

vector w. If the GrB STRUCTURE descriptor is not set for the mask, the domain4863

of the mask vector must be of type bool or any of the predefined “built-in” types4864

in Table 2.2. If the default mask is desired (i.e., a mask that is all true with the4865

dimensions of w), GrB NULL should be specified.4866

accum (IN) An optional binary operator used for accumulating entries into existing w4867

entries. If assignment rather than accumulation is desired, GrB NULL should be4868

specified.4869

176

op (IN) A binary operator applied to each element of input vector, u, and the scalar4870

value, val.4871

u (IN) The GraphBLAS vector whose elements are passed to the binary operator as4872

the right-hand (second) argument in the bind-first variant, or the left-hand (first)4873

argument in the bind-second variant.4874

val (IN) Scalar value that is passed to the binary operator as the left-hand (first)4875

argument in the bind-first variant, or the right-hand (second) argument in the4876

bind-second variant.4877

desc (IN) An optional operation descriptor. If a default descriptor is desired, GrB NULL4878

should be specified. Non-default field/value pairs are listed as follows:4879

4880

Param Field Value Description

w GrB OUTP GrB REPLACE Output vector w is cleared (all elements
removed) before the result is stored in it.

mask GrB MASK GrB STRUCTURE The write mask is constructed from the
structure (pattern of stored values) of the
input mask vector. The stored values are
not examined.

mask GrB MASK GrB COMP Use the complement of mask.

4881

Return Values4882

GrB SUCCESS In blocking mode, the operation completed successfully. In non-4883

blocking mode, this indicates that the compatibility tests on di-4884

mensions and domains for the input arguments passed successfully.4885

Either way, output vector w is ready to be used in the next method4886

of the sequence.4887

GrB PANIC Unknown internal error.4888

GrB INVALID OBJECT This is returned in any execution mode whenever one of the opaque4889

GraphBLAS objects (input or output) is in an invalid state caused4890

by a previous execution error. Call GrB error() to access any error4891

messages generated by the implementation.4892

GrB OUT OF MEMORY Not enough memory available for operation.4893

GrB UNINITIALIZED OBJECT One or more of the GraphBLAS objects has not been initialized by4894

a call to new (or dup for vector parameters).4895

GrB DIMENSION MISMATCH mask, w and/or u dimensions are incompatible.4896

GrB DOMAIN MISMATCH The domains of the various vectors and scalar are incompatible with4897

the corresponding domains of the binary operator or accumulation4898

operator, or the mask’s domain is not compatible with bool (in the4899

case where desc[GrB MASK].GrB STRUCTURE is not set).4900

177

Description4901

This variant of GrB apply computes the result of applying a binary operator to the elements of a4902

GraphBLAS vector each composed with a scalar constant, val:4903

bind-first: w = f(val, u)4904

bind-second: w = f(u, val),4905

or if an optional binary accumulation operator (�) is provided:4906

bind-first: w = w � f(val, u)4907

bind-second: w = w � f(u, val).4908

Logically, this operation occurs in three steps:4909

Setup The internal vectors and mask used in the computation are formed and their domains4910

and dimensions are tested for compatibility.4911

Compute The indicated computations are carried out.4912

Output The result is written into the output vector, possibly under control of a mask.4913

Up to three argument vectors are used in this GrB apply operation:4914

1. w = 〈D(w), size(w),L(w) = {(i, wi)}〉4915

2. mask = 〈D(mask), size(mask),L(mask) = {(i,mi)}〉 (optional)4916

3. u = 〈D(u), size(u),L(u) = {(i, ui)}〉4917

The argument scalar, vectors, binary operator and the accumulation operator (if provided) are4918

tested for domain compatibility as follows:4919

1. If mask is not GrB NULL, and desc[GrB MASK].GrB STRUCTURE is not set, then D(mask)4920

must be from one of the pre-defined types of Table 2.2.4921

2. D(w) must be compatible with Dout(op) of the binary operator.4922

3. If accum is not GrB NULL, then D(w) must be compatible with Din1(accum) and Dout(accum)4923

of the accumulation operator and Dout(op) of the binary operator must be compatible with4924

Din2(accum) of the accumulation operator.4925

4. D(u) must be compatible with Din1(op) of the binary operator.4926

5. D(val) must be compatible with Din2(op) of the binary operator.4927

178

Two domains are compatible with each other if values from one domain can be cast to values in4928

the other domain as per the rules of the C language. In particular, domains from Table 2.2 are4929

all compatible with each other. A domain from a user-defined type is only compatible with itself.4930

If any compatibility rule above is violated, execution of GrB apply ends and the domain mismatch4931

error listed above is returned.4932

From the argument vectors, the internal vectors and mask used in the computation are formed (←4933

denotes copy):4934

1. Vector w̃← w.4935

2. One-dimensional mask, m̃, is computed from argument mask as follows:4936

(a) If mask = GrB NULL, then m̃ = 〈size(w), {i, ∀ i : 0 ≤ i < size(w)}〉.4937

(b) If mask 6= GrB NULL,4938

i. If desc[GrB MASK].GrB STRUCTURE is set, then m̃ = 〈size(mask), {i : i ∈ ind(mask)}〉,4939

ii. Otherwise, m̃ = 〈size(mask), {i : i ∈ ind(mask) ∧ (bool)mask(i) = true}〉.4940

(c) If desc[GrB MASK].GrB COMP is set, then m̃← ¬m̃.4941

3. Vector ũ← u.4942

The internal vectors and masks are checked for dimension compatibility. The following conditions4943

must hold:4944

1. size(w̃) = size(m̃)4945

2. size(ũ) = size(w̃).4946

If any compatibility rule above is violated, execution of GrB apply ends and the dimension mismatch4947

error listed above is returned.4948

From this point forward, in GrB NONBLOCKING mode, the method can optionally exit with4949

GrB SUCCESS return code and defer any computation and/or execution error codes.4950

We are now ready to carry out the apply and any additional associated operations. We describe4951

this in terms of two intermediate vectors:4952

• t̃: The vector holding the result from applying the binary operator to the input vector ũ.4953

• z̃: The vector holding the result after application of the (optional) accumulation operator.4954

The intermediate vector, t̃, is created as one of the following:4955

bind-first: t̃ = 〈Dout(op), size(ũ),L(t̃) = {(i, f(val, ũ(i)))∀i ∈ ind(ũ)}〉,4956

bind-second: t̃ = 〈Dout(op), size(ũ),L(t̃) = {(i, f(ũ(i), val))∀i ∈ ind(ũ)}〉,4957

179

where f = f(op).4958

The intermediate vector z̃ is created as follows, using what is called a standard vector accumulate:4959

• If accum = GrB NULL, then z̃ = t̃.4960

• If accum is a binary operator, then z̃ is defined as4961

z̃ = 〈Dout(accum), size(w̃), {(i, zi) ∀ i ∈ ind(w̃) ∪ ind(t̃)}〉.4962

The values of the elements of z̃ are computed based on the relationships between the sets of4963

indices in w̃ and t̃.4964

zi = w̃(i)� t̃(i), if i ∈ (ind(t̃) ∩ ind(w̃)),4965

4966

zi = w̃(i), if i ∈ (ind(w̃)− (ind(t̃) ∩ ind(w̃))),4967

4968

zi = t̃(i), if i ∈ (ind(t̃)− (ind(t̃) ∩ ind(w̃))),4969

where � =
⊙

(accum), and the difference operator refers to set difference.4970

Finally, the set of output values that make up vector z̃ are written into the final result vector w,4971

using what is called a standard vector mask and replace. This is carried out under control of the4972

mask which acts as a “write mask”.4973

• If desc[GrB OUTP].GrB REPLACE is set, then any values in w on input to this operation are4974

deleted and the content of the new output vector, w, is defined as,4975

L(w) = {(i, zi) : i ∈ (ind(z̃) ∩ ind(m̃))}.4976

• If desc[GrB OUTP].GrB REPLACE is not set, the elements of z̃ indicated by the mask are4977

copied into the result vector, w, and elements of w that fall outside the set indicated by the4978

mask are unchanged:4979

L(w) = {(i, wi) : i ∈ (ind(w) ∩ ind(¬m̃))} ∪ {(i, zi) : i ∈ (ind(z̃) ∩ ind(m̃))}.4980

In GrB BLOCKING mode, the method exits with return value GrB SUCCESS and the new content of4981

vector w is as defined above and fully computed. In GrB NONBLOCKING mode, the method exits4982

with return value GrB SUCCESS and the new content of vector w is as defined above but may not4983

be fully computed. However, it can be used in the next GraphBLAS method call in a sequence.4984

4.3.8.4 apply: Matrix-BinaryOp variants4985

Computes the transformation of the values of the stored elements of a matrix using a binary4986

operator and a scalar value. In the bind-first variant, the specified scalar value is passed as the4987

first argument to the binary operator and stored elements of the matrix are passed as the second4988

argument. In the bind-second variant, the elements of the matrix are passed as the first argument4989

and the specified scalar value is passed as the second argument.4990

180

C Syntax4991

// bind-first4992

GrB_Info GrB_apply(GrB_Matrix C,4993

const GrB_Matrix Mask,4994

const GrB_BinaryOp accum,4995

const GrB_BinaryOp op,4996

<type> val,4997

const GrB_Matrix A,4998

const GrB_Descriptor desc);4999

5000

// bind-second5001

GrB_Info GrB_apply(GrB_Matrix C,5002

const GrB_Matrix Mask,5003

const GrB_BinaryOp accum,5004

const GrB_BinaryOp op,5005

const GrB_Matrix A,5006

<type> val,5007

const GrB_Descriptor desc);5008

Parameters5009

C (INOUT) An existing GraphBLAS matrix. On input, the matrix provides values5010

that may be accumulated with the result of the apply operation. On output, the5011

matrix holds the results of the operation.5012

Mask (IN) An optional “write” mask that controls which results from this operation are5013

stored into the output matrix C. The mask dimensions must match those of the5014

matrix C. If the GrB STRUCTURE descriptor is not set for the mask, the domain5015

of the Mask matrix must be of type bool or any of the predefined “built-in” types5016

in Table 2.2. If the default mask is desired (i.e., a mask that is all true with the5017

dimensions of C), GrB NULL should be specified.5018

accum (IN) An optional binary operator used for accumulating entries into existing C5019

entries. If assignment rather than accumulation is desired, GrB NULL should be5020

specified.5021

op (IN) A binary operator applied to each element of input matrix, A, with the element5022

of the input matrix used as the left-hand argument, and the scalar value, val, used5023

as the right-hand argument.5024

A (IN) The GraphBLAS matrix whose elements are passed to the binary operator as5025

the right-hand (second) argument in the bind-first variant, or the left-hand (first)5026

argument in the bind-second variant.5027

val (IN) Scalar value that is passed to the binary operator as the left-hand (first)5028

argument in the bind-first variant, or the right-hand (second) argument in the5029

181

bind-second variant.5030

desc (IN) An optional operation descriptor. If a default descriptor is desired, GrB NULL5031

should be specified. Non-default field/value pairs are listed as follows:5032

5033

Param Field Value Description

C GrB OUTP GrB REPLACE Output matrix C is cleared (all elements
removed) before the result is stored in it.

Mask GrB MASK GrB STRUCTURE The write mask is constructed from the
structure (pattern of stored values) of the
input Mask matrix. The stored values are
not examined.

Mask GrB MASK GrB COMP Use the complement of Mask.
A GrB INP0 GrB TRAN Use transpose of A for the operation

(bind-second variant only).
A GrB INP1 GrB TRAN Use transpose of A for the operation

(bind-first variant only).

5034

Return Values5035

GrB SUCCESS In blocking mode, the operation completed successfully. In non-5036

blocking mode, this indicates that the compatibility tests on di-5037

mensions and domains for the input arguments passed successfully.5038

Either way, output matrix C is ready to be used in the next method5039

of the sequence.5040

GrB PANIC Unknown internal error.5041

GrB INVALID OBJECT This is returned in any execution mode whenever one of the opaque5042

GraphBLAS objects (input or output) is in an invalid state caused5043

by a previous execution error. Call GrB error() to access any error5044

messages generated by the implementation.5045

GrB OUT OF MEMORY Not enough memory available for the operation.5046

GrB UNINITIALIZED OBJECT One or more of the GraphBLAS objects has not been initialized by5047

a call to new (or Matrix dup for matrix parameters).5048

GrB INDEX OUT OF BOUNDS A value in row indices is greater than or equal to nrows(A), or a5049

value in col indices is greater than or equal to ncols(A). In non-5050

blocking mode, this can be reported as an execution error.5051

GrB DIMENSION MISMATCH Mask and C dimensions are incompatible, nrows 6= nrows(C), or5052

ncols 6= ncols(C).5053

GrB DOMAIN MISMATCH The domains of the various matrices and scalar are incompatible5054

with the corresponding domains of the binary operator or accumu-5055

lation operator, or the mask’s domain is not compatible with bool5056

(in the case where desc[GrB MASK].GrB STRUCTURE is not set).5057

182

Description5058

This variant of GrB apply computes the result of applying a binary operator to the elements of a5059

GraphBLAS matrix each composed with a scalar constant, val:5060

bind-first: C = f(val,A)5061

bind-second: C = f(A, val);5062

or if an optional binary accumulation operator (�) is provided:5063

bind-first: C = C� f(val,A)5064

bind-second: C = C� f(A, val).5065

Logically, this operation occurs in three steps:5066

Setup The internal matrices and mask used in the computation are formed and their domains5067

and dimensions are tested for compatibility.5068

Compute The indicated computations are carried out.5069

Output The result is written into the output matrix, possibly under control of a mask.5070

Up to three argument matrices are used in the GrB apply operation:5071

1. C = 〈D(C),nrows(C),ncols(C),L(C) = {(i, j, Cij)}〉5072

2. Mask = 〈D(Mask),nrows(Mask),ncols(Mask),L(Mask) = {(i, j,Mij)}〉 (optional)5073

3. A = 〈D(A),nrows(A),ncols(A),L(A) = {(i, j, Aij)}〉5074

The argument scalar, matrices, binary operator and the accumulation operator (if provided) are5075

tested for domain compatibility as follows:5076

1. If Mask is not GrB NULL, and desc[GrB MASK].GrB STRUCTURE is not set, then D(Mask)5077

must be from one of the pre-defined types of Table 2.2.5078

2. D(C) must be compatible with Dout(op) of the binary operator.5079

3. If accum is not GrB NULL, then D(C) must be compatible with Din1(accum) and Dout(accum)5080

of the accumulation operator and Dout(op) of the binary operator must be compatible with5081

Din2(accum) of the accumulation operator.5082

4. D(A) must be compatible with Din1(op) of the binary operator.5083

5. D(val) must be compatible with Din2(op) of the binary operator.5084

183

Two domains are compatible with each other if values from one domain can be cast to values in5085

the other domain as per the rules of the C language. In particular, domains from Table 2.2 are5086

all compatible with each other. A domain from a user-defined type is only compatible with itself.5087

If any compatibility rule above is violated, execution of GrB apply ends and the domain mismatch5088

error listed above is returned.5089

From the argument matrices, the internal matrices, mask, and index arrays used in the computation5090

are formed (← denotes copy):5091

1. Matrix C̃← C.5092

2. Two-dimensional mask, M̃, is computed from argument Mask as follows:5093

(a) If Mask = GrB NULL, then M̃ = 〈nrows(C),ncols(C), {(i, j), ∀i, j : 0 ≤ i < nrows(C), 0 ≤5094

j < ncols(C)}〉.5095

(b) If Mask 6= GrB NULL,5096

i. If desc[GrB MASK].GrB STRUCTURE is set, then M̃ = 〈nrows(Mask),ncols(Mask), {(i, j) :5097

(i, j) ∈ ind(Mask)}〉,5098

ii. Otherwise, M̃ = 〈nrows(Mask),ncols(Mask),5099

{(i, j) : (i, j) ∈ ind(Mask) ∧ (bool)Mask(i, j) = true}〉.5100

(c) If desc[GrB MASK].GrB COMP is set, then M̃← ¬M̃.5101

3. Matrix Ã is computed from argument A as follows:5102

bind-first: Ã← desc[GrB INP1].GrB TRAN ? AT : A5103

bind-second: Ã← desc[GrB INP0].GrB TRAN ? AT : A5104

The internal matrices and mask are checked for dimension compatibility. The following conditions5105

must hold:5106

1. nrows(C̃) = nrows(M̃).5107

2. ncols(C̃) = ncols(M̃).5108

3. nrows(C̃) = nrows(Ã).5109

4. ncols(C̃) = ncols(Ã).5110

If any compatibility rule above is violated, execution of GrB apply ends and the dimension mismatch5111

error listed above is returned.5112

From this point forward, in GrB NONBLOCKING mode, the method can optionally exit with5113

GrB SUCCESS return code and defer any computation and/or execution error codes.5114

We are now ready to carry out the apply and any additional associated operations. We describe5115

this in terms of two intermediate matrices:5116

• T̃: The matrix holding the result from applying the binary operator to the input matrix Ã.5117

184

• Z̃: The matrix holding the result after application of the (optional) accumulation operator.5118

The intermediate matrix, T̃, is created as one of the following:5119

bind-first: T̃ =〈Dout(op),nrows(C̃),ncols(C̃),L(T̃) = {(i, j, f(val, Ã(i, j))) ∀ (i, j) ∈ ind(Ã)}〉,5120

bind-second: T̃ =〈Dout(op),nrows(C̃),ncols(C̃),L(T̃) = {(i, j, f(Ã(i, j), val)) ∀ (i, j) ∈ ind(Ã)}〉,5121

where f = f(op).5122

The intermediate matrix Z̃ is created as follows, using what is called a standard matrix accumulate:5123

• If accum = GrB NULL, then Z̃ = T̃.5124

• If accum is a binary operator, then Z̃ is defined as5125

Z̃ = 〈Dout(accum),nrows(C̃),ncols(C̃), {(i, j, Zij)∀(i, j) ∈ ind(C̃) ∪ ind(T̃)}〉.5126

The values of the elements of Z̃ are computed based on the relationships between the sets of5127

indices in C̃ and T̃.5128

Zij = C̃(i, j)� T̃(i, j), if (i, j) ∈ (ind(T̃) ∩ ind(C̃)),5129

5130

Zij = C̃(i, j), if (i, j) ∈ (ind(C̃)− (ind(T̃) ∩ ind(C̃))),5131

5132

Zij = T̃(i, j), if (i, j) ∈ (ind(T̃)− (ind(T̃) ∩ ind(C̃))),5133

where � =
⊙

(accum), and the difference operator refers to set difference.5134

Finally, the set of output values that make up matrix Z̃ are written into the final result matrix C,5135

using what is called a standard matrix mask and replace. This is carried out under control of the5136

mask which acts as a “write mask”.5137

• If desc[GrB OUTP].GrB REPLACE is set, then any values in C on input to this operation are5138

deleted and the content of the new output matrix, C, is defined as,5139

L(C) = {(i, j, Zij) : (i, j) ∈ (ind(Z̃) ∩ ind(M̃))}.5140

• If desc[GrB OUTP].GrB REPLACE is not set, the elements of Z̃ indicated by the mask are5141

copied into the result matrix, C, and elements of C that fall outside the set indicated by the5142

mask are unchanged:5143

L(C) = {(i, j, Cij) : (i, j) ∈ (ind(C) ∩ ind(¬M̃))} ∪ {(i, j, Zij) : (i, j) ∈ (ind(Z̃) ∩ ind(M̃))}.5144

In GrB BLOCKING mode, the method exits with return value GrB SUCCESS and the new content5145

of matrix C is as defined above and fully computed. In GrB NONBLOCKING mode, the method5146

exits with return value GrB SUCCESS and the new content of matrix C is as defined above but5147

may not be fully computed. However, it can be used in the next GraphBLAS method call in a5148

sequence.5149

185

4.3.9 reduce: Perform a reduction across the elements of an object5150

Computes the reduction of the values of the elements of a vector or matrix.5151

4.3.9.1 reduce: Standard matrix to vector variant5152

This performs a reduction across rows of a matrix to produce a vector. If column reduction5153

across columns is desired, the input matrix should be transposed which can be specified using the5154

descriptor.5155

C Syntax5156

GrB_Info GrB_reduce(GrB_Vector w,5157

const GrB_Vector mask,5158

const GrB_BinaryOp accum,5159

const GrB_Monoid op,5160

const GrB_Matrix A,5161

const GrB_Descriptor desc);5162

5163

GrB_Info GrB_reduce(GrB_Vector w,5164

const GrB_Vector mask,5165

const GrB_BinaryOp accum,5166

const GrB_BinaryOp op,5167

const GrB_Matrix A,5168

const GrB_Descriptor desc);5169

Parameters5170

w (INOUT) An existing GraphBLAS vector. On input, the vector provides values5171

that may be accumulated with the result of the reduction operation. On output,5172

this vector holds the results of the operation.5173

mask (IN) An optional “write” mask that controls which results from this operation are5174

stored into the output vector w. The mask dimensions must match those of the5175

vector w. If the GrB STRUCTURE descriptor is not set for the mask, the domain5176

of the mask vector must be of type bool or any of the predefined “built-in” types5177

in Table 2.2. If the default mask is desired (i.e., a mask that is all true with the5178

dimensions of w), GrB NULL should be specified.5179

accum (IN) An optional binary operator used for accumulating entries into existing w5180

entries. If assignment rather than accumulation is desired, GrB NULL should be5181

specified.5182

op (IN) The monoid or binary operator used in the element-wise reduction operation.5183

Depending on which type is passed, the following defines the binary operator with5184

186

one domain, Fb = 〈D,D,D,⊕〉, that is used:5185

BinaryOp: Fb = 〈Dout(op),Din1(op),Din2(op),
⊙

(op)〉.5186

Monoid: Fb = 〈D(op),D(op),D(op),
⊙

(op)〉, the identity element of the5187

monoid is ignored.5188

If op is a GrB BinaryOp, then all its domains must be the same. Furthermore, in5189

both cases
⊙

(op) must be commutative and associative. Otherwise, the outcome5190

of the operation is undefined.5191

A (IN) The GraphBLAS matrix on which reduction will be performed.5192

desc (IN) An optional operation descriptor. If a default descriptor is desired, GrB NULL5193

should be specified. Non-default field/value pairs are listed as follows:5194

5195

Param Field Value Description

w GrB OUTP GrB REPLACE Output vector w is cleared (all elements
removed) before the result is stored in it.

mask GrB MASK GrB STRUCTURE The write mask is constructed from the
structure (pattern of stored values) of the
input mask vector. The stored values are
not examined.

mask GrB MASK GrB COMP Use the complement of mask.
A GrB INP0 GrB TRAN Use transpose of A for the operation.

5196

Return Values5197

GrB SUCCESS In blocking mode, the operation completed successfully. In non-5198

blocking mode, this indicates that the compatibility tests on di-5199

mensions and domains for the input arguments passed successfully.5200

Either way, output vector w is ready to be used in the next method5201

of the sequence.5202

GrB PANIC Unknown internal error.5203

GrB INVALID OBJECT This is returned in any execution mode whenever one of the opaque5204

GraphBLAS objects (input or output) is in an invalid state caused5205

by a previous execution error. Call GrB error() to access any error5206

messages generated by the implementation.5207

GrB OUT OF MEMORY Not enough memory available for the operation.5208

GrB UNINITIALIZED OBJECT One or more of the GraphBLAS objects has not been initialized by5209

a call to new (or dup for vector parameters).5210

GrB DIMENSION MISMATCH mask, w and/or u dimensions are incompatible.5211

187

GrB DOMAIN MISMATCH Either the domains of the various vectors and matrices are incom-5212

patible with the corresponding domains of the accumulation oper-5213

ator or reduce function, or the domains of the GraphBLAS binary5214

operator op are not all the same, or the mask’s domain is not com-5215

patible with bool (in the case where desc[GrB MASK].GrB STRUCTURE5216

is not set).5217

Description5218

This variant of GrB reduce computes the result of performing a reduction across each of the rows5219

of an input matrix: w(i) =
⊕

A(i, :)∀i; or, if an optional binary accumulation operator is provided,5220

w(i) = w(i)� (
⊕

A(i, :))∀i, where
⊕

=
⊙

(Fb) and � =
⊙

(accum).5221

Logically, this operation occurs in three steps:5222

Setup The internal vector, matrix and mask used in the computation are formed and their5223

domains and dimensions are tested for compatibility.5224

Compute The indicated computations are carried out.5225

Output The result is written into the output vector, possibly under control of a mask.5226

Up to two vector and one matrix argument are used in this GrB reduce operation:5227

1. w = 〈D(w), size(w),L(w) = {(i, wi)}〉5228

2. mask = 〈D(mask), size(mask),L(mask) = {(i,mi)}〉 (optional)5229

3. A = 〈D(A),nrows(A),ncols(A),L(A) = {(i, j, Aij)}〉5230

The argument vector, matrix, reduction operator and accumulation operator (if provided) are tested5231

for domain compatibility as follows:5232

1. If mask is not GrB NULL, and desc[GrB MASK].GrB STRUCTURE is not set, then D(mask)5233

must be from one of the pre-defined types of Table 2.2.5234

2. D(w) must be compatible with the domain of the reduction binary operator, D(Fb).5235

3. If accum is not GrB NULL, then D(w) must be compatible with Din1(accum) and Dout(accum)5236

of the accumulation operator and D(Fb), must be compatible with Din2(accum) of the accu-5237

mulation operator.5238

4. D(A) must be compatible with the domain of the binary reduction operator, D(Fb).5239

Two domains are compatible with each other if values from one domain can be cast to values in5240

the other domain as per the rules of the C language. In particular, domains from Table 2.2 are all5241

compatible with each other. A domain from a user-defined type is only compatible with itself. If5242

188

any compatibility rule above is violated, execution of GrB reduce ends and the domain mismatch5243

error listed above is returned.5244

From the argument vectors, the internal vectors and mask used in the computation are formed (←5245

denotes copy):5246

1. Vector w̃← w.5247

2. One-dimensional mask, m̃, is computed from argument mask as follows:5248

(a) If mask = GrB NULL, then m̃ = 〈size(w), {i, ∀ i : 0 ≤ i < size(w)}〉.5249

(b) If mask 6= GrB NULL,5250

i. If desc[GrB MASK].GrB STRUCTURE is set, then m̃ = 〈size(mask), {i : i ∈ ind(mask)}〉,5251

ii. Otherwise, m̃ = 〈size(mask), {i : i ∈ ind(mask) ∧ (bool)mask(i) = true}〉.5252

(c) If desc[GrB MASK].GrB COMP is set, then m̃← ¬m̃.5253

3. Matrix Ã← desc[GrB INP0].GrB TRAN ? AT : A.5254

The internal vectors and masks are checked for dimension compatibility. The following conditions5255

must hold:5256

1. size(w̃) = size(m̃)5257

2. size(w̃) = nrows(Ã).5258

If any compatibility rule above is violated, execution of GrB reduce ends and the dimension mis-5259

match error listed above is returned.5260

From this point forward, in GrB NONBLOCKING mode, the method can optionally exit with5261

GrB SUCCESS return code and defer any computation and/or execution error codes.5262

We carry out the reduce and any additional associated operations. We describe this in terms of5263

two intermediate vectors:5264

• t̃: The vector holding the result from reducing along the rows of input matrix Ã.5265

• z̃: The vector holding the result after application of the (optional) accumulation operator.5266

The intermediate vector, t̃, is created as follows:5267

t̃ = 〈D(op), size(w̃),L(t̃) = {(i, ti) : ind(A(i, :)) 6= ∅}〉.5268

The value of each of its elements is computed by5269

ti =
⊕

j∈ind(Ã(i,:))

Ã(i, j),5270

where
⊕

=
⊙

(Fb).5271

The intermediate vector z̃ is created as follows, using what is called a standard vector accumulate:5272

189

• If accum = GrB NULL, then z̃ = t̃.5273

• If accum is a binary operator, then z̃ is defined as5274

z̃ = 〈Dout(accum), size(w̃), {(i, zi) ∀ i ∈ ind(w̃) ∪ ind(t̃)}〉.5275

The values of the elements of z̃ are computed based on the relationships between the sets of5276

indices in w̃ and t̃.5277

zi = w̃(i)� t̃(i), if i ∈ (ind(t̃) ∩ ind(w̃)),5278

5279

zi = w̃(i), if i ∈ (ind(w̃)− (ind(t̃) ∩ ind(w̃))),5280

5281

zi = t̃(i), if i ∈ (ind(t̃)− (ind(t̃) ∩ ind(w̃))),5282

where � =
⊙

(accum), and the difference operator refers to set difference.5283

Finally, the set of output values that make up vector z̃ are written into the final result vector w,5284

using what is called a standard vector mask and replace. This is carried out under control of the5285

mask which acts as a “write mask”.5286

• If desc[GrB OUTP].GrB REPLACE is set, then any values in w on input to this operation are5287

deleted and the content of the new output vector, w, is defined as,5288

L(w) = {(i, zi) : i ∈ (ind(z̃) ∩ ind(m̃))}.5289

• If desc[GrB OUTP].GrB REPLACE is not set, the elements of z̃ indicated by the mask are5290

copied into the result vector, w, and elements of w that fall outside the set indicated by the5291

mask are unchanged:5292

L(w) = {(i, wi) : i ∈ (ind(w) ∩ ind(¬m̃))} ∪ {(i, zi) : i ∈ (ind(z̃) ∩ ind(m̃))}.5293

In GrB BLOCKING mode, the method exits with return value GrB SUCCESS and the new content of5294

vector w is as defined above and fully computed. In GrB NONBLOCKING mode, the method exits5295

with return value GrB SUCCESS and the new content of vector w is as defined above but may not5296

be fully computed. However, it can be used in the next GraphBLAS method call in a sequence.5297

4.3.9.2 reduce: Vector-scalar variant5298

Reduce all stored values into a single scalar.5299

C Syntax5300

GrB_Info GrB_reduce(<type> *val,5301

const GrB_BinaryOp accum,5302

const GrB_Monoid op,5303

const GrB_Vector u,5304

const GrB_Descriptor desc);5305

190

Parameters5306

val (INOUT) Scalar to store final reduced value into. On input, the scalar provides5307

a value that may be accumulated with the result of the reduction operation. On5308

output, this scalar holds the results of the operation.5309

accum (IN) An optional binary operator used for accumulating entries into existing val5310

value. If assignment rather than accumulation is desired, GrB NULL should be5311

specified.5312

op (IN) The monoid used in the element-wise reduction operation, M = 〈D,⊕, 0〉.5313

The binary operator, ⊕, must be commutative and associative; otherwise, the5314

outcome of the operation is undefined.5315

u (IN) The GraphBLAS vector on which reduction will be performed.5316

desc (IN) An optional operation descriptor. If a default descriptor is desired, GrB NULL5317

should be specified. Non-default field/value pairs are listed as follows:5318

5319

Param Field Value Description5320

Note: This argument is defined for consistency with the other GraphBLAS opera-5321

tions. There are currently no non-default field/value pairs that can be set for this5322

operation.5323

Return Values5324

GrB SUCCESS In blocking or non-blocking mode, the operation completed suc-5325

cessfully, and the output scalar val is ready to be used in the next5326

method of the sequence.5327

GrB PANIC Unknown internal error.5328

GrB INVALID OBJECT This is returned in any execution mode whenever one of the opaque5329

GraphBLAS objects (input or output) is in an invalid state caused5330

by a previous execution error. Call GrB error() to access any error5331

messages generated by the implementation.5332

GrB OUT OF MEMORY Not enough memory available for the operation.5333

GrB UNINITIALIZED OBJECT One or more of the GraphBLAS objects has not been initialized by5334

a call to new (or Vector dup for vector parameters).5335

GrB DOMAIN MISMATCH The domains of input and output arguments are incompatible with5336

the corresponding domains of the accumulation operator, or reduce5337

operator.5338

GrB NULL POINTER val pointer is NULL.5339

191

Description5340

This variant of GrB reduce computes the result of performing a reduction across each of the elements5341

of an input vector: val =
⊕

u(:); or, if an optional binary accumulation operator is provided,5342

val = val� (
⊕

u(:)), where
⊕

=
⊙

(op) and � =
⊙

(accum).5343

Logically, this operation occurs in three steps:5344

Setup The internal vector used in the computation is formed and its domain is tested for5345

compatibility.5346

Compute The indicated computations are carried out.5347

Output The result is written into the output scalar.5348

One vector argument is used in this GrB reduce operation:5349

1. u = 〈D(u), size(u),L(u) = {(i, ui)}〉5350

The output scalar, argument vector, reduction operator and accumulation operator (if provided)5351

are tested for domain compatibility as follows:5352

1. If accum is GrB NULL, then D(val) must be compatible with D(op) of the reduction binary5353

operator.5354

2. If accum is not GrB NULL, then D(val) must be compatible with Din1(accum) and Dout(accum)5355

of the accumulation operator and D(op) of the reduction binary operator must be compatible5356

with Din2(accum) of the accumulation operator.5357

3. D(u) must be compatible with D(op) of the binary reduction operator.5358

Two domains are compatible with each other if values from one domain can be cast to values in5359

the other domain as per the rules of the C language. In particular, domains from Table 2.2 are all5360

compatible with each other. A domain from a user-defined type is only compatible with itself. If5361

any compatibility rule above is violated, execution of GrB reduce ends and the domain mismatch5362

error listed above is returned.5363

From the argument vector, the internal vector used in the computation is formed (← denotes copy):5364

1. Vector ũ← u.5365

We are now ready to carry out the reduce and any additional associated operations. First, an5366

intermediate scalar result t is computed using the recurrence:5367

t =

0(op), if ind(ũ) = ∅,

⊕
i∈ind(ũ)

ũ(i), otherwise.
5368

192

Where ⊕ =
⊙

(op), and 0(op) is the identity of the monoid.5369

The final reduction value val is computed as follows:5370

• If accum = GrB NULL, then val← t.5371

• If accum is a binary operator, then val← val� t, where � =
⊙

(accum).5372

In both GrB BLOCKING and GrB NONBLOCKING modes, the method exits with return value5373

GrB SUCCESS and the new contents of val is as defined above.5374

4.3.9.3 reduce: Matrix-scalar variant5375

Reduce all stored values into a single scalar.5376

C Syntax5377

GrB_Info GrB_reduce(<type> *val,5378

const GrB_BinaryOp accum,5379

const GrB_Monoid op,5380

const GrB_Matrix A,5381

const GrB_Descriptor desc);5382

Parameters5383

val (INOUT) Scalar to store final reduced value into. On input, the scalar provides5384

a value that may be accumulated with the result of the reduction operation. On5385

output, this scalar holds the results of the operation.5386

accum (IN) An optional binary operator used for accumulating entries into existing val5387

value. If assignment rather than accumulation is desired, GrB NULL should be5388

specified.5389

op (IN) The monoid used in the element-wise reduction operation, M = 〈D,⊕, 0〉.5390

The binary operator, ⊕, must be commutative and associative; otherwise, the5391

outcome of the operation is undefined.5392

A (IN) The GraphBLAS matrix on which reduction will be performed.5393

desc (IN) An optional operation descriptor. If a default descriptor is desired, GrB NULL5394

should be specified. Non-default field/value pairs are listed as follows:5395

5396

Param Field Value Description5397

Note: This argument is defined for consistency with the other GraphBLAS opera-5398

tions. There are currently no non-default field/value pairs that can be set for this5399

operation.5400

193

Return Values5401

GrB SUCCESS In blocking or non-blocking mode, the operation completed suc-5402

cessfully, and the output scalar val is ready to be used in the next5403

method of the sequence.5404

GrB PANIC Unknown internal error.5405

GrB INVALID OBJECT This is returned in any execution mode whenever one of the opaque5406

GraphBLAS objects (input or output) is in an invalid state caused5407

by a previous execution error. Call GrB error() to access any error5408

messages generated by the implementation.5409

GrB OUT OF MEMORY Not enough memory available for the operation.5410

GrB UNINITIALIZED OBJECT One or more of the GraphBLAS objects has not been initialized by5411

a call to new (or Matrix dup for matrix parameters).5412

GrB DOMAIN MISMATCH The domains of input and output arguments are incompatible with5413

the corresponding domains of the accumulation operator, or reduce5414

operator.5415

GrB NULL POINTER val pointer is NULL.5416

Description5417

This variant of GrB reduce computes the result of performing a reduction across each of the elements5418

of an input matrix: val =
⊕

A(:, :); or, if an optional binary accumulation operator is provided,5419

val = val� (
⊕

A(:, :)), where
⊕

=
⊙

(op) and � =
⊙

(accum).5420

Logically, this operation occurs in three steps:5421

Setup The internal matrix used in the computation is formed and its domain is tested for5422

compatibility.5423

Compute The indicated computations are carried out.5424

Output The result is written into the output scalar.5425

One matrix argument is used in this GrB reduce operation:5426

1. A = 〈D(A), size(A),L(A) = {(i, j, Ai,j)}〉5427

The output scalar, argument matrix, reduction operator and accumulation operator (if provided)5428

are tested for domain compatibility as follows:5429

1. If accum is GrB NULL, then D(val) must be compatible with D(op) of the reduction binary5430

operator.5431

194

2. If accum is not GrB NULL, then D(val) must be compatible with Din1(accum) and Dout(accum)5432

of the accumulation operator and D(op) of the reduction binary operator must be compatible5433

with Din2(accum) of the accumulation operator.5434

3. D(A) must be compatible with D(op) of the binary reduction operator.5435

Two domains are compatible with each other if values from one domain can be cast to values in5436

the other domain as per the rules of the C language. In particular, domains from Table 2.2 are all5437

compatible with each other. A domain from a user-defined type is only compatible with itself. If5438

any compatibility rule above is violated, execution of GrB reduce ends and the domain mismatch5439

error listed above is returned.5440

From the argument matrix, the internal matrix used in the computation is formed (← denotes5441

copy):5442

1. Matrix Ã← A.5443

We are now ready to carry out the reduce and any additional associated operations. First, an5444

intermediate scalar result t is computed using the recurrence:5445

t =

0(op), if ind(Ã) = ∅,

⊕
(i,j)∈ind(Ã)

Ã(i, j), otherwise.
5446

Where ⊕ =
⊙

(op), and 0(op) is the identity of the monoid.5447

The final reduction value val is computed as follows:5448

• If accum = GrB NULL, then val← t.5449

• If accum is a binary operator, then val← val� t, where � =
⊙

(accum).5450

In both GrB BLOCKING and GrB NONBLOCKING modes, the method exits with return value5451

GrB SUCCESS and the new contents of val is as defined above.5452

4.3.10 transpose: Transpose rows and columns of a matrix5453

This version computes a new matrix that is the transpose of the source matrix.5454

C Syntax5455

GrB_Info GrB_transpose(GrB_Matrix C,5456

const GrB_Matrix Mask,5457

const GrB_BinaryOp accum,5458

const GrB_Matrix A,5459

const GrB_Descriptor desc);5460

195

Parameters5461

C (INOUT) An existing GraphBLAS matrix. On input, the matrix provides values5462

that may be accumulated with the result of the transpose operation. On output,5463

the matrix holds the results of the operation.5464

Mask (IN) An optional “write” mask that controls which results from this operation are5465

stored into the output matrix C. The mask dimensions must match those of the5466

matrix C. If the GrB STRUCTURE descriptor is not set for the mask, the domain5467

of the Mask matrix must be of type bool or any of the predefined “built-in” types5468

in Table 2.2. If the default mask is desired (i.e., a mask that is all true with the5469

dimensions of C), GrB NULL should be specified.5470

accum (IN) An optional binary operator used for accumulating entries into existing C5471

entries. If assignment rather than accumulation is desired, GrB NULL should be5472

specified.5473

A (IN) The GraphBLAS matrix on which transposition will be performed.5474

desc (IN) An optional operation descriptor. If a default descriptor is desired, GrB NULL5475

should be specified. Non-default field/value pairs are listed as follows:5476

5477

Param Field Value Description

C GrB OUTP GrB REPLACE Output matrix C is cleared (all elements
removed) before the result is stored in it.

Mask GrB MASK GrB STRUCTURE The write mask is constructed from the
structure (pattern of stored values) of the
input Mask matrix. The stored values are
not examined.

Mask GrB MASK GrB COMP Use the complement of Mask.
A GrB INP0 GrB TRAN Use transpose of A for the operation.

5478

Return Values5479

GrB SUCCESS In blocking mode, the operation completed successfully. In non-5480

blocking mode, this indicates that the compatibility tests on di-5481

mensions and domains for the input arguments passed successfully.5482

Either way, output matrix C is ready to be used in the next method5483

of the sequence.5484

GrB PANIC Unknown internal error.5485

GrB INVALID OBJECT This is returned in any execution mode whenever one of the opaque5486

GraphBLAS objects (input or output) is in an invalid state caused5487

by a previous execution error. Call GrB error() to access any error5488

messages generated by the implementation.5489

GrB OUT OF MEMORY Not enough memory available for the operation.5490

196

GrB UNINITIALIZED OBJECT One or more of the GraphBLAS objects has not been initialized by5491

a call to new (or Matrix dup for matrix parameters).5492

GrB DIMENSION MISMATCH mask, C and/or A dimensions are incompatible.5493

GrB DOMAIN MISMATCH The domains of the various matrices are incompatible with the cor-5494

responding domains of the accumulation operator, or the mask’s do-5495

main is not compatible with bool (in the case where desc[GrB MASK].GrB STRUCTURE5496

is not set).5497

Description5498

GrB transpose computes the result of performing a transpose of the input matrix: C = AT ; or, if an5499

optional binary accumulation operator (�) is provided, C = C�AT . We note that the input matrix5500

A can itself be optionally transposed before the operation, which would cause either an assignment5501

from A to C or an accumulation of A into C.5502

Logically, this operation occurs in three steps:5503

Setup The internal matrix and mask used in the computation are formed and their domains5504

and dimensions are tested for compatibility.5505

Compute The indicated computations are carried out.5506

Output The result is written into the output matrix, possibly under control of a mask.5507

Up to three matrix arguments are used in this GrB transpose operation:5508

1. C = 〈D(C),nrows(C),ncols(C),L(C) = {(i, j, Cij)}〉5509

2. Mask = 〈D(Mask),nrows(Mask),ncols(Mask),L(Mask) = {(i, j,Mij)}〉 (optional)5510

3. A = 〈D(A),nrows(A),ncols(A),L(A) = {(i, j, Aij)}〉5511

The argument matrices and accumulation operator (if provided) are tested for domain compatibility5512

as follows:5513

1. If Mask is not GrB NULL, and desc[GrB MASK].GrB STRUCTURE is not set, then D(Mask)5514

must be from one of the pre-defined types of Table 2.2.5515

2. D(C) must be compatible with D(A) of the input matrix.5516

3. If accum is not GrB NULL, then D(C) must be compatible with Din1(accum) and Dout(accum)5517

of the accumulation operator and D(A) of the input matrix must be compatible with Din2(accum)5518

of the accumulation operator.5519

197

Two domains are compatible with each other if values from one domain can be cast to values in5520

the other domain as per the rules of the C language. In particular, domains from Table 2.2 are all5521

compatible with each other. A domain from a user-defined type is only compatible with itself. If5522

any compatibility rule above is violated, execution of GrB transpose ends and the domain mismatch5523

error listed above is returned.5524

From the argument matrices, the internal matrices and mask used in the computation are formed5525

(← denotes copy):5526

1. Matrix C̃← C.5527

2. Two-dimensional mask, M̃, is computed from argument Mask as follows:5528

(a) If Mask = GrB NULL, then M̃ = 〈nrows(C),ncols(C), {(i, j), ∀i, j : 0 ≤ i < nrows(C), 0 ≤5529

j < ncols(C)}〉.5530

(b) If Mask 6= GrB NULL,5531

i. If desc[GrB MASK].GrB STRUCTURE is set, then M̃ = 〈nrows(Mask),ncols(Mask), {(i, j) :5532

(i, j) ∈ ind(Mask)}〉,5533

ii. Otherwise, M̃ = 〈nrows(Mask),ncols(Mask),5534

{(i, j) : (i, j) ∈ ind(Mask) ∧ (bool)Mask(i, j) = true}〉.5535

(c) If desc[GrB MASK].GrB COMP is set, then M̃← ¬M̃.5536

3. Matrix Ã← desc[GrB INP0].GrB TRAN ? AT : A.5537

The internal matrices and masks are checked for dimension compatibility. The following conditions5538

must hold:5539

1. nrows(C̃) = nrows(M̃).5540

2. ncols(C̃) = ncols(M̃).5541

3. nrows(C̃) = ncols(Ã).5542

4. ncols(C̃) = nrows(Ã).5543

If any compatibility rule above is violated, execution of GrB transpose ends and the dimension5544

mismatch error listed above is returned.5545

From this point forward, in GrB NONBLOCKING mode, the method can optionally exit with5546

GrB SUCCESS return code and defer any computation and/or execution error codes.5547

We are now ready to carry out the matrix transposition and any additional associated operations.5548

We describe this in terms of two intermediate matrices:5549

• T̃: The matrix holding the transpose of Ã.5550

• Z̃: The matrix holding the result after application of the (optional) accumulation operator.5551

198

The intermediate matrix5552

T̃ = 〈D(A),ncols(Ã),nrows(Ã),L(T̃) = {(j, i, Aij)∀(i, j) ∈ ind(Ã)〉5553

is created.5554

The intermediate matrix Z̃ is created as follows, using what is called a standard matrix accumulate:5555

• If accum = GrB NULL, then Z̃ = T̃.5556

• If accum is a binary operator, then Z̃ is defined as5557

Z̃ = 〈Dout(accum),nrows(C̃),ncols(C̃), {(i, j, Zij)∀(i, j) ∈ ind(C̃) ∪ ind(T̃)}〉.5558

The values of the elements of Z̃ are computed based on the relationships between the sets of5559

indices in C̃ and T̃.5560

Zij = C̃(i, j)� T̃(i, j), if (i, j) ∈ (ind(T̃) ∩ ind(C̃)),5561

5562

Zij = C̃(i, j), if (i, j) ∈ (ind(C̃)− (ind(T̃) ∩ ind(C̃))),5563

5564

Zij = T̃(i, j), if (i, j) ∈ (ind(T̃)− (ind(T̃) ∩ ind(C̃))),5565

where � =
⊙

(accum), and the difference operator refers to set difference.5566

Finally, the set of output values that make up matrix Z̃ are written into the final result matrix C,5567

using what is called a standard matrix mask and replace. This is carried out under control of the5568

mask which acts as a “write mask”.5569

• If desc[GrB OUTP].GrB REPLACE is set, then any values in C on input to this operation are5570

deleted and the content of the new output matrix, C, is defined as,5571

L(C) = {(i, j, Zij) : (i, j) ∈ (ind(Z̃) ∩ ind(M̃))}.5572

• If desc[GrB OUTP].GrB REPLACE is not set, the elements of Z̃ indicated by the mask are5573

copied into the result matrix, C, and elements of C that fall outside the set indicated by the5574

mask are unchanged:5575

L(C) = {(i, j, Cij) : (i, j) ∈ (ind(C) ∩ ind(¬M̃))} ∪ {(i, j, Zij) : (i, j) ∈ (ind(Z̃) ∩ ind(M̃))}.5576

In GrB BLOCKING mode, the method exits with return value GrB SUCCESS and the new content5577

of matrix C is as defined above and fully computed. In GrB NONBLOCKING mode, the method5578

exits with return value GrB SUCCESS and the new content of matrix C is as defined above but5579

may not be fully computed. However, it can be used in the next GraphBLAS method call in a5580

sequence.5581

4.3.11 kronecker: Kronecker product of two matrices5582

Computes the Kronecker product of two matrices. The result is a matrix.5583

199

C Syntax5584

GrB_Info GrB_kronecker(GrB_Matrix C,5585

const GrB_Matrix Mask,5586

const GrB_BinaryOp accum,5587

const GrB_Semiring op,5588

const GrB_Matrix A,5589

const GrB_Matrix B,5590

const GrB_Descriptor desc);5591

5592

GrB_Info GrB_kronecker(GrB_Matrix C,5593

const GrB_Matrix Mask,5594

const GrB_BinaryOp accum,5595

const GrB_Monoid op,5596

const GrB_Matrix A,5597

const GrB_Matrix B,5598

const GrB_Descriptor desc);5599

5600

GrB_Info GrB_kronecker(GrB_Matrix C,5601

const GrB_Matrix Mask,5602

const GrB_BinaryOp accum,5603

const GrB_BinaryOp op,5604

const GrB_Matrix A,5605

const GrB_Matrix B,5606

const GrB_Descriptor desc);5607

Parameters5608

C (INOUT) An existing GraphBLAS matrix. On input, the matrix provides values5609

that may be accumulated with the result of the Kronecker product. On output,5610

the matrix holds the results of the operation.5611

Mask (IN) An optional “write” mask that controls which results from this operation are5612

stored into the output matrix C. The mask dimensions must match those of the5613

matrix C. If the GrB STRUCTURE descriptor is not set for the mask, the domain5614

of the Mask matrix must be of type bool or any of the predefined “built-in” types5615

in Table 2.2. If the default mask is desired (i.e., a mask that is all true with the5616

dimensions of C), GrB NULL should be specified.5617

accum (IN) An optional binary operator used for accumulating entries into existing C5618

entries. If assignment rather than accumulation is desired, GrB NULL should be5619

specified.5620

op (IN) The semiring, monoid, or binary operator used in the element-wise “product”5621

operation. Depending on which type is passed, the following defines the binary5622

operator, Fb = 〈Dout(op),Din1(op),Din2(op),⊗〉, used:5623

200

BinaryOp: Fb = 〈Dout(op),Din1(op),Din2(op),
⊙

(op)〉.5624

Monoid: Fb = 〈D(op),D(op),D(op),
⊙

(op)〉; the identity element is ig-5625

nored.5626

Semiring: Fb = 〈Dout(op),Din1(op),Din2(op),
⊗

(op)〉; the additive monoid5627

is ignored.5628

A (IN) The GraphBLAS matrix holding the values for the left-hand matrix in the5629

product.5630

B (IN) The GraphBLAS matrix holding the values for the right-hand matrix in the5631

product.5632

desc (IN) An optional operation descriptor. If a default descriptor is desired, GrB NULL5633

should be specified. Non-default field/value pairs are listed as follows:5634

5635

Param Field Value Description

C GrB OUTP GrB REPLACE Output matrix C is cleared (all elements
removed) before the result is stored in it.

Mask GrB MASK GrB STRUCTURE The write mask is constructed from the
structure (pattern of stored values) of the
input Mask matrix. The stored values are
not examined.

Mask GrB MASK GrB COMP Use the complement of Mask.
A GrB INP0 GrB TRAN Use transpose of A for the operation.
B GrB INP1 GrB TRAN Use transpose of B for the operation.

5636

Return Values5637

GrB SUCCESS In blocking mode, the operation completed successfully. In non-5638

blocking mode, this indicates that the compatibility tests on di-5639

mensions and domains for the input arguments passed successfully.5640

Either way, output matrix C is ready to be used in the next method5641

of the sequence.5642

GrB PANIC Unknown internal error.5643

GrB INVALID OBJECT This is returned in any execution mode whenever one of the opaque5644

GraphBLAS objects (input or output) is in an invalid state caused5645

by a previous execution error. Call GrB error() to access any error5646

messages generated by the implementation.5647

GrB OUT OF MEMORY Not enough memory available for the operation.5648

GrB UNINITIALIZED OBJECT One or more of the GraphBLAS objects has not been initialized by5649

a call to new (or Matrix dup for matrix parameters).5650

GrB DIMENSION MISMATCH Mask and/or matrix dimensions are incompatible.5651

201

GrB DOMAIN MISMATCH The domains of the various matrices are incompatible with the5652

corresponding domains of the binary operator (op) or accumulation5653

operator, or the mask’s domain is not compatible with bool (in the5654

case where desc[GrB MASK].GrB STRUCTURE is not set).5655

Description5656

GrB kronecker computes the Kronecker product C = A ⊗© B or, if an optional binary accumulation5657

operator (�) is provided, C = C� (A ⊗© B) (where matrices A and B can be optionally transposed).5658

The Kronecker product is defined as follows:5659

5660

C = A ⊗© B =

A0,0 ⊗ B A0,1 ⊗ B ... A0,nA−1 ⊗ B
A1,0 ⊗ B A1,1 ⊗ B ... A1,nA−1 ⊗ B

...
...

. . .
...

AmA−1,0 ⊗ B AmA−1,1 ⊗ B ... AmA−1,nA−1 ⊗ B

5661

where A : SmA×nA , B : SmB×nB , and C : SmAmB×nAnB . More explicitly, the elements of the5662

Kronecker product are defined as5663

C(iAmB + iB, jAnB + jB) = AiA,jA ⊗BiB ,jB ,5664

where ⊗ is the multiplicative operator specified by the op parameter.5665

Logically, this operation occurs in three steps:5666

Setup The internal matrices and mask used in the computation are formed and their domains5667

and dimensions are tested for compatibility.5668

Compute The indicated computations are carried out.5669

Output The result is written into the output matrix, possibly under control of a mask.5670

Up to four argument matrices are used in the GrB kronecker operation:5671

1. C = 〈D(C),nrows(C),ncols(C),L(C) = {(i, j, Cij)}〉5672

2. Mask = 〈D(Mask),nrows(Mask),ncols(Mask),L(Mask) = {(i, j,Mij)}〉 (optional)5673

3. A = 〈D(A),nrows(A),ncols(A),L(A) = {(i, j, Aij)}〉5674

4. B = 〈D(B),nrows(B),ncols(B),L(B) = {(i, j, Bij)}〉5675

The argument matrices, the ”product” operator (op), and the accumulation operator (if provided)5676

are tested for domain compatibility as follows:5677

1. If Mask is not GrB NULL, and desc[GrB MASK].GrB STRUCTURE is not set, then D(Mask)5678

must be from one of the pre-defined types of Table 2.2.5679

202

2. D(A) must be compatible with Din1(op).5680

3. D(B) must be compatible with Din2(op).5681

4. D(C) must be compatible with Dout(op).5682

5. If accum is not GrB NULL, then D(C) must be compatible with Din1(accum) and Dout(accum)5683

of the accumulation operator and Dout(op) of op must be compatible with Din2(accum) of5684

the accumulation operator.5685

Two domains are compatible with each other if values from one domain can be cast to values in5686

the other domain as per the rules of the C language. In particular, domains from Table 2.2 are all5687

compatible with each other. A domain from a user-defined type is only compatible with itself. If5688

any compatibility rule above is violated, execution of GrB kronecker ends and the domain mismatch5689

error listed above is returned.5690

From the argument matrices, the internal matrices and mask used in the computation are formed5691

(← denotes copy):5692

1. Matrix C̃← C.5693

2. Two-dimensional mask, M̃, is computed from argument Mask as follows:5694

(a) If Mask = GrB NULL, then M̃ = 〈nrows(C),ncols(C), {(i, j), ∀i, j : 0 ≤ i < nrows(C), 0 ≤5695

j < ncols(C)}〉.5696

(b) If Mask 6= GrB NULL,5697

i. If desc[GrB MASK].GrB STRUCTURE is set, then M̃ = 〈nrows(Mask),ncols(Mask), {(i, j) :5698

(i, j) ∈ ind(Mask)}〉,5699

ii. Otherwise, M̃ = 〈nrows(Mask),ncols(Mask),5700

{(i, j) : (i, j) ∈ ind(Mask) ∧ (bool)Mask(i, j) = true}〉.5701

(c) If desc[GrB MASK].GrB COMP is set, then M̃← ¬M̃.5702

3. Matrix Ã← desc[GrB INP0].GrB TRAN ? AT : A.5703

4. Matrix B̃← desc[GrB INP1].GrB TRAN ? BT : B.5704

The internal matrices and masks are checked for dimension compatibility. The following conditions5705

must hold:5706

1. nrows(C̃) = nrows(M̃).5707

2. ncols(C̃) = ncols(M̃).5708

3. nrows(C̃) = nrows(Ã) · nrows(B̃).5709

4. ncols(C̃) = ncols(Ã) · ncols(B̃).5710

203

If any compatibility rule above is violated, execution of GrB kronecker ends and the dimension5711

mismatch error listed above is returned.5712

From this point forward, in GrB NONBLOCKING mode, the method can optionally exit with5713

GrB SUCCESS return code and defer any computation and/or execution error codes.5714

We are now ready to carry out the Kronecker product and any additional associated operations.5715

We describe this in terms of two intermediate matrices:5716

• T̃: The matrix holding the Kronecker product of matrices Ã and B̃.5717

• Z̃: The matrix holding the result after application of the (optional) accumulation operator.5718

The intermediate matrix T̃ = 〈Dout(op),nrows(Ã)×nrows(B̃),ncols(Ã)×ncols(B̃), {(i, j, Tij) where i =5719

iA ·mB + iB, j = jA · nB + jB, ∀ (iA, jA) = ind(Ã), (iB, jB) = ind(B̃)〉 is created. The value of5720

each of its elements is computed by5721

TiA·mB+iB , jA·nB+jB = Ã(iA, jA)⊗ B̃(iB, jB)),5722

where ⊗ is the multiplicative operator specified by the op parameter.5723

The intermediate matrix Z̃ is created as follows, using what is called a standard matrix accumulate:5724

• If accum = GrB NULL, then Z̃ = T̃.5725

• If accum is a binary operator, then Z̃ is defined as5726

Z̃ = 〈Dout(accum),nrows(C̃),ncols(C̃), {(i, j, Zij)∀(i, j) ∈ ind(C̃) ∪ ind(T̃)}〉.5727

The values of the elements of Z̃ are computed based on the relationships between the sets of5728

indices in C̃ and T̃.5729

Zij = C̃(i, j)� T̃(i, j), if (i, j) ∈ (ind(T̃) ∩ ind(C̃)),5730

5731

Zij = C̃(i, j), if (i, j) ∈ (ind(C̃)− (ind(T̃) ∩ ind(C̃))),5732

5733

Zij = T̃(i, j), if (i, j) ∈ (ind(T̃)− (ind(T̃) ∩ ind(C̃))),5734

where � =
⊙

(accum), and the difference operator refers to set difference.5735

Finally, the set of output values that make up matrix Z̃ are written into the final result matrix C,5736

using what is called a standard matrix mask and replace. This is carried out under control of the5737

mask which acts as a “write mask”.5738

• If desc[GrB OUTP].GrB REPLACE is set, then any values in C on input to this operation are5739

deleted and the content of the new output matrix, C, is defined as,5740

L(C) = {(i, j, Zij) : (i, j) ∈ (ind(Z̃) ∩ ind(M̃))}.5741

204

• If desc[GrB OUTP].GrB REPLACE is not set, the elements of Z̃ indicated by the mask are5742

copied into the result matrix, C, and elements of C that fall outside the set indicated by the5743

mask are unchanged:5744

L(C) = {(i, j, Cij) : (i, j) ∈ (ind(C) ∩ ind(¬M̃))} ∪ {(i, j, Zij) : (i, j) ∈ (ind(Z̃) ∩ ind(M̃))}.5745

In GrB BLOCKING mode, the method exits with return value GrB SUCCESS and the new content5746

of matrix C is as defined above and fully computed. In GrB NONBLOCKING mode, the method5747

exits with return value GrB SUCCESS and the new content of matrix C is as defined above but may5748

not be fully computed. However, it can be used in the next GraphBLAS method call in a sequence.5749

s5750

4.4 Sequence Termination5751

4.4.1 wait: Wait for pending operations to complete5752

Waits for a collection of pending operations to complete. Two variants are supported, one that5753

waits on all pending operations and one that waits on pending operations with a particular output5754

object.5755

4.4.1.1 wait: Waits until all pending operations complete variant5756

When running in non-blocking mode, this function guarantees that all pending GraphBLAS opera-5757

tions are fully executed. Note that this can be called in blocking mode without an error, but there5758

should be no pending GraphBLAS operations to complete.5759

C Syntax5760

GrB_Info GrB_wait();5761

Parameters5762

Return values5763

GrB SUCCESS operation completed successfully.5764

GrB INDEX OUT OF BOUNDS an index out-of-bounds execution error happened during comple-5765

tion of pending operations.5766

GrB OUT OF MEMORY and out-of-memory execution error happened during completion of5767

pending operations.5768

GrB PANIC unknown internal error.5769

205

Description5770

Upon successful return, all previously called GraphBLAS methods have fully completed their exe-5771

cution, and any (transparent or opaque) data structures produced or manipulated by those methods5772

can be safely touched. If an error occured in any pending GraphBLAS operations, GrB error() can5773

be used to retrieve implementation defined error information about the problem encountered.5774

4.4.1.2 wait: Waits until pending operations on a specific object complete variant5775

When running in non-blocking mode, this function guarantees that all pending GraphBLAS oper-5776

ations that have a specific GraphBLAS object as output are fully executed. Note that this can be5777

called in blocking mode without an error, but there should be no pending GraphBLAS operations5778

to complete.5779

C Syntax5780

GrB_Info GrB_wait(GrB_Object *obj);5781

Parameters5782

obj (IN) An existing GraphBLAS object. The object must have been created by an5783

explicit call to a GraphBLAS constructor. Can be any of the opaque GraphBLAS5784

objects such as matrix, vector, descriptor, semiring, monoid, binary op, unary op,5785

or type. On successful return of GrB wait, all GraphBLAS operations that produce5786

obj as output have fully completed.5787

Return values5788

GrB SUCCESS operation completed successfully.5789

GrB INDEX OUT OF BOUNDS an index out-of-bounds execution error happened during comple-5790

tion of pending operations.5791

GrB OUT OF MEMORY and out-of-memory execution error happened during completion of5792

pending operations.5793

GrB UNINITIALIZED OBJECT object has not been initialized by a call to the respective * new5794

method.5795

GrB PANIC unknown internal error.5796

Description5797

Upon successful return, all previously called GraphBLAS methods that have obj as an OUT or5798

INOUT parameter have fully completed their execution, and any (transparent or opaque) data5799

206

structures produced or manipulated by those methods can be safely touched. If an error occured5800

in any of those GraphBLAS operations, GrB error() can be used to retrieve implementation defined5801

error information about the problem encountered.5802

In non-blocking mode, a call to GrB wait(obj) does not necessarily end the current GraphBLAS5803

sequence. If there are other pending methods in the sequence, producing other objects, there is5804

no guarantee that those methods have completed. Those methods can still produce errors and/or5805

consume execution time.5806

4.4.2 error: Get an error message regarding internal errors5807

const char *GrB_error();5808

Parameters5809

Return value5810

• A pointer to a null-terminated string (owned by the library).5811

Description5812

After a call to any GraphBLAS method, the program can retrieve additional error information5813

(beyond the error code returned by the method) though a call to the function GrB error(). The5814

function returns a pointer to a null terminated string and the contents of that string are implemen-5815

tation dependent. In particular, a null string (not a NULL pointer) is always a valid error string.5816

The pointer is valid until the next call to any GraphBLAS method by the same thread. GrB error()5817

is a thread-safe function, in the sense that multiple threads can call it simultaneously and each will5818

get its own error string back, referring to the last GraphBLAS method it called.5819

207

208

Chapter 55820

Nonpolymorphic Interface5821

Each polymorphic GraphBLAS method (those with multiple parameter signatures under the same5822

name) has a corresponding set of long-name forms that are specific to each parameter signature.5823

That is show in Tables 5.1 through 5.8.5824

Table 5.1: Long-name, nonpolymorphic form of GraphBLAS methods.
Polymorphic signature Nonpolymorphic signature

GrB Monoid new(GrB Monoid*,. . . ,bool) GrB Monoid new BOOL(GrB Monoid*,GrB BinaryOp,bool)
GrB Monoid new(GrB Monoid*,. . . ,int8 t) GrB Monoid new INT8(GrB Monoid*,GrB BinaryOp,int8 t)
GrB Monoid new(GrB Monoid*,. . . ,uint8 t) GrB Monoid new UINT8(GrB Monoid*,GrB BinaryOp,uint8 t)
GrB Monoid new(GrB Monoid*,. . . ,int16 t) GrB Monoid new INT16(GrB Monoid*,GrB BinaryOp,int16 t)
GrB Monoid new(GrB Monoid*,. . . ,uint16 t) GrB Monoid new UINT16(GrB Monoid*,GrB BinaryOp,uint16 t)
GrB Monoid new(GrB Monoid*,. . . ,int32 t) GrB Monoid new INT32(GrB Monoid*,GrB BinaryOp,int32 t)
GrB Monoid new(GrB Monoid*,. . . ,uint32 t) GrB Monoid new UINT32(GrB Monoid*,GrB BinaryOp,uint32 t)
GrB Monoid new(GrB Monoid*,. . . ,int64 t) GrB Monoid new INT64(GrB Monoid*,GrB BinaryOp,int64 t)
GrB Monoid new(GrB Monoid*,. . . ,uint64 t) GrB Monoid new UINT64(GrB Monoid*,GrB BinaryOp,uint64 t)
GrB Monoid new(GrB Monoid*,. . . ,float) GrB Monoid new FP32(GrB Monoid*,GrB BinaryOp,float)
GrB Monoid new(GrB Monoid*,. . . ,double) GrB Monoid new FP64(GrB Monoid*,GrB BinaryOp,double)
GrB Monoid new(GrB Monoid*,. . . ,other) GrB Monoid new UDT(GrB Monoid*,GrB BinaryOp,void*)

209

Table 5.2: Long-name, nonpolymorphic form of GraphBLAS methods (continued).
Polymorphic signature Nonpolymorphic signature

GrB Vector build(. . . ,const bool*,. . .) GrB Vector build BOOL(. . . ,const bool*,. . .)
GrB Vector build(. . . ,const int8 t*,. . .) GrB Vector build INT8(. . . ,const int8 t*,. . .)
GrB Vector build(. . . ,const uint8 t*,. . .) GrB Vector build UINT8(. . . ,const uint8 t*,. . .)
GrB Vector build(. . . ,const int16 t*,. . .) GrB Vector build INT16(. . . ,const int16 t*,. . .)
GrB Vector build(. . . ,const uint16 t*,. . .) GrB Vector build UINT16(. . . ,const uint16 t*,. . .)
GrB Vector build(. . . ,const int32 t*,. . .) GrB Vector build INT32(. . . ,const int32 t*,. . .)
GrB Vector build(. . . ,const uint32 t*,. . .) GrB Vector build UINT32(. . . ,const uint32 t*,. . .)
GrB Vector build(. . . ,const int64 t*,. . .) GrB Vector build INT64(. . . ,const int64 t*,. . .)
GrB Vector build(. . . ,const uint64 t*,. . .) GrB Vector build UINT64(. . . ,const uint64 t*,. . .)
GrB Vector build(. . . ,const float*,. . .) GrB Vector build FP32(. . . ,const float*,. . .)
GrB Vector build(. . . ,const double*,. . .) GrB Vector build FP64(. . . ,const double*,. . .)
GrB Vector build(. . . ,other,. . .) GrB Vector build UDT(. . . ,const void*,. . .)

GrB Vector setElement(. . . , bool,. . .) GrB Vector setElement BOOL(. . . , bool,. . .)
GrB Vector setElement(. . . , int8 t,. . .) GrB Vector setElement INT8(. . . , int8 t,. . .)
GrB Vector setElement(. . . , uint8 t,. . .) GrB Vector setElement UINT8(. . . , uint8 t,. . .)
GrB Vector setElement(. . . , int16 t,. . .) GrB Vector setElement INT16(. . . , int16 t,. . .)
GrB Vector setElement(. . . , uint16 t,. . .) GrB Vector setElement UINT16(. . . , uint16 t,. . .)
GrB Vector setElement(. . . , int32 t,. . .) GrB Vector setElement INT32(. . . , int32 t,. . .)
GrB Vector setElement(. . . , uint32 t,. . .) GrB Vector setElement UINT32(. . . , uint32 t,. . .)
GrB Vector setElement(. . . , int64 t,. . .) GrB Vector setElement INT64(. . . , int64 t,. . .)
GrB Vector setElement(. . . , uint64 t,. . .) GrB Vector setElement UINT64(. . . , uint64 t,. . .)
GrB Vector setElement(. . . , float,. . .) GrB Vector setElement FP32(. . . , float,. . .)
GrB Vector setElement(. . . , double,. . .) GrB Vector setElement FP64(. . . , double,. . .)
GrB Vector setElement(. . . ,other,. . .) GrB Vector setElement UDT(. . . ,const void*,. . .)

GrB Vector extractElement(bool*,. . .) GrB Vector extractElement BOOL(bool*,. . .)
GrB Vector extractElement(int8 t*,. . .) GrB Vector extractElement INT8(int8 t*,. . .)
GrB Vector extractElement(uint8 t*,. . .) GrB Vector extractElement UINT8(uint8 t*,. . .)
GrB Vector extractElement(int16 t*,. . .) GrB Vector extractElement INT16(int16 t*,. . .)
GrB Vector extractElement(uint16 t*,. . .) GrB Vector extractElement UINT16(uint16 t*,. . .)
GrB Vector extractElement(int32 t*,. . .) GrB Vector extractElement INT32(int32 t*,. . .)
GrB Vector extractElement(uint32 t*,. . .) GrB Vector extractElement UINT32(uint32 t*,. . .)
GrB Vector extractElement(int64 t*,. . .) GrB Vector extractElement INT64(int64 t*,. . .)
GrB Vector extractElement(uint64 t*,. . .) GrB Vector extractElement UINT64(uint64 t*,. . .)
GrB Vector extractElement(float*,. . .) GrB Vector extractElement FP32(float*,. . .)
GrB Vector extractElement(double*,. . .) GrB Vector extractElement FP64(double*,. . .)
GrB Vector extractElement(other,. . .) GrB Vector extractElement UDT(void*,. . .)

GrB Vector extractTuples(. . . , bool*,. . .) GrB Vector extractTuples BOOL(. . . , bool*,. . .)
GrB Vector extractTuples(. . . , int8 t*,. . .) GrB Vector extractTuples INT8(. . . , int8 t*,. . .)
GrB Vector extractTuples(. . . , uint8 t*,. . .) GrB Vector extractTuples UINT8(. . . , uint8 t*,. . .)
GrB Vector extractTuples(. . . , int16 t*,. . .) GrB Vector extractTuples INT16(. . . , int16 t*,. . .)
GrB Vector extractTuples(. . . , uint16 t*,. . .) GrB Vector extractTuples UINT16(. . . , uint16 t*,. . .)
GrB Vector extractTuples(. . . , int32 t*,. . .) GrB Vector extractTuples INT32(. . . , int32 t*,. . .)
GrB Vector extractTuples(. . . , uint32 t*,. . .) GrB Vector extractTuples UINT32(. . . , uint32 t*,. . .)
GrB Vector extractTuples(. . . , int64 t*,. . .) GrB Vector extractTuples INT64(. . . , int64 t*,. . .)
GrB Vector extractTuples(. . . , uint64 t*,. . .) GrB Vector extractTuples UINT64(. . . , uint64 t*,. . .)
GrB Vector extractTuples(. . . , float*,. . .) GrB Vector extractTuples FP32(. . . , float*,. . .)
GrB Vector extractTuples(. . . , double*,. . .) GrB Vector extractTuples FP64(. . . , double*,. . .)
GrB Vector extractTuples(. . . ,other,. . .) GrB Vector extractTuples UDT(. . . , void*,. . .)

210

Table 5.3: Long-name, nonpolymorphic form of GraphBLAS methods (continued).
Polymorphic signature Nonpolymorphic signature

GrB Matrix build(. . . ,const bool*,. . .) GrB Matrix build BOOL(. . . ,const bool*,. . .)
GrB Matrix build(. . . ,const int8 t*,. . .) GrB Matrix build INT8(. . . ,const int8 t*,. . .)
GrB Matrix build(. . . ,const uint8 t*,. . .) GrB Matrix build UINT8(. . . ,const uint8 t*,. . .)
GrB Matrix build(. . . ,const int16 t*,. . .) GrB Matrix build INT16(. . . ,const int16 t*,. . .)
GrB Matrix build(. . . ,const uint16 t*,. . .) GrB Matrix build UINT16(. . . ,const uint16 t*,. . .)
GrB Matrix build(. . . ,const int32 t*,. . .) GrB Matrix build INT32(. . . ,const int32 t*,. . .)
GrB Matrix build(. . . ,const uint32 t*,. . .) GrB Matrix build UINT32(. . . ,const uint32 t*,. . .)
GrB Matrix build(. . . ,const int64 t*,. . .) GrB Matrix build INT64(. . . ,const int64 t*,. . .)
GrB Matrix build(. . . ,const uint64 t*,. . .) GrB Matrix build UINT64(. . . ,const uint64 t*,. . .)
GrB Matrix build(. . . ,const float*,. . .) GrB Matrix build FP32(. . . ,const float*,. . .)
GrB Matrix build(. . . ,const double*,. . .) GrB Matrix build FP64(. . . ,const double*,. . .)
GrB Matrix build(. . . ,other,. . .) GrB Matrix build UDT(. . . ,const void*,. . .)

GrB Matrix setElement(. . . , bool,. . .) GrB Matrix setElement BOOL(. . . , bool,. . .)
GrB Matrix setElement(. . . , int8 t,. . .) GrB Matrix setElement INT8(. . . , int8 t,. . .)
GrB Matrix setElement(. . . , uint8 t,. . .) GrB Matrix setElement UINT8(. . . , uint8 t,. . .)
GrB Matrix setElement(. . . , int16 t,. . .) GrB Matrix setElement INT16(. . . , int16 t,. . .)
GrB Matrix setElement(. . . , uint16 t,. . .) GrB Matrix setElement UINT16(. . . , uint16 t,. . .)
GrB Matrix setElement(. . . , int32 t,. . .) GrB Matrix setElement INT32(. . . , int32 t,. . .)
GrB Matrix setElement(. . . , uint32 t,. . .) GrB Matrix setElement UINT32(. . . , uint32 t,. . .)
GrB Matrix setElement(. . . , int64 t,. . .) GrB Matrix setElement INT64(. . . , int64 t,. . .)
GrB Matrix setElement(. . . , uint64 t,. . .) GrB Matrix setElement UINT64(. . . , uint64 t,. . .)
GrB Matrix setElement(. . . , float,. . .) GrB Matrix setElement FP32(. . . , float,. . .)
GrB Matrix setElement(. . . , double,. . .) GrB Matrix setElement FP64(. . . , double,. . .)
GrB Matrix setElement(. . . ,other,. . .) GrB Matrix setElement UDT(. . . ,const void*,. . .)

GrB Matrix extractElement(bool*,. . .) GrB Matrix extractElement BOOL(bool*,. . .)
GrB Matrix extractElement(int8 t*,. . .) GrB Matrix extractElement INT8(int8 t*,. . .)
GrB Matrix extractElement(uint8 t*,. . .) GrB Matrix extractElement UINT8(uint8 t*,. . .)
GrB Matrix extractElement(int16 t*,. . .) GrB Matrix extractElement INT16(int16 t*,. . .)
GrB Matrix extractElement(uint16 t*,. . .) GrB Matrix extractElement UINT16(uint16 t*,. . .)
GrB Matrix extractElement(int32 t*,. . .) GrB Matrix extractElement INT32(int32 t*,. . .)
GrB Matrix extractElement(uint32 t*,. . .) GrB Matrix extractElement UINT32(uint32 t*,. . .)
GrB Matrix extractElement(int64 t*,. . .) GrB Matrix extractElement INT64(int64 t*,. . .)
GrB Matrix extractElement(uint64 t*,. . .) GrB Matrix extractElement UINT64(uint64 t*,. . .)
GrB Matrix extractElement(float*,. . .) GrB Matrix extractElement FP32(float*,. . .)
GrB Matrix extractElement(double*,. . .) GrB Matrix extractElement FP64(double*,. . .)
GrB Matrix extractElement(other,. . .) GrB Matrix extractElement UDT(void*,. . .)

GrB Matrix extractTuples(. . . , bool*,. . .) GrB Matrix extractTuples BOOL(. . . , bool*,. . .)
GrB Matrix extractTuples(. . . , int8 t*,. . .) GrB Matrix extractTuples INT8(. . . , int8 t*,. . .)
GrB Matrix extractTuples(. . . , uint8 t*,. . .) GrB Matrix extractTuples UINT8(. . . , uint8 t*,. . .)
GrB Matrix extractTuples(. . . , int16 t*,. . .) GrB Matrix extractTuples INT16(. . . , int16 t*,. . .)
GrB Matrix extractTuples(. . . , uint16 t*,. . .) GrB Matrix extractTuples UINT16(. . . , uint16 t*,. . .)
GrB Matrix extractTuples(. . . , int32 t*,. . .) GrB Matrix extractTuples INT32(. . . , int32 t*,. . .)
GrB Matrix extractTuples(. . . , uint32 t*,. . .) GrB Matrix extractTuples UINT32(. . . , uint32 t*,. . .)
GrB Matrix extractTuples(. . . , int64 t*,. . .) GrB Matrix extractTuples INT64(. . . , int64 t*,. . .)
GrB Matrix extractTuples(. . . , uint64 t*,. . .) GrB Matrix extractTuples UINT64(. . . , uint64 t*,. . .)
GrB Matrix extractTuples(. . . , float*,. . .) GrB Matrix extractTuples FP32(. . . , float*,. . .)
GrB Matrix extractTuples(. . . , double*,. . .) GrB Matrix extractTuples FP64(. . . , double*,. . .)
GrB Matrix extractTuples(. . . ,other,. . .) GrB Matrix extractTuples UDT(. . . , void*,. . .)

211

Table 5.4: Long-name, nonpolymorphic form of GraphBLAS methods (continued).
Polymorphic signature Nonpolymorphic signature

GrB free(GrB Type*) GrB Type free(GrB Type*)
GrB free(GrB UnaryOp*) GrB UnaryOp free(GrB UnaryOp*)
GrB free(GrB BinaryOp*) GrB BinaryOp free(GrB BinaryOp*)
GrB free(GrB Monoid*) GrB Monoid free(GrB Monoid*)
GrB free(GrB Semiring*) GrB Semiring free(GrB Semiring*)
GrB free(GrB Vector*) GrB Vector free(GrB Vector*)
GrB free(GrB Matrix*) GrB Matrix free(GrB Matrix*)
GrB free(GrB Descriptor*) GrB Descriptor free(GrB Descriptor*)

GrB wait(GrB Type*) GrB Type wait(GrB Type*)
GrB wait(GrB UnaryOp*) GrB UnaryOp wait(GrB UnaryOp*)
GrB wait(GrB BinaryOp*) GrB BinaryOp wait(GrB BinaryOp*)
GrB wait(GrB Monoid*) GrB Monoid wait(GrB Monoid*)
GrB wait(GrB Semiring*) GrB Semiring wait(GrB Semiring*)
GrB wait(GrB Vector*) GrB Vector wait(GrB Vector*)
GrB wait(GrB Matrix*) GrB Matrix wait(GrB Matrix*)
GrB wait(GrB Descriptor*) GrB Descriptor wait(GrB Descriptor*)

212

Table 5.5: Long-name, nonpolymorphic form of GraphBLAS methods (continued).
Polymorphic signature Nonpolymorphic signature

GrB eWiseMult(GrB Vector,. . . ,GrB Semiring,. . .) GrB Vector eWiseMult Semiring(GrB Vector,. . . ,GrB Semiring,. . .)
GrB eWiseMult(GrB Vector,. . . ,GrB Monoid,. . .) GrB Vector eWiseMult Monoid(GrB Vector,. . . ,GrB Monoid,. . .)
GrB eWiseMult(GrB Vector,. . . ,GrB BinaryOp,. . .) GrB Vector eWiseMult BinaryOp(GrB Vector,. . . ,GrB BinaryOp,. . .)
GrB eWiseMult(GrB Matrix,. . . ,GrB Semiring,. . .) GrB Matrix eWiseMult Semiring(GrB Matrix,. . . ,GrB Semiring,. . .)
GrB eWiseMult(GrB Matrix,. . . ,GrB Monoid,. . .) GrB Matrix eWiseMult Monoid(GrB Matrix,. . . ,GrB Monoid,. . .)
GrB eWiseMult(GrB Matrix,. . . ,GrB BinaryOp,. . .) GrB Matrix eWiseMult BinaryOp(GrB Matrix,. . . ,GrB BinaryOp,. . .)

GrB eWiseAdd(GrB Vector,. . . ,GrB Semiring,. . .) GrB Vector eWiseAdd Semiring(GrB Vector,. . . ,GrB Semiring,. . .)
GrB eWiseAdd(GrB Vector,. . . ,GrB Monoid,. . .) GrB Vector eWiseAdd Monoid(GrB Vector,. . . ,GrB Monoid,. . .)
GrB eWiseAdd(GrB Vector,. . . ,GrB BinaryOp,. . .) GrB Vector eWiseAdd BinaryOp(GrB Vector,. . . ,GrB BinaryOp,. . .)
GrB eWiseAdd(GrB Matrix,. . . ,GrB Semiring,. . .) GrB Matrix eWiseAdd Semiring(GrB Matrix,. . . ,GrB Semiring,. . .)
GrB eWiseAdd(GrB Matrix,. . . ,GrB Monoid,. . .) GrB Matrix eWiseAdd Monoid(GrB Matrix,. . . ,GrB Monoid,. . .)
GrB eWiseAdd(GrB Matrix,. . . ,GrB BinaryOp,. . .) GrB Matrix eWiseAdd BinaryOp(GrB Matrix,. . . ,GrB BinaryOp,. . .)

GrB extract(GrB Vector,. . . ,GrB Vector,. . .) GrB Vector extract(GrB Vector,. . . ,GrB Vector,. . .)
GrB extract(GrB Matrix,. . . ,GrB Matrix,. . .) GrB Matrix extract(GrB Matrix,. . . ,GrB Matrix,. . .)
GrB extract(GrB Vector,. . . ,GrB Matrix,. . .) GrB Col extract(GrB Vector,. . . ,GrB Matrix,. . .)

GrB assign(GrB Vector,. . . ,GrB Vector,. . .) GrB Vector assign(GrB Vector,. . . ,GrB Vector,. . .)
GrB assign(GrB Matrix,. . . ,GrB Matrix,. . .) GrB Matrix assign(GrB Matrix,. . . ,GrB Matrix,. . .)
GrB assign(GrB Matrix,. . . ,GrB Vector,const GrB Index*,. . .) GrB Col assign(GrB Matrix,. . . ,GrB Vector,const GrB Index*,. . .)
GrB assign(GrB Matrix,. . . ,GrB Vector,GrB Index,. . .) GrB Row assign(GrB Matrix,. . . ,GrB Vector,GrB Index,. . .)

GrB assign(GrB Vector,. . . , bool,. . .) GrB Vector assign BOOL(GrB Vector,. . . , bool,. . .)
GrB assign(GrB Vector,. . . , int8 t,. . .) GrB Vector assign INT8(GrB Vector,. . . , int8 t,. . .)
GrB assign(GrB Vector,. . . , uint8 t,. . .) GrB Vector assign UINT8(GrB Vector,. . . , uint8 t,. . .)
GrB assign(GrB Vector,. . . , int16 t,. . .) GrB Vector assign INT16(GrB Vector,. . . , int16 t,. . .)
GrB assign(GrB Vector,. . . , uint16 t,. . .) GrB Vector assign UINT16(GrB Vector,. . . , uint16 t,. . .)
GrB assign(GrB Vector,. . . , int32 t,. . .) GrB Vector assign INT32(GrB Vector,. . . , int32 t,. . .)
GrB assign(GrB Vector,. . . , uint32 t,. . .) GrB Vector assign UINT32(GrB Vector,. . . , uint32 t,. . .)
GrB assign(GrB Vector,. . . , int64 t,. . .) GrB Vector assign INT64(GrB Vector,. . . , int64 t,. . .)
GrB assign(GrB Vector,. . . , uint64 t,. . .) GrB Vector assign UINT64(GrB Vector,. . . , uint64 t,. . .)
GrB assign(GrB Vector,. . . , float,. . .) GrB Vector assign FP32(GrB Vector,. . . , float,. . .)
GrB assign(GrB Vector,. . . , double,. . .) GrB Vector assign FP64(GrB Vector,. . . , double,. . .)
GrB assign(GrB Vector,. . . ,other,. . .) GrB Vector assign UDT(GrB Vector,. . . ,const void*,. . .)

GrB assign(GrB Matrix,. . . , bool,. . .) GrB Matrix assign BOOL(GrB Matrix,. . . , bool,. . .)
GrB assign(GrB Matrix,. . . , int8 t,. . .) GrB Matrix assign INT8(GrB Matrix,. . . , int8 t,. . .)
GrB assign(GrB Matrix,. . . , uint8 t,. . .) GrB Matrix assign UINT8(GrB Matrix,. . . , uint8 t,. . .)
GrB assign(GrB Matrix,. . . , int16 t,. . .) GrB Matrix assign INT16(GrB Matrix,. . . , int16 t,. . .)
GrB assign(GrB Matrix,. . . , uint16 t,. . .) GrB Matrix assign UINT16(GrB Matrix,. . . , uint16 t,. . .)
GrB assign(GrB Matrix,. . . , int32 t,. . .) GrB Matrix assign INT32(GrB Matrix,. . . , int32 t,. . .)
GrB assign(GrB Matrix,. . . , uint32 t,. . .) GrB Matrix assign UINT32(GrB Matrix,. . . , uint32 t,. . .)
GrB assign(GrB Matrix,. . . , int64 t,. . .) GrB Matrix assign INT64(GrB Matrix,. . . , int64 t,. . .)
GrB assign(GrB Matrix,. . . , uint64 t,. . .) GrB Matrix assign UINT64(GrB Matrix,. . . , uint64 t,. . .)
GrB assign(GrB Matrix,. . . , float,. . .) GrB Matrix assign FP32(GrB Matrix,. . . , float,. . .)
GrB assign(GrB Matrix,. . . , double,. . .) GrB Matrix assign FP64(GrB Matrix,. . . , double,. . .)
GrB assign(GrB Matrix,. . . ,other,. . .) GrB Matrix assign UDT(GrB Matrix,. . . ,const void*,. . .)

GrB apply(GrB Vector,. . . ,GrB UnaryOp,GrB Vector,. . .) GrB Vector apply(GrB Vector,. . . ,GrB UnaryOp,GrB Vector,. . .)
GrB apply(GrB Matrix,. . . ,GrB UnaryOp,GrB Matrix,. . .) GrB Matrix apply(GrB Matrix,. . . ,GrB UnaryOp,GrB Matrix,. . .)

213

Table 5.6: Long-name, nonpolymorphic form of GraphBLAS methods (continued).
Polymorphic signature Nonpolymorphic signature

GrB apply(GrB Vector,. . . ,GrB BinaryOp,bool,GrB Vector,. . .) GrB Vector apply BinaryOp1st BOOL(GrB Vector,. . . ,GrB BinaryOp,bool,GrB Vector,. . .)
GrB apply(GrB Vector,. . . ,GrB BinaryOp,int8 t,GrB Vector,. . .) GrB Vector apply BinaryOp1st INT8(GrB Vector,. . . ,GrB BinaryOp,int8 t,GrB Vector,. . .)
GrB apply(GrB Vector,. . . ,GrB BinaryOp,uint8 t,GrB Vector,. . .) GrB Vector apply BinaryOp1st UINT8(GrB Vector,. . . ,GrB BinaryOp,uint8 t,GrB Vector,. . .)
GrB apply(GrB Vector,. . . ,GrB BinaryOp,int16 t,GrB Vector,. . .) GrB Vector apply BinaryOp1st INT16(GrB Vector,. . . ,GrB BinaryOp,int16 t,GrB Vector,. . .)
GrB apply(GrB Vector,. . . ,GrB BinaryOp,uint16 t,GrB Vector,. . .) GrB Vector apply BinaryOp1st UINT16(GrB Vector,. . . ,GrB BinaryOp,uint16 t,GrB Vector,. . .)
GrB apply(GrB Vector,. . . ,GrB BinaryOp,int32 t,GrB Vector,. . .) GrB Vector apply BinaryOp1st INT32(GrB Vector,. . . ,GrB BinaryOp,int32 t,GrB Vector,. . .)
GrB apply(GrB Vector,. . . ,GrB BinaryOp,uint32 t,GrB Vector,. . .) GrB Vector apply BinaryOp1st UINT32(GrB Vector,. . . ,GrB BinaryOp,uint32 t,GrB Vector,. . .)
GrB apply(GrB Vector,. . . ,GrB BinaryOp,int64 t,GrB Vector,. . .) GrB Vector apply BinaryOp1st INT64(GrB Vector,. . . ,GrB BinaryOp,int64 t,GrB Vector,. . .)
GrB apply(GrB Vector,. . . ,GrB BinaryOp,uint64 t,GrB Vector,. . .) GrB Vector apply BinaryOp1st UINT64(GrB Vector,. . . ,GrB BinaryOp,uint64 t,GrB Vector,. . .)
GrB apply(GrB Vector,. . . ,GrB BinaryOp,float,GrB Vector,. . .) GrB Vector apply BinaryOp1st FP32(GrB Vector,. . . ,GrB BinaryOp,float,GrB Vector,. . .)
GrB apply(GrB Vector,. . . ,GrB BinaryOp,double,GrB Vector,. . .) GrB Vector apply BinaryOp1st FP64(GrB Vector,. . . ,GrB BinaryOp,double,GrB Vector,. . .)
GrB apply(GrB Vector,. . . ,GrB BinaryOp,other,GrB Vector,. . .) GrB Vector apply BinaryOp1st UDT(GrB Vector,. . . ,GrB BinaryOp,const void*,GrB Vector,. . .)

GrB apply(GrB Vector,. . . ,GrB BinaryOp,GrB Vector,bool,. . .) GrB Vector apply BinaryOp2nd BOOL(GrB Vector,. . . ,GrB BinaryOp,GrB Vector,bool,. . .)
GrB apply(GrB Vector,. . . ,GrB BinaryOp,GrB Vector,int8 t,. . .) GrB Vector apply BinaryOp2nd INT8(GrB Vector,. . . ,GrB BinaryOp,GrB Vector,int8 t,. . .)
GrB apply(GrB Vector,. . . ,GrB BinaryOp,GrB Vector,uint8 t,. . .) GrB Vector apply BinaryOp2nd UINT8(GrB Vector,. . . ,GrB BinaryOp,GrB Vector,uint8 t,. . .)
GrB apply(GrB Vector,. . . ,GrB BinaryOp,GrB Vector,int16 t,. . .) GrB Vector apply BinaryOp2nd INT16(GrB Vector,. . . ,GrB BinaryOp,GrB Vector,int16 t,. . .)
GrB apply(GrB Vector,. . . ,GrB BinaryOp,GrB Vector,uint16 t,. . .) GrB Vector apply BinaryOp2nd UINT16(GrB Vector,. . . ,GrB BinaryOp,GrB Vector,uint16 t,. . .)
GrB apply(GrB Vector,. . . ,GrB BinaryOp,GrB Vector,int32 t,. . .) GrB Vector apply BinaryOp2nd INT32(GrB Vector,. . . ,GrB BinaryOp,GrB Vector,int32 t,. . .)
GrB apply(GrB Vector,. . . ,GrB BinaryOp,GrB Vector,uint32 t,. . .) GrB Vector apply BinaryOp2nd UINT32(GrB Vector,. . . ,GrB BinaryOp,GrB Vector,uint32 t,. . .)
GrB apply(GrB Vector,. . . ,GrB BinaryOp,GrB Vector,int64 t,. . .) GrB Vector apply BinaryOp2nd INT64(GrB Vector,. . . ,GrB BinaryOp,GrB Vector,int64 t,. . .)
GrB apply(GrB Vector,. . . ,GrB BinaryOp,GrB Vector,uint64 t,. . .) GrB Vector apply BinaryOp2nd UINT64(GrB Vector,. . . ,GrB BinaryOp,GrB Vector,uint64 t,. . .)
GrB apply(GrB Vector,. . . ,GrB BinaryOp,GrB Vector,float,. . .) GrB Vector apply BinaryOp2nd FP32(GrB Vector,. . . ,GrB BinaryOp,GrB Vector,float,. . .)
GrB apply(GrB Vector,. . . ,GrB BinaryOp,GrB Vector,double,. . .) GrB Vector apply BinaryOp2nd FP64(GrB Vector,. . . ,GrB BinaryOp,GrB Vector,double,. . .)
GrB apply(GrB Vector,. . . ,GrB BinaryOp,GrB Vector,other,. . .) GrB Vector apply BinaryOp2nd UDT(GrB Vector,. . . ,GrB BinaryOp,GrB Vector,const void*,. . .)

214

Table 5.7: Long-name, nonpolymorphic form of GraphBLAS methods (continued).
Polymorphic signature Nonpolymorphic signature

GrB apply(GrB Matrix,. . . ,GrB BinaryOp,bool,GrB Matrix,. . .) GrB Matrix apply BinaryOp1st BOOL(GrB Matrix,. . . ,GrB BinaryOp,bool,GrB Matrix,. . .)
GrB apply(GrB Matrix,. . . ,GrB BinaryOp,int8 t,GrB Matrix,. . .) GrB Matrix apply BinaryOp1st INT8(GrB Matrix,. . . ,GrB BinaryOp,int8 t,GrB Matrix,. . .)
GrB apply(GrB Matrix,. . . ,GrB BinaryOp,uint8 t,GrB Matrix,. . .) GrB Matrix apply BinaryOp1st UINT8(GrB Matrix,. . . ,GrB BinaryOp,uint8 t,GrB Matrix,. . .)
GrB apply(GrB Matrix,. . . ,GrB BinaryOp,int16 t,GrB Matrix,. . .) GrB Matrix apply BinaryOp1st INT16(GrB Matrix,. . . ,GrB BinaryOp,int16 t,GrB Matrix,. . .)
GrB apply(GrB Matrix,. . . ,GrB BinaryOp,uint16 t,GrB Matrix,. . .) GrB Matrix apply BinaryOp1st UINT16(GrB Matrix,. . . ,GrB BinaryOp,uint16 t,GrB Matrix,. . .)
GrB apply(GrB Matrix,. . . ,GrB BinaryOp,int32 t,GrB Matrix,. . .) GrB Matrix apply BinaryOp1st INT32(GrB Matrix,. . . ,GrB BinaryOp,int32 t,GrB Matrix,. . .)
GrB apply(GrB Matrix,. . . ,GrB BinaryOp,uint32 t,GrB Matrix,. . .) GrB Matrix apply BinaryOp1st UINT32(GrB Matrix,. . . ,GrB BinaryOp,uint32 t,GrB Matrix,. . .)
GrB apply(GrB Matrix,. . . ,GrB BinaryOp,int64 t,GrB Matrix,. . .) GrB Matrix apply BinaryOp1st INT64(GrB Matrix,. . . ,GrB BinaryOp,int64 t,GrB Matrix,. . .)
GrB apply(GrB Matrix,. . . ,GrB BinaryOp,uint64 t,GrB Matrix,. . .) GrB Matrix apply BinaryOp1st UINT64(GrB Matrix,. . . ,GrB BinaryOp,uint64 t,GrB Matrix,. . .)
GrB apply(GrB Matrix,. . . ,GrB BinaryOp,float,GrB Matrix,. . .) GrB Matrix apply BinaryOp1st FP32(GrB Matrix,. . . ,GrB BinaryOp,float,GrB Matrix,. . .)
GrB apply(GrB Matrix,. . . ,GrB BinaryOp,double,GrB Matrix,. . .) GrB Matrix apply BinaryOp1st FP64(GrB Matrix,. . . ,GrB BinaryOp,double,GrB Matrix,. . .)
GrB apply(GrB Matrix,. . . ,GrB BinaryOp,other,GrB Matrix,. . .) GrB Matrix apply BinaryOp1st UDT(GrB Matrix,. . . ,GrB BinaryOp,const void*,GrB Matrix,. . .)

GrB apply(GrB Matrix,. . . ,GrB BinaryOp,GrB Matrix,bool,. . .) GrB Matrix apply BinaryOp2nd BOOL(GrB Matrix,. . . ,GrB BinaryOp,GrB Matrix,bool,. . .)
GrB apply(GrB Matrix,. . . ,GrB BinaryOp,GrB Matrix,int8 t,. . .) GrB Matrix apply BinaryOp2nd INT8(GrB Matrix,. . . ,GrB BinaryOp,GrB Matrix,int8 t,. . .)
GrB apply(GrB Matrix,. . . ,GrB BinaryOp,GrB Matrix,uint8 t,. . .) GrB Matrix apply BinaryOp2nd UINT8(GrB Matrix,. . . ,GrB BinaryOp,GrB Matrix,uint8 t,. . .)
GrB apply(GrB Matrix,. . . ,GrB BinaryOp,GrB Matrix,int16 t,. . .) GrB Matrix apply BinaryOp2nd INT16(GrB Matrix,. . . ,GrB BinaryOp,GrB Matrix,int16 t,. . .)
GrB apply(GrB Matrix,. . . ,GrB BinaryOp,GrB Matrix,uint16 t,. . .) GrB Matrix apply BinaryOp2nd UINT16(GrB Matrix,. . . ,GrB BinaryOp,GrB Matrix,uint16 t,. . .)
GrB apply(GrB Matrix,. . . ,GrB BinaryOp,GrB Matrix,int32 t,. . .) GrB Matrix apply BinaryOp2nd INT32(GrB Matrix,. . . ,GrB BinaryOp,GrB Matrix,int32 t,. . .)
GrB apply(GrB Matrix,. . . ,GrB BinaryOp,GrB Matrix,uint32 t,. . .) GrB Matrix apply BinaryOp2nd UINT32(GrB Matrix,. . . ,GrB BinaryOp,GrB Matrix,uint32 t,. . .)
GrB apply(GrB Matrix,. . . ,GrB BinaryOp,GrB Matrix,int64 t,. . .) GrB Matrix apply BinaryOp2nd INT64(GrB Matrix,. . . ,GrB BinaryOp,GrB Matrix,int64 t,. . .)
GrB apply(GrB Matrix,. . . ,GrB BinaryOp,GrB Matrix,uint64 t,. . .) GrB Matrix apply BinaryOp2nd UINT64(GrB Matrix,. . . ,GrB BinaryOp,GrB Matrix,uint64 t,. . .)
GrB apply(GrB Matrix,. . . ,GrB BinaryOp,GrB Matrix,float,. . .) GrB Matrix apply BinaryOp2nd FP32(GrB Matrix,. . . ,GrB BinaryOp,GrB Matrix,float,. . .)
GrB apply(GrB Matrix,. . . ,GrB BinaryOp,GrB Matrix,double,. . .) GrB Matrix apply BinaryOp2nd FP64(GrB Matrix,. . . ,GrB BinaryOp,GrB Matrix,double,. . .)
GrB apply(GrB Matrix,. . . ,GrB BinaryOp,GrB Matrix,other,. . .) GrB Matrix apply BinaryOp2nd UDT(GrB Matrix,. . . ,GrB BinaryOp,GrB Matrix,const void*,. . .)

215

Table 5.8: Long-name, nonpolymorphic form of GraphBLAS methods (continued).
Polymorphic signature Nonpolymorphic signature

GrB reduce(GrB Vector,. . . ,GrB Monoid,. . .) GrB Matrix reduce Monoid(GrB Vector,. . . ,GrB Monoid,. . .)
GrB reduce(GrB Vector,. . . ,GrB BinaryOp,. . .) GrB Matrix reduce BinaryOp(GrB Vector,. . . ,GrB BinaryOp,. . .)

GrB reduce(bool*,. . . ,GrB Vector,. . .) GrB Vector reduce BOOL(bool*,. . . ,GrB Vector,. . .)
GrB reduce(int8 t*,. . . ,GrB Vector,. . .) GrB Vector reduce INT8(int8 t*,. . . ,GrB Vector,. . .)
GrB reduce(uint8 t*,. . . ,GrB Vector,. . .) GrB Vector reduce UINT8(uint8 t*,. . . ,GrB Vector,. . .)
GrB reduce(int16 t*,. . . ,GrB Vector,. . .) GrB Vector reduce INT16(int16 t*,. . . ,GrB Vector,. . .)
GrB reduce(uint16 t*,. . . ,GrB Vector,. . .) GrB Vector reduce UINT16(uint16 t*,. . . ,GrB Vector,. . .)
GrB reduce(int32 t*,. . . ,GrB Vector,. . .) GrB Vector reduce INT32(int32 t*,. . . ,GrB Vector,. . .)
GrB reduce(uint32 t*,. . . ,GrB Vector,. . .) GrB Vector reduce UINT32(uint32 t*,. . . ,GrB Vector,. . .)
GrB reduce(int64 t*,. . . ,GrB Vector,. . .) GrB Vector reduce INT64(int64 t*,. . . ,GrB Vector,. . .)
GrB reduce(uint64 t*,. . . ,GrB Vector,. . .) GrB Vector reduce UINT64(uint64 t*,. . . ,GrB Vector,. . .)
GrB reduce(float*,. . . ,GrB Vector,. . .) GrB Vector reduce FP32(float*,. . . ,GrB Vector,. . .)
GrB reduce(double*,. . . ,GrB Vector,. . .) GrB Vector reduce FP64(double*,. . . ,GrB Vector,. . .)
GrB reduce(other,. . . ,GrB Vector,. . .) GrB Vector reduce UDT(void*,. . . ,GrB Vector,. . .)

GrB reduce(bool*,. . . ,GrB Matrix,. . .) GrB Matrix reduce BOOL(bool*,. . . ,GrB Matrix,. . .)
GrB reduce(int8 t*,. . . ,GrB Matrix,. . .) GrB Matrix reduce INT8(int8 t*,. . . ,GrB Matrix,. . .)
GrB reduce(uint8 t*,. . . ,GrB Matrix,. . .) GrB Matrix reduce UINT8(uint8 t*,. . . ,GrB Matrix,. . .)
GrB reduce(int16 t*,. . . ,GrB Matrix,. . .) GrB Matrix reduce INT16(int16 t*,. . . ,GrB Matrix,. . .)
GrB reduce(uint16 t*,. . . ,GrB Matrix,. . .) GrB Matrix reduce UINT16(uint16 t*,. . . ,GrB Matrix,. . .)
GrB reduce(int32 t*,. . . ,GrB Matrix,. . .) GrB Matrix reduce INT32(int32 t*,. . . ,GrB Matrix,. . .)
GrB reduce(uint32 t*,. . . ,GrB Matrix,. . .) GrB Matrix reduce UINT32(uint32 t*,. . . ,GrB Matrix,. . .)
GrB reduce(int64 t*,. . . ,GrB Matrix,. . .) GrB Matrix reduce INT64(int64 t*,. . . ,GrB Matrix,. . .)
GrB reduce(uint64 t*,. . . ,GrB Matrix,. . .) GrB Matrix reduce UINT64(uint64 t*,. . . ,GrB Matrix,. . .)
GrB reduce(float*,. . . ,GrB Matrix,. . .) GrB Matrix reduce FP32(float*,. . . ,GrB Matrix,. . .)
GrB reduce(double*,. . . ,GrB Matrix,. . .) GrB Matrix reduce FP64(double*,. . . ,GrB Matrix,. . .)
GrB reduce(other,. . . ,GrB Matrix,. . .) GrB Matrix reduce UDT(void*,. . . ,GrB Matrix,. . .)

GrB kronecker(GrB Matrix,. . . ,GrB Semiring,. . .) GrB Matrix kronecker Semiring(GrB Matrix,. . . ,GrB Semiring,. . .)
GrB kronecker(GrB Matrix,. . . ,GrB Monoid,. . .) GrB Matrix kronecker Monoid(GrB Matrix,. . . ,GrB Monoid,. . .)
GrB kronecker(GrB Matrix,. . . ,GrB BinaryOp,. . .) GrB Matrix kronecker BinaryOp(GrB Matrix,. . . ,GrB BinaryOp,. . .)

216

Appendix A5825

Revision History5826

Changes in 1.3.0 (25 September 2019):5827

• (Issue 50) Changed definition of completion and added GrB wait() that takes an opaque5828

GraphBLAS object as an argument.5829

• (Issue 39) Added GrB kronecker operation.5830

• (Issue 40) Added variants of the GrB apply operation that take a binary function and a scalar.5831

• (Issue 59) Changed specification about how reductions to scalar (GrB reduce) are to be per-5832

formed (to minimize dependence on monoid identity).5833

• (Issue 24) Added methods to resize matrices and vectors (GrB Matrix resize and GrB Vector resize).5834

• (Issue 47) Added methods to remove single elements from matrices and vectors (GrB Matrix removeElement5835

and GrB Vector removeElement).5836

• (Issue 41) Added GrB STRUCTURE descriptor flag for masks (consider only the structure of5837

the mask and not the values).5838

• (Issue 64) Deprecated GrB SCMP in favor of new GrB COMP for descriptor values.5839

• (Issue 46) Added predefined descriptors covering all possible combinations of field, value pairs.5840

• Added unary operators: absolute value (GrB ABS T) and bitwise complement of integers5841

(GrB BNOT I).5842

• (Issues 42,62) Added binary operators: Added boolean exclusive-nor (GrB LXNOR) and bit-5843

wise logical operators on integers (GrB BOR I, GrB BAND I, GrB BXOR I, GrB BXNOR I).5844

• (Issue 11) Added a set of predefined monoids and semirings.5845

• (Issue 57) Updated all examples in the appendix to take advantage of new capabilities and5846

predefined objects.5847

• (Issue 43) Added parent-BFS example.5848

217

• (Issue 1) Fixed bug in the non-batch betweenness centrality algorithm in Appendix B.4 where5849

source nodes were incorrectly assigned path counts.5850

• (Issue 3) Added compile-time preprocessor defines and runtime method for querying the5851

GraphBLAS API version being used.5852

• (Issue 10) Clarified GrB init() and GrB finalize() errors.5853

• (Issue 16) Clarified behavior of boolean and integer division.5854

• (Issue 19) Clarified aliasing in user-defined operators.5855

• (Issue 20) Clarified language about behavior of GrB free() with predefined objects (implemen-5856

tation defined)5857

• (Issue 55) Clarified that multiplication does not have to distribute over addition in a Graph-5858

BLAS semiring.5859

• (Issue 45) Removed unnecessary language about annihilators.5860

• (Issue 61) Removed unnecessary language about implied zeros.5861

• (Issue 60) Added disclaimer against overspecification.5862

• Fixed miscellaneous typographical errors (such as ⊗.⊕).5863

Changes in 1.2.0:5864

• Removed ”provisional” clause.5865

Changes in 1.1.0:5866

• Removed unnecessary const from nindices, nrows, and ncols parameters of both extract and5867

assign operations.5868

• Signature of GrB UnaryOp new changed: order of input parameters changed.5869

• Signature of GrB BinaryOp new changed: order of input parameters changed.5870

• Signature of GrB Monoid new changed: removal of domain argument which is now inferred5871

from the domains of the binary operator provided.5872

• Signature of GrB Vector extractTuples and GrB Matrix extractTuples to add an in/out argu-5873

ment, n, which indicates the size of the output arrays provided (in terms of number of ele-5874

ments, not number of bytes). Added new execution error, GrB INSUFFICIENT SPACE which5875

is returned when the capacities of the output arrays are insufficient to hold all of the tuples.5876

• Changed GrB Column assign to GrB Col assign for consistency in non-polymorphic interface.5877

• Added replace flag (z) notation to Table 4.1.5878

218

• Updated the “Mathematical Description” of the assign operation in Table 4.1.5879

• Added triangle counting example.5880

• Added subsection headers for accumulate and mask/replace discussions in the Description5881

sections of GraphBLAS operations when the respective text was the “standard” text (i.e.,5882

identical in a majority of the operations).5883

• Fixed typographical errors.5884

Changes in 1.0.2:5885

• Expanded the definitions of Vector build and Matrix build to conceptually use intermediate5886

matrices and avoid casting issues in certain implementations.5887

• Fixed the bug in the GrB assign definition. Elements of the output object are no longer being5888

erased outside the assigned area.5889

• Changes non-polymorphic interface:5890

– Renamed GrB Row extract to GrB Col extract.5891

– Renamed GrB Vector reduce BinaryOp to GrB Matrix reduce BinaryOp.5892

– Renamed GrB Vector reduce Monoid to GrB Matrix reduce Monoid.5893

• Fixed the bugs with respect to isolated vertices in the Maximal Independent Set example.5894

• Fixed numerous typographical errors.5895

219

220

Appendix B5896

Examples5897

221

B.1 Example: level breadth-first search (BFS) in GraphBLAS

1 #include <s t d l i b . h>
2 #include <s t d i o . h>
3 #include <s t d i n t . h>
4 #include <s tdboo l . h>
5 #include ”GraphBLAS . h”
6
7 /∗
8 ∗ Given a boolean n x n adjacency matrix A and a source v e r t e x s , performs a BFS t r a v e r s a l
9 ∗ o f the graph and s e t s v [i] to the l e v e l in which ve r t e x i i s v i s i t e d (v [s] == 1) .

10 ∗ I f i i s not reacheab l e from s , then v [i] = 0. (Vector v shou ld be empty on input .)
11 ∗/
12 GrB Info BFS(GrB Vector ∗v , GrB Matrix A, GrB Index s)
13 {
14 GrB Index n ;
15 GrB Matrix nrows(&n ,A) ; // n = # of rows o f A
16
17 GrB Vector new (v , GrB INT32 , n) ; // Vector<i n t 32 t> v (n)
18
19 GrB Vector q ; // v e r t i c e s v i s i t e d in each l e v e l
20 GrB Vector new(&q ,GrB BOOL, n) ; // Vector<bool> q (n)
21 GrB Vector setElement (q , (bool) true , s) ; // q [s] = true , f a l s e everywhere e l s e
22
23 /∗
24 ∗ BFS t r a v e r s a l and l a b e l the v e r t i c e s .
25 ∗/
26 i n t 3 2 t d = 0 ; // d = l e v e l in BFS t r a v e r s a l
27 bool succ = f a l s e ; // succ == true when some successor found
28 do {
29 ++d ; // next l e v e l (s t a r t wi th 1)
30 GrB assign (∗v , q ,GrB NULL, d ,GrB ALL , n ,GrB NULL) ; // v [q] = d
31 GrB vxm(q ,∗ v ,GrB NULL,GrB LOR LAND SEMIRING BOOL,
32 q ,A,GrB DESC RC) ; // q [! v] = q | | .&& A ; f i nd s a l l the
33 // unv i s i t e d succe s sor s from current q
34 GrB reduce(&succ ,GrB NULL,GrB LOR MONOID BOOL,
35 q ,GrB NULL) ; // succ = | | (q)
36 } while (succ) ; // i f t he re i s no successor in q , we are done .
37
38 GrB free(&q) ; // q vec tor no longer needed
39
40 return GrB SUCCESS ;
41 }

222

B.2 Example: level BFS in GraphBLAS using apply

1 #include <s t d l i b . h>
2 #include <s t d i o . h>
3 #include <s t d i n t . h>
4 #include <s tdboo l . h>
5 #include ”GraphBLAS . h”
6
7 /∗
8 ∗ Given a boolean n x n adjacency matrix A and a source v e r t e x s , performs a BFS t r a v e r s a l
9 ∗ o f the graph and s e t s v [i] to the l e v e l in which ve r t e x i i s v i s i t e d (v [s] == 1) .

10 ∗ I f i i s not reachab l e from s , then v [i] does not have a s to red element .
11 ∗ Vector v shou ld be u n i n i t i a l i z e d on input .
12 ∗/
13 GrB Info BFS(GrB Vector ∗v , const GrB Matrix A, GrB Index s)
14 {
15 GrB Index n ;
16 GrB Matrix nrows(&n ,A) ; // n = # of rows o f A
17
18 GrB Vector new (v , GrB INT32 , n) ; // Vector<i n t 32 t> v (n) = 0
19
20 GrB Vector q ; // v e r t i c e s v i s i t e d in each l e v e l
21 GrB Vector new(&q ,GrB BOOL, n) ; // Vector<bool> q (n) = f a l s e
22 GrB Vector setElement (q , (bool) true , s) ; // q [s] = true , f a l s e everywhere e l s e
23
24 /∗
25 ∗ BFS t r a v e r s a l and l a b e l the v e r t i c e s .
26 ∗/
27 i n t 3 2 t l e v e l = 0 ; // l e v e l = depth in BFS t r a v e r s a l
28 GrB Index nva l s ;
29 do {
30 ++l e v e l ; // next l e v e l (s t a r t wi th 1)
31 GrB apply (∗v ,GrB NULL,GrB PLUS INT32 ,
32 GrB SECOND INT32 , q , l e v e l ,GrB NULL) ; // v [q] = l e v e l
33 GrB vxm(q ,∗ v ,GrB NULL,GrB LOR LAND SEMIRING BOOL,
34 q ,A,GrB DESC RC) ; // q [! v] = q | | .&& A ; f i nd s a l l the
35 // unv i s i t e d succe s sor s from current q
36 GrB Vector nvals (&nvals , q) ;
37 } while (nva l s) ; // i f t he re i s no successor in q , we are done .
38
39 GrB free(&q) ; // q vec tor no longer needed
40
41 return GrB SUCCESS ;
42 }

223

B.3 Example: parent BFS in GraphBLAS

1 #include <s t d l i b . h>
2 #include <s t d i o . h>
3 #include <s t d i n t . h>
4 #include <s tdboo l . h>
5 #include ”GraphBLAS . h”
6
7 /∗
8 ∗ Given a binary n x n adjacency matrix A and a source v e r t e x s , performs a BFS
9 ∗ t r a v e r s a l o f the graph and s e t s parents [i] to the index o f v e r t e x i ’ s parent .

10 ∗ The parent o f the root ver tex , s , w i l l be s e t to i t s e l f (parents [s] == s) . I f
11 ∗ ve r t e x i i s not reachab l e from s , parents [i] w i l l not contain a s to red va lue .
12 ∗/
13 GrB Info BFS(GrB Vector ∗parents , const GrB Matrix A, GrB Index s)
14 {
15 GrB Index N;
16 GrB Matrix nrows(&N, A) ; // N = # ve r t i c e s
17
18 // crea t e index ramp fo r index o f () f u n c t i o n a l i t y
19 GrB Index ∗ idx = (GrB Index ∗) mal loc (N∗ s izeof (GrB Index)) ;
20 for (GrB Index i = 0 ; i < N; ++i) idx [i] = i ;
21 GrB Vector index ramp ;
22 GrB Vector new(&index ramp , GrB UINT64 , N) ;
23 GrB Vector build UINT64 (index ramp , idx , idx , N, GrB PLUS INT64) ;
24 f r e e (idx) ;
25
26 GrB Vector new (parents , GrB UINT64 , N) ;
27 GrB Vector setElement (∗ parents , s , s) ; // parents [s] = s
28
29 GrB Vector wavefront ;
30 GrB Vector new(&wavefront , GrB UINT64 , N) ;
31 GrB Vector setElement (wavefront , 1UL, s) ; // wavefront [s] = 1
32
33 /∗
34 ∗ BFS t r a v e r s a l and l a b e l the v e r t i c e s .
35 ∗/
36 GrB Index nva l s ;
37 GrB Vector nvals (&nvals , wavefront) ;
38
39 while (nva l s > 0)
40 {
41 // conver t a l l s t o red va lue s in wavefront to t h e i r 0−based index
42 GrB eWiseMult (wavefront , GrB NULL, GrB NULL, GrB FIRST UINT64 ,
43 index ramp , wavefront , GrB NULL) ;
44
45 // ”FIRST” because l e f t −mu l t i p l y i n g wavefront rows . Masking out the parent
46 // l i s t ensures wavefront va lue s do not overwr i t e parents a l ready s to red .
47 GrB vxm(wavefront , ∗parents , GrB NULL, GrB MIN FIRST SEMIRING UINT64 ,
48 wavefront , A, GrB DESC RSC) ;
49
50 // Don ’ t need to mask here s ince we did i t in mxm. Merges new parents in
51 // current wavefront with e x i s t i n g parents : parents += wavefront
52 GrB apply (∗ parents , GrB NULL, GrB PLUS UINT64 ,
53 GrB IDENTITY UINT64 , wavefront , GrB NULL) ;
54
55 GrB Vector nvals (&nvals , wavefront) ;
56 }
57
58 GrB free(&wavefront) ;
59 GrB free(&index ramp) ;
60
61 return GrB SUCCESS ;
62 }

224

B.4 Example: betweenness centrality (BC) in GraphBLAS

1 #include <s t d l i b . h>
2 #include <s t d i o . h>
3 #include <s t d i n t . h>
4 #include <s tdboo l . h>
5 #include ”GraphBLAS . h”
6
7 /∗
8 ∗ Given a boolean n x n adjacency matrix A and a source v e r t e x s ,
9 ∗ compute the BC−metric vec tor de l ta , which shou ld be empty on input .

10 ∗/
11 GrB Info BC(GrB Vector ∗ de l ta , GrB Matrix A, GrB Index s)
12 {
13 GrB Index n ;
14 GrB Matrix nrows(&n ,A) ; // n = # of v e r t i c e s in graph
15
16 GrB Vector new (de l ta , GrB FP32 , n) ; // Vector<f l o a t> d e l t a (n)
17
18 GrB Matrix sigma ; // Matrix<i n t 32 t> sigma (n , n)
19 GrB Matrix new(&sigma , GrB INT32 , n , n) ; // sigma [d , k] = #sho r t e s t paths to node k at l e v e l d
20
21 GrB Vector q ;
22 GrB Vector new(&q , GrB INT32 , n) ; // Vector<i n t 32 t> q (n) o f path counts
23 GrB Vector setElement (q , 1 , s) ; // q [s] = 1
24
25 GrB Vector p ; // Vector<i n t 32 t> p(n) s h o r t e s t path counts so f a r
26 GrB Vector dup(&p , q) ; // p = q
27
28 GrB vxm(q , p ,GrB NULL,GrB PLUS TIMES SEMIRING INT32 ,
29 q ,A,GrB DESC RC) ; // ge t the f i r s t s e t o f out ne ighbors
30
31 /∗
32 ∗ BFS phase
33 ∗/
34 GrB Index d = 0 ; // BFS l e v e l number
35 i n t 3 2 t sum = 0 ; // sum == 0 when BFS phase i s complete
36
37 do {
38 GrB assign (sigma ,GrB NULL,GrB NULL, q , d ,GrB ALL , n ,GrB NULL) ; // sigma [d , :] = q
39 GrB eWiseAdd (p ,GrB NULL,GrB NULL,GrB PLUS INT32 , p , q ,GrB NULL) ; // accum path counts on t h i s l e v e l
40 GrB vxm(q , p ,GrB NULL,GrB PLUS TIMES SEMIRING INT32 ,
41 q ,A,GrB DESC RC) ; // q = # paths to nodes reachab l e
42 // from current l e v e l
43 GrB reduce(&sum ,GrB NULL,GrB PLUS MONOID INT32 , q ,GrB NULL) ; // sum path counts at t h i s l e v e l
44 ++d ;
45 } while (sum) ;
46
47 /∗
48 ∗ BC computation phase
49 ∗ (t1 , t2 , t3 , t4) are temporary vec t o r s
50 ∗/
51 GrB Vector t1 ; GrB Vector new(&t1 , GrB FP32 , n) ;
52 GrB Vector t2 ; GrB Vector new(&t2 , GrB FP32 , n) ;
53 GrB Vector t3 ; GrB Vector new(&t3 , GrB FP32 , n) ;
54 GrB Vector t4 ; GrB Vector new(&t4 , GrB FP32 , n) ;
55
56 for (int i=d−1; i >0; i−−)
57 {
58 GrB assign (t1 ,GrB NULL,GrB NULL, 1 . 0 f ,GrB ALL , n ,GrB NULL) ; // t1 = 1+de l t a
59 GrB eWiseAdd (t1 ,GrB NULL,GrB NULL,GrB PLUS MONOID FP32 , t1 ,∗ de l ta ,GrB NULL) ;
60 GrB extract (t2 ,GrB NULL,GrB NULL, sigma ,GrB ALL , n , i , GrB DESC T0) ; // t2 = sigma [i , :]
61 GrB eWiseMult (t2 ,GrB NULL,GrB NULL, GrB DIV FP32 , t1 , t2 ,GrB NULL) ; // t2 = (1+ de l t a)/ sigma [i , :]
62 GrB mxv(t3 ,GrB NULL,GrB NULL,GrB PLUS TIMES SEMIRING FP32 , // add con t r i b u t i on s made by

225

63 A, t2 ,GrB NULL) ; // succe s sor s o f a node
64 GrB extract (t4 ,GrB NULL,GrB NULL, sigma ,GrB ALL , n , i −1,GrB DESC T0) ; // t4 = sigma [i −1 , :]
65 GrB eWiseMult (t4 ,GrB NULL,GrB NULL,GrB TIMES FP32 , t4 , t3 ,GrB NULL) ; // t4 = sigma [i −1 , :]∗ t3
66 GrB eWiseAdd(∗ de l ta ,GrB NULL,GrB NULL,GrB PLUS FP32 ,∗ de l ta , t4 ,GrB NULL) ; // accumulate in to d e l t a
67 }
68
69 GrB free(&sigma) ;
70 GrB free(&q) ; GrB free(&p) ;
71 GrB free(&t1) ; GrB free(&t2) ; GrB free(&t3) ; GrB free(&t4) ;
72
73 return GrB SUCCESS ;
74 }

226

B.5 Example: batched BC in GraphBLAS

1 #include <s t d l i b . h>
2 #include ”GraphBLAS . h” // in add i t i on to other requ i red C headers
3
4 // Compute p a r t i a l BC metric f o r a sub s e t o f source v e r t i c e s , s , in graph A
5 GrB Info BC update (GrB Vector ∗ de l ta , GrB Matrix A, GrB Index ∗ s , GrB Index nsver)
6 {
7 GrB Index n ;
8 GrB Matrix nrows(&n , A) ; // n = # of v e r t i c e s in graph
9 GrB Vector new (de l ta , GrB FP32 , n) ; // Vector<f l o a t> d e l t a (n)

10
11 // index and va lue arrays needed to b u i l d numsp
12 GrB Index ∗ i n s v e r = (GrB Index ∗) mal loc (s izeof (GrB Index)∗ nsver) ;
13 i n t 3 2 t ∗ ones = (i n t 3 2 t ∗) mal loc (s izeof (i n t 3 2 t)∗ nsver) ;
14 for (int i =0; i<nsver ; ++i) {
15 i n s v e r [i] = i ;
16 ones [i] = 1 ;
17 }
18
19 // numsp : s t r u c t u r e ho ld s the number o f s h o r t e s t paths f o r each node and s t a r t i n g v e r t e x
20 // d i s covered so fa r . I n i t i a l i z e d to source v e r t i c e s : numsp [s [i] , i]=1 , i =[0 , nsver)
21 GrB Matrix numsp ;
22 GrB Matrix new(&numsp , GrB INT32 , n , nsver) ;
23 GrB Matrix bui ld (numsp , s , i n sv e r , ones , nsver , GrB PLUS INT32) ;
24 f r e e (i n s v e r) ; f r e e (ones) ;
25
26 // f r o n t i e r : Holds the current f r o n t i e r where va lue s are path counts .
27 // I n i t i a l i z e d to out v e r t i c e s o f each source node in s .
28 GrB Matrix f r o n t i e r ;
29 GrB Matrix new(& f r o n t i e r , GrB INT32 , n , nsver) ;
30 GrB extract (f r o n t i e r , numsp ,GrB NULL,A,GrB ALL , n , s , nsver ,GrB DESC RCT0) ;
31
32 // sigma : s t o r e s f r o n t i e r informat ion fo r each l e v e l o f BFS phase . The memory
33 // fo r an entry in sigmas i s only a l l o c a t e d wi th in the do−whi l e loop i f needed .
34 // n i s an upper bound on diameter .
35 GrB Matrix ∗ sigmas = (GrB Matrix ∗) mal loc (s izeof (GrB Matrix)∗n) ;
36
37 i n t 3 2 t d = 0 ; // BFS l e v e l number
38 GrB Index nva l s = 0 ; // nva l s == 0 when BFS phase i s complete
39
40 // −−−−−−−−−−−−−−−−−−−−− The BFS phase (forward sweep) −−−−−−−−−−−−−−−−−−−−−−−−−−−
41 do {
42 // sigmas [d] (: , s) = dˆ th l e v e l f r o n t i e r from source v e r t e x s
43 GrB Matrix new(&(sigmas [d]) ,GrB BOOL, n , nsver) ;
44
45 GrB apply (sigmas [d] ,GrB NULL,GrB NULL,
46 GrB IDENTITY BOOL, f r o n t i e r ,GrB NULL) ; // sigmas [d] (: , :) = (Boolean) f r o n t i e r
47 GrB eWiseAdd (numsp ,GrB NULL,GrB NULL,GrB PLUS INT32
48 ,numsp , f r o n t i e r ,GrB NULL) ; // numsp += f r o n t i e r (accum path counts)
49 GrB mxm(f r o n t i e r , numsp ,GrB NULL,GrB PLUS TIMES SEMIRING INT32 ,
50 A, f r o n t i e r ,GrB DESC RCT0) ; // f<!numsp> = A’ +.∗ f (update f r o n t i e r)
51 GrB Matrix nvals(&nvals , f r o n t i e r) ; // number o f nodes in f r o n t i e r at t h i s l e v e l
52 d++;
53 } while (nva l s) ;
54
55 // nspinv : the inve r s e o f the number o f s h o r t e s t paths f o r each node and s t a r t i n g v e r t e x .
56 GrB Matrix nspinv ;
57 GrB Matrix new(&nspinv , GrB FP32 , n , nsver) ;
58 GrB apply (nspinv ,GrB NULL,GrB NULL,
59 GrB MINV FP32 , numsp ,GrB NULL) ; // nspinv = 1./numsp
60
61 // bcu : BC updates f o r each ve r t e x f o r each s t a r t i n g v e r t e x in s
62 GrB Matrix bcu ;

227

63 GrB Matrix new(&bcu , GrB FP32 , n , nsver) ;
64 GrB assign (bcu ,GrB NULL,GrB NULL,
65 1 .0 f ,GrB ALL , n ,GrB ALL , nsver ,GrB NULL) ; // f i l l e d with 1 to avoid s p a r s i t y i s s u e s
66
67 GrB Matrix w; // temporary workspace matrix
68 GrB Matrix new(&w,GrB FP32 , n , nsver) ;
69
70 // −−−−−−−−−−−−−−−−−−−− Tal l y phase (backward sweep) −−−−−−−−−−−−−−−−−−−−
71 for (int i=d−1; i >0; i−−) {
72 GrB eWiseMult (w, sigmas [i] ,GrB NULL,
73 GrB TIMES FP32 , bcu , nspinv ,GrB DESC R) ; // w<sigmas [i]>=(1 ./ nsp) .∗ bcu
74
75 // add con t r i b u t i on s by succe s sor s and mask with t ha t BFS l e v e l ’ s f r o n t i e r
76 GrB mxm(w, sigmas [i −1] ,GrB NULL,GrB PLUS TIMES SEMIRING FP32 ,
77 A,w,GrB DESC R) ; // w<sigmas [i−1]> = (A +.∗ w)
78 GrB eWiseMult (bcu ,GrB NULL,GrB PLUS FP32 ,GrB TIMES FP32 ,
79 w, numsp ,GrB NULL) ; // bcu += w .∗ numsp
80 }
81
82 // row reduce bcu and sub t r a c t ”nsver ” from every entry to account
83 // fo r 1 ex t ra va lue per bcu row element .
84 GrB reduce (∗ de l ta ,GrB NULL,GrB NULL,GrB PLUS FP32 , bcu ,GrB NULL) ;
85 GrB apply (∗ de l ta ,GrB NULL,GrB NULL,GrB MINUS FP32 ,∗ de l ta , (f loat) nsver ,GrB NULL) ;
86
87 // Release resources
88 for (int i =0; i<d ; i++) {
89 GrB free (&(sigmas [i])) ;
90 }
91 f r e e (sigmas) ;
92
93 GrB free(& f r o n t i e r) ; GrB free(&numsp) ;
94 GrB free(&nspinv) ; GrB free(&bcu) ; GrB free(&w) ;
95
96 return GrB SUCCESS ;
97 }

228

B.6 Example: maximal independent set (MIS) in GraphBLAS

1 #include <s t d l i b . h>
2 #include <s t d i o . h>
3 #include <s t d i n t . h>
4 #include <s tdboo l . h>
5 #include ”GraphBLAS . h”
6
7 // Assign a random number to each element s ca l ed by the inve r s e o f the node ’ s degree .
8 // This w i l l increase the p r o b a b i l i t y t ha t low degree nodes are s e l e c t e d and l a r g e r
9 // s e t s are s e l e c t e d .

10 void setRandom(void ∗out , const void ∗ in)
11 {
12 u in t 32 t degree = ∗(u i n t 32 t ∗) in ;
13 ∗(f loat ∗) out = (0 .0001 f + random () / (1 . + 2 .∗ degree)) ; // add 1 to prevent d i v i d e by zero
14 }
15
16 /∗
17 ∗ A var ian t o f Luby ’ s randomized a lgor i thm [Luby 1985] .
18 ∗
19 ∗ Given a numeric n x n adjacency matrix A of an unweighted and undirec ted graph (where
20 ∗ the va lue t rue repre s en t s an edge) , compute a maximal s e t o f independent v e r t i c e s and
21 ∗ re turn i t in a boolean n−vector , ’ i s e t ’ where s e t [i] == true imp l i e s v e r t e x i i s a member
22 ∗ o f the s e t (the i s e t vec to r shou ld be u n i n i t i a l i z e d on input .)
23 ∗/
24 GrB Info MIS(GrB Vector ∗ i s e t , const GrB Matrix A)
25 {
26 GrB Index n ;
27 GrB Matrix nrows(&n ,A) ; // n = # of rows o f A
28
29 GrB Vector prob ; // ho ld s random p r o b a b i l i t i e s f o r each node
30 GrB Vector neighbor max ; // ho ld s va lue o f max neighbor p r o b a b i l i t y
31 GrB Vector new members ; // ho ld s s e t o f new members to i s e t
32 GrB Vector new neighbors ; // ho ld s s e t o f new ne ighbors to new i s e t mbrs .
33 GrB Vector cand idates ; // candidate members to i s e t
34
35 GrB Vector new(&prob , GrB FP32 , n) ;
36 GrB Vector new(&neighbor max , GrB FP32 , n) ;
37 GrB Vector new(&new members ,GrB BOOL, n) ;
38 GrB Vector new(&new neighbors ,GrB BOOL, n) ;
39 GrB Vector new(&candidates ,GrB BOOL, n) ;
40 GrB Vector new (i s e t ,GrB BOOL, n) ; // I n i t i a l i z e independent s e t vector , boo l
41
42 GrB UnaryOp set random ;
43 GrB UnaryOp new(&set random , setRandom ,GrB FP32 ,GrB UINT32) ;
44
45 // compute the degree o f each ve r t e x .
46 GrB Vector degree s ;
47 GrB Vector new(°rees , GrB FP64 , n) ;
48 GrB reduce (degrees ,GrB NULL,GrB NULL,GrB PLUS FP64 ,A,GrB NULL) ;
49
50 // I s o l a t e d v e r t i c e s are not cand ida tes : cand ida tes [degrees != 0] = true
51 GrB assign (candidates , degrees ,GrB NULL, true ,GrB ALL , n ,GrB NULL) ;
52
53 // add a l l s i n g l e t o n s to i s e t : i s e t [degree == 0] = 1
54 GrB assign (∗ i s e t , degrees ,GrB NULL, true ,GrB ALL , n ,GrB DESC RC) ;
55
56 // I t e r a t e wh i l e there are cand ida tes to check .
57 GrB Index nva l s ;
58 GrB Vector nvals (&nvals , cand idate s) ;
59 while (nva l s > 0) {
60 // compute a random p r o b a b i l i t y s ca l ed by inve r s e o f degree
61 GrB apply (prob , candidates ,GrB NULL, set random , degrees ,GrB DESC R) ;
62

229

63 // compute the max p r o b a b i l i t y o f a l l ne ighbors
64 GrB mxv(neighbor max , candidates ,GrB NULL,GrB MAX SECOND SEMIRING FP32,A, prob ,GrB DESC R) ;
65
66 // s e l e c t v e r t e x i f i t s p r o b a b i l i t y i s l a r g e r than a l l i t s a c t i v e neighbors ,
67 // and app ly a ”masked no−op” to remove s to red f a l s e s
68 GrB eWiseAdd (new members ,GrB NULL,GrB NULL,GrB GT FP64 , prob , neighbor max ,GrB NULL) ;
69 GrB apply (new members , new members ,GrB NULL,GrB IDENTITY BOOL, new members ,GrB DESC R) ;
70
71 // add new members to independent s e t .
72 GrB eWiseAdd(∗ i s e t ,GrB NULL,GrB NULL,GrB LOR,∗ i s e t , new members ,GrB NULL) ;
73
74 // remove new members from se t o f cand ida tes c = c & ! new
75 GrB eWiseMult (candidates , new members ,GrB NULL,
76 GrB LAND, candidates , candidates ,GrB DESC RC) ;
77
78 GrB Vector nvals (&nvals , cand idates) ;
79 i f (nva l s == 0) { break ; } // ea r l y e x i t cond i t i on
80
81 // Neighbors o f new members can a l s o be removed from candida tes
82 GrB mxv(new neighbors , candidates ,GrB NULL,GrB LOR LAND SEMIRING BOOL,
83 A, new members ,GrB NULL) ;
84 GrB eWiseMult (candidates , new neighbors ,GrB NULL,GrB LAND,
85 candidates , candidates ,GrB DESC RC) ;
86
87 GrB Vector nvals (&nvals , cand idates) ;
88 }
89
90 GrB free(&neighbor max) ; // f r e e a l l o b j e c t s ”new ’ ed”
91 GrB free(&new members) ;
92 GrB free(&new neighbors) ;
93 GrB free(&prob) ;
94 GrB free(&cand idate s) ;
95 GrB free(&set random) ;
96 GrB free(°ree s) ;
97
98 return GrB SUCCESS ;
99 }

230

B.7 Example: counting triangles in GraphBLAS

1 #include <s t d l i b . h>
2 #include <s t d i o . h>
3 #include <s t d i n t . h>
4 #include <s tdboo l . h>
5 #include ”GraphBLAS . h”
6
7 /∗
8 ∗ Given , L, the lower t r i an gu l a r por t ion o f n x n adjacency matrix A (o f and
9 ∗ undirec ted graph) , computes the number o f t r i a n g l e s in the graph .

10 ∗/
11 u in t 64 t t r i a n g l e c oun t (GrB Matrix L) // L: NxN, lower−t r i angu l a r , boo l
12 {
13 GrB Index n ;
14 GrB Matrix nrows(&n , L) ; // n = # of v e r t i c e s
15
16 GrB Matrix C;
17 GrB Matrix new(&C, GrB UINT64 , n , n) ;
18
19 GrB mxm(C, L , GrB NULL, GrB PLUS TIMES SEMIRING UINT64 , L , L , GrB DESC T1) ; // C<L> = L +.∗ L ’
20
21 u in t 64 t count ;
22 GrB reduce(&count , GrB NULL, GrB PLUS MONOID UINT64 , C, GrB NULL) ; // 1−norm of C
23
24 GrB free(&C) ; // C matrix no longer needed
25
26 return count ;
27 }

231

	List of Tables
	List of Figures
	Acknowledgments
	Introduction
	Basic Concepts
	Glossary
	GraphBLAS API basic definitions
	GraphBLAS objects and their structure
	Algebraic structures used in the GraphBLAS
	The execution of an application using the GraphBLAS C API
	GraphBLAS methods: behaviors and error conditions

	Notation
	Algebraic and Arithmetic Foundations
	GraphBLAS Opaque Objects
	Domains
	Operators and Associated Functions
	Indices, Index Arrays, and Scalar Arrays
	Execution Model
	Execution modes
	Thread safety

	Error Model

	Objects
	Operators
	Monoids
	Semirings
	Vectors
	Matrices
	Masks
	Descriptors

	Methods
	Context Methods
	init: Initialize a GraphBLAS context
	finalize: Finalize a GraphBLAS context
	getVersion: Get the version number of the standard.

	Object Methods
	Algebra Methods
	Type_new: Create a new GraphBLAS (user-defined) type
	UnaryOp_new: Create a new GraphBLAS unary operator
	BinaryOp_new: Create a new GraphBLAS binary operator
	Monoid_new: Create new GraphBLAS monoid
	Semiring_new: Create new GraphBLAS semiring

	Vector Methods
	Vector_new: Create new vector
	Vector_dup: Create a copy of a GraphBLAS vector
	Vector_resize: Resize a vector
	Vector_clear: Clear a vector
	Vector_size: Size of a vector
	Vector_nvals: Number of stored elements in a vector
	Vector_build: Store elements from tuples into a vector
	Vector_setElement: Set a single element in a vector
	Vector_removeElement: Remove an element from a vector
	Vector_extractElement: Extract a single element from a vector.
	Vector_extractTuples: Extract tuples from a vector

	Matrix Methods
	Matrix_new: Create new matrix
	Matrix_dup: Create a copy of a GraphBLAS matrix
	Matrix_resize: Resize a matrix
	Matrix_clear: Clear a matrix
	Matrix_nrows: Number of rows in a matrix
	Matrix_ncols: Number of columns in a matrix
	Matrix_nvals: Number of stored elements in a matrix
	Matrix_build: Store elements from tuples into a matrix
	Matrix_setElement: Set a single element in matrix
	Matrix_removeElement: Remove an element from a matrix
	Matrix_extractElement: Extract a single element from a matrix
	Matrix_extractTuples: Extract tuples from a matrix

	Descriptor Methods
	Descriptor_new: Create new descriptor
	Descriptor_set: Set content of descriptor

	free method

	GraphBLAS Operations
	mxm: Matrix-matrix multiply
	vxm: Vector-matrix multiply
	mxv: Matrix-vector multiply
	eWiseMult: Element-wise multiplication
	eWiseMult: Vector variant
	eWiseMult: Matrix variant

	eWiseAdd: Element-wise addition
	eWiseAdd: Vector variant
	eWiseAdd: Matrix variant

	extract: Selecting Sub-Graphs
	extract: Standard vector variant
	extract: Standard matrix variant
	extract: Column (and row) variant

	assign: Modifying Sub-Graphs
	assign: Standard vector variant
	assign: Standard matrix variant
	assign: Column variant
	assign: Row variant
	assign: Constant vector variant
	assign: Constant matrix variant

	apply: Apply a function to the elements of an object
	apply: Vector variant
	apply: Matrix variant
	apply: Vector-BinaryOp variants
	apply: Matrix-BinaryOp variants

	reduce: Perform a reduction across the elements of an object
	reduce: Standard matrix to vector variant
	reduce: Vector-scalar variant
	reduce: Matrix-scalar variant

	transpose: Transpose rows and columns of a matrix
	kronecker: Kronecker product of two matrices

	Sequence Termination
	wait: Wait for pending operations to complete
	wait: Waits until all pending operations complete variant
	wait: Waits until pending operations on a specific object complete variant

	error: Get an error message regarding internal errors

	Nonpolymorphic Interface
	Revision History
	Examples
	Example: level breadth-first search (BFS) in GraphBLAS
	Example: level BFS in GraphBLAS using apply
	Example: parent BFS in GraphBLAS
	Example: betweenness centrality (BC) in GraphBLAS
	Example: batched BC in GraphBLAS
	Example: maximal independent set (MIS) in GraphBLAS
	Example: counting triangles in GraphBLAS

