1	The GraphBLAS C API Specification † :
2	Version 1.3.0
3	Aydın Buluç, Timothy Mattson, Scott McMillan, José Moreira, Carl Yang
4	Generated on $2019/09/25$ at $15:32:56$ EDT

[†]Based on *GraphBLAS Mathematics* by Jeremy Kepner

5 Copyright © 2017-2019 Carnegie Mellon University, The Regents of the University of California,

⁶ through Lawrence Berkeley National Laboratory (subject to receipt of any required approvals from

7 the U.S. Dept. of Energy), the Regents of the University of California (U.C. Davis), Intel Corpo-

- ∗ ration, International Business Machines Corporation, and Massachusetts Institute of Technology
- 9 Lincoln Laboratory.
- ¹⁰ Any opinions, findings and conclusions or recommendations expressed in this material are those of
- ¹¹ the author(s) and do not necessarily reflect the views of the United States Department of Defense,
- ¹² the United States Department of Energy, Carnegie Mellon University, the Regents of the University
- ¹³ of California, Intel Corporation, or the IBM Corporation.
- 14 NO WARRANTY. THIS MATERIAL IS FURNISHED ON AN AS-IS BASIS. THE COPYRIGHT
- 15 OWNERS AND/OR AUTHORS MAKE NO WARRANTIES OF ANY KIND, EITHER EX-
- 16 PRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WAR-
- 17 RANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RE-
- 18 SULTS OBTAINED FROM USE OF THE MATERIAL. THE COPYRIGHT OWNERS AND/OR
- 19 AUTHORS DO NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREE-
- 20 DOM FROM PATENT, TRADE MARK, OR COPYRIGHT INFRINGEMENT.

- 21 Except as otherwise noted, this material is licensed under a Creative Commons Attribution 4.0
- ²² license (http://creativecommons.org/licenses/by/4.0/legalcode), and examples are licensed under
- ²³ the BSD License (https://opensource.org/licenses/BSD-3-Clause).

$_{24}$ Contents

25		List of Tables				
26		List of Figures				
27		Acki	nowledgments	12		
28	1	Intr	oduction	13		
29	2	Bas	ic Concepts	15		
30		2.1	Glossary	15		
31			2.1.1 GraphBLAS API basic definitions	15		
32			2.1.2 GraphBLAS objects and their structure	16		
33			2.1.3 Algebraic structures used in the GraphBLAS	17		
34			2.1.4 The execution of an application using the GraphBLAS C API	18		
35			2.1.5 GraphBLAS methods: behaviors and error conditions	19		
36		2.2	Notation	20		
37		2.3	Algebraic and Arithmetic Foundations	21		
38		2.4	GraphBLAS Opaque Objects	21		
39		2.5	Domains	23		
40		2.6	Operators and Associated Functions	23		
41		2.7	Indices, Index Arrays, and Scalar Arrays	24		
42		2.8	Execution Model	29		
43			2.8.1 Execution modes	30		
44			2.8.2 Thread safety	31		
45		2.9	Error Model	31		
46	3	Obj	ects	35		

47		3.1	Opera	tors		37
48		3.2	Monoi	ds		37
49		3.3	Semiri	ngs		37
50		3.4	Vector	s		38
51		3.5	Matric	es		39
52		3.6	Masks			39
53		3.7	Descri	ptors		40
			_			
54	4	Met	hods			43
55		4.1	Conte	xt Methoo	$ m ls \ldots $	43
56			4.1.1	init: Init	ialize a GraphBLAS context	43
57			4.1.2	finalize:	Finalize a GraphBLAS context	44
58			4.1.3	getVersio	on: Get the version number of the standard. \ldots	45
59		4.2	Object	t Methods	3	45
60			4.2.1	Algebra	Methods	46
61				4.2.1.1	$Type_new:\ Create\ a\ new\ GraphBLAS\ (user-defined)\ type\ \ .\ .\ .\ .$	46
62				4.2.1.2	$UnaryOp_new:\ Create a new GraphBLAS unary operator \$	47
63				4.2.1.3	$BinaryOp_new:\ \mathrm{Create}\ \mathrm{a}\ \mathrm{new}\ \mathrm{GraphBLAS}\ \mathrm{binary}\ \mathrm{operator}\ .\ .\ .$	48
64				4.2.1.4	$Monoid_new:\ \mathrm{Create}\ \mathrm{new}\ \mathrm{GraphBLAS}\ \mathrm{monoid}\ \ .\ .\ .\ .\ .\ .\ .$	50
65				4.2.1.5	${\sf Semiring_new:}\ {\rm Create\ new\ GraphBLAS\ semiring\ }\ .\ .\ .\ .\ .$	51
66			4.2.2	Vector N	fethods	52
67				4.2.2.1	Vector_new: Create new vector $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	52
68				4.2.2.2	$Vector_dup:\ \mathrm{Create}\ \mathrm{a}\ \mathrm{copy}\ \mathrm{of}\ \mathrm{a}\ \mathrm{GraphBLAS}\ \mathrm{vector}\ \ldots\ \ldots\ \ldots\ \ldots$	53
69				4.2.2.3	Vector_resize: Resize a vector $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	54
70				4.2.2.4	Vector_clear: Clear a vector $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	55
71				4.2.2.5	Vector_size: Size of a vector	56
72				4.2.2.6	$Vector_nvals:$ Number of stored elements in a vector $\hdots \hdots \hdots$	56
73				4.2.2.7	$Vector_build:$ Store elements from tuples into a vector \hdots	57
74				4.2.2.8	$Vector_setElement:\ \mathrm{Set}\ \mathrm{a\ single\ element\ in\ a\ vector\ }\ \ldots\ \ldots\ \ldots\ \ldots$	59
75				4.2.2.9	Vector_removeElement: Remove an element from a vector \ldots .	61
76				4.2.2.10	Vector_extractElement: Extract a single element from a vector	62

77			4.2.2.11	Vector_extractTuples: Extract tuples from a vector $\ldots \ldots \ldots$	63
78		4.2.3	Matrix I	Methods	65
79			4.2.3.1	$Matrix_new:\ Create\ new\ matrix\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\$	65
80			4.2.3.2	$Matrix_dup:\ Create\ a\ copy\ of\ a\ GraphBLAS\ matrix}\ \ .\ .\ .\ .\ .$	66
81			4.2.3.3	Matrix_resize: Resize a matrix	67
82			4.2.3.4	Matrix_clear: Clear a matrix	68
83			4.2.3.5	$Matrix_nrows:\ \mathrm{Number}\ \mathrm{of}\ \mathrm{rows}\ \mathrm{in}\ \mathrm{a}\ \mathrm{matrix}\ \ \ldots\ $	69
84			4.2.3.6	$Matrix_ncols: \ Number \ of \ columns \ in \ a \ matrix \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	70
85			4.2.3.7	$Matrix_nvals:\ \mathrm{Number}\ \mathrm{of}\ \mathrm{stored}\ \mathrm{elements}\ \mathrm{in}\ \mathrm{a}\ \mathrm{matrix}\ .\ .\ .\ .\ .$	71
86			4.2.3.8	Matrix_build: Store elements from tuples into a matrix	72
87			4.2.3.9	Matrix_setElement: Set a single element in matrix	74
88			4.2.3.10	$Matrix_removeElement:\ \mathrm{Remove}\ \mathrm{an}\ \mathrm{element}\ \mathrm{from}\ \mathrm{a}\ \mathrm{matrix}\ .\ .\ .\ .$	75
89			4.2.3.11	$Matrix_extractElement:\ Extract\ a\ single\ element\ from\ a\ matrix\ \ .\ .$	76
90			4.2.3.12	Matrix_extractTuples: Extract tuples from a matrix	78
91		4.2.4	Descript	or Methods	80
92			4.2.4.1	Descriptor_new: Create new descriptor	80
93			4.2.4.2	Descriptor_set: Set content of descriptor	81
94		4.2.5	free met	hod	82
95	4.3	Graph	BLAS OF	perations	83
96		4.3.1	mxm: M	atrix-matrix multiply	87
97		4.3.2	vxm: Ve	ctor-matrix multiply	92
98		4.3.3	mxv: Ma	atrix-vector multiply	96
99		4.3.4	eWiseMu	Ilt: Element-wise multiplication	100
100			4.3.4.1	eWiseMult: Vector variant	100
101			4.3.4.2	eWiseMult: Matrix variant	105
102		4.3.5	eWiseAd	$d \colon \text{Element-wise addition} \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	110
103			4.3.5.1	eWiseAdd: Vector variant	110
104			4.3.5.2	eWiseAdd: Matrix variant	115
105		4.3.6	extract:	Selecting Sub-Graphs	121
106			4.3.6.1	extract: Standard vector variant	121

107				4.3.6.2	extract: Standard matrix variant	125
108				4.3.6.3	extract: Column (and row) variant	130
109			4.3.7	assign:	Modifying Sub-Graphs	135
110				4.3.7.1	assign: Standard vector variant	135
111				4.3.7.2	assign: Standard matrix variant	140
112				4.3.7.3	assign: Column variant	146
113				4.3.7.4	assign: Row variant	151
114				4.3.7.5	assign: Constant vector variant	157
115				4.3.7.6	assign: Constant matrix variant	162
116			4.3.8	apply: A	Apply a function to the elements of an object $\ldots \ldots \ldots \ldots \ldots$	167
117				4.3.8.1	apply: Vector variant	167
118				4.3.8.2	apply: Matrix variant	171
119				4.3.8.3	apply: Vector-BinaryOp variants	176
120				4.3.8.4	apply: Matrix-BinaryOp variants	180
121			4.3.9	reduce:	Perform a reduction across the elements of an object $\ldots \ldots \ldots$	186
122				4.3.9.1	reduce: Standard matrix to vector variant	186
123				4.3.9.2	reduce: Vector-scalar variant	190
124				4.3.9.3	reduce: Matrix-scalar variant	193
125			4.3.10	transpos	se: Transpose rows and columns of a matrix	195
126			4.3.11	kroneck	er: Kronecker product of two matrices	199
127		4.4	Sequer	nce Term	ination	205
128			4.4.1	wait: W	Vait for pending operations to complete	205
129				4.4.1.1	wait: Waits until all pending operations complete variant $\ . \ . \ .$	205
130				4.4.1.2	wait: Waits until pending operations on a specific object complete	
131				_	variant	206
132			4.4.2	error: G	et an error message regarding internal errors	207
133	5	Nor	polym	orphic	Interface	209
134	Α	Rev	ision I	History		217
135	в	Exa	mples			221

136	B.1	Example: level breadth-first search (BFS) in GraphBLAS $\ldots \ldots \ldots \ldots \ldots \ldots 222$
137	B.2	Example: level BFS in GraphBLAS using apply
138	B.3	Example: parent BFS in GraphBLAS
139	B.4	Example: betweenness centrality (BC) in GraphBLAS $\ldots \ldots \ldots \ldots \ldots \ldots \ldots 225$
140	B.5	Example: batched BC in GraphBLAS
141	B.6	Example: maximal independent set (MIS) in GraphBLAS $\ldots \ldots \ldots \ldots \ldots \ldots 229$
142	B.7	Example: counting triangles in GraphBLAS

143 List of Tables

144	2.1	GraphBLAS opaque objects and their types	22
145 146	2.2	Predefined GrB_Type values, the corresponding C type (for scalar parameters), and domains for GraphBLAS.	23
147 148	2.3	Valid GraphBLAS domain suffixes and corresponding C types (for I and T in Tables 2.4, 2.5, 2.6, and 2.7).	24
149 150 151	2.4	Predefined unary and binary operators for GraphBLAS in C. The T can be any suffix from Table 2.3, I can be any integer suffix from Table 2.3, and F can be any floating-point suffix from Table 2.3.	25
152 153 154 155	2.5	Predefined monoids for GraphBLAS in C. Maximum and minimum values for the various integral types are defined in stdint.h. Floating-point infinities are defined in math.h. The x in UINT x or INT x can be one of 8, 16, 32, or 64; whereas in FP x , it can be 32 or 64.	26
156 157 158	2.6	Predefined true semirings where the additive identity is the multiplicative annihilator. The x in UINT x or INT x can be one of 8, 16, 32, or 64; whereas in FP x , it can be 32 or 64.	27
159 160	2.7	Other useful predefined semirings that don't have a multiplicative annihilator. The x in UINT x or INT x can be one of 8, 16, 32, or 64; whereas in FP x , it can be 32 or 64.	28
161	2.8	Error values returned by GraphBLAS methods.	33
162 163	3.1	Operator input for relevant GraphBLAS operations. The semiring add and times are shown if applicable.	36
164 165 166 167	3.2	Properties and recipes for building GraphBLAS algebraic objects: unary operator, binary operator, monoid, and semiring (composed of operations <i>add</i> and <i>times</i>). Note 1: The output domain of the semiring times must be same as the domain of the semiring add. This ensures three domains for a semiring rather than four	36
168 169 170 171	3.3	Descriptors are GraphBLAS objects passed as arguments to Graph_BLAS operations to modify other GraphBLAS objects in the operation's argument list. A descriptor, desc, has one or more (<i>field</i> , <i>value</i>) pairs indicated as desc[GrB_Desc_Field].GrB_Desc_Value In this table, we define all types and literals used with descriptors.	e. 41

172 173 174	3.4	Pre-defined GraphBLAS descriptors. The list includes all possible descriptors, ac- cording to the current standard. Columns list the possible fields and entries list the value(s) associated with those fields for a given descriptor
175	4.1	A mathematical notation for the fundamental GraphBLAS operations supported
176		in this specification. Input matrices \mathbf{A} and \mathbf{B} may be optionally transposed (not
177		shown). Use of an optional accumulate with existing values in the output object
178		is indicated with \odot . Use of optional write masks and replace flags are indicated
179		as $\mathbf{C}\langle \mathbf{M}, z \rangle$ when applied to the output matrix, \mathbf{C} . The mask controls which values
180		resulting from the operation on the right-hand side are written into the output object
181		(complement and structure mass are not snown). The "replace" option, indicated by
182		to assignment. If "replace" is not specifed, only the values/locations computed on
184		the right-hand side and allowed by the mask will be written to the output ("merge"
185		mode)
186	5.1	Long-name, nonpolymorphic form of GraphBLAS methods
187	5.2	Long-name, nonpolymorphic form of GraphBLAS methods (continued) 210
188	5.3	Long-name, nonpolymorphic form of GraphBLAS methods (continued) 211
189	5.4	Long-name, nonpolymorphic form of GraphBLAS methods (continued) 212
190	5.5	Long-name, nonpolymorphic form of GraphBLAS methods (continued) 213
191	5.6	Long-name, nonpolymorphic form of GraphBLAS methods (continued) 214
192	5.7	Long-name, nonpolymorphic form of GraphBLAS methods (continued) 215
193	5.8	Long-name, nonpolymorphic form of GraphBLAS methods (continued)

¹⁹⁴ List of Figures

195	2.1	Signature of $GrB_{-error}()$ function.	32
196 197 198	3.1	Hierarchy of algebraic object classes in GraphBLAS. GraphBLAS semirings consist of a conventional monoid with one domain for the addition function, and a binary operator with three domains for the multiplication function	38
199	4.1	Flowchart for the GraphBLAS operations. Although shown specifically for the $m x m$	
200		operation, many elements are common to all operations: such as the "ACCUM" and	
201		"MASK and REPLACE" blocks. The triple arrows (\Rightarrow) denote where "as if copy"	
202		takes place (including both collections and descriptor settings). The bold, dotted	
203		arrows indicate where casting may occur between different domains	85

204 Acknowledgments

This document represents the work of the people who have served on the C API Subcommittee of the GraphBLAS Forum.

Those who served as C API Subcommittee members for GraphBLAS 1.0 through 1.3 are (in alphabetical order):

- Aydın Buluç (Lawrence Berkeley National Laboratory)
- Timothy G. Mattson (Intel Corporation)
- Scott McMillan (Software Engineering Institute at Carnegie Mellon University)
- José Moreira (IBM Corporation)
- Carl Yang (UC Davis)
- ²¹⁴ The GraphBLAS specification is based upon work funded and supported in part by:
- The Department of Energy Office of Advanced Scientific Computing Research under contract number DE-AC02-05CH11231
- Intel Corporation
- Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute [DM-0003727, DM19-0929]
- International Business Machines Corporation
- Department of Defense under contract No. W911QX-12-C-0059, L-3 Data Tactics subcontract SCT-14-004 with University of California, Davis

The following people provided valuable input and feedback during the development of the specification (in alphabetical order): Hollen Barmer, Benjamin Brock, Tim Davis, Jeremy Kepner, Peter
Kogge, Manoj Kumar, Andrew Mellinger, Maxim Naumov, Nancy M. Ott, Ping Tak Peter Tang,
Michael Wolf, Albert-Jan Yzelman.

²²⁷ Chapter 1

²²⁸ Introduction

The GraphBLAS standard defines a set of matrix and vector operations based on semi-ring algebraic structures. These operations can be used to express a wide range of graph algorithms. This document defines the C binding to the GraphBLAS standard. We refer to this as the *GraphBLAS C API* (Application Programming Interface).

The GraphBLAS C API is built on a collection of objects exposed to the C programmer as opaque data types. Functions that manipulate these objects are referred to as *methods*. These methods fully define the interface to GraphBLAS objects to create or destroy them, modify their contents, and copy the contents of opaque objects into non-opaque objects; the contents of which are under direct control of the programmer.

The GraphBLAS C API is designed to work with C99 (ISO/IEC 9899:199) extended with *static type-based* and *number of parameters-based* function polymorphism, and language extensions on par with the _Generic construct from C11 (ISO/IEC 9899:2011). Furthermore, the standard assumes programs using the GraphBLAS C API will execute on hardware that supports floating point arithmetic such as that defined by the IEEE 754 (IEEE 754-2008) standard.

- ²⁴³ The remainder of this document is organized as follows:
- Chapter 2: Basic Concepts
- Chapter 3: Objects
- Chapter 4: Methods
- Chapter 5: Nonpolymorphic Interface
- Appendix A: Revision History
- Appendix B: Examples

²⁵⁰ Chapter 2

²⁵¹ Basic Concepts

The GraphBLAS C API is used to construct graph algorithms expressed "in the language of linear algebra." Graphs are expressed as matrices, and the operations over these matrices are generalized through the use of a semiring algebraic structure.

In this chapter, we will define the basic concepts used to define the GraphBLAS C API. We provide
 the following elements:

- Glossary of terms used in this document.
- Algebraic structures and associated arithmetic foundations of the API.
- Domains of elements in the GraphBLAS.
- Functions that appear in the GraphBLAS algebraic structures and how they are managed.
- Indices, index arrays, and scalar arrays used to expose the contents of GraphBLAS objects.
- The execution and error models implied by the GraphBLAS C specification.

²⁶³ 2.1 Glossary

264 2.1.1 GraphBLAS API basic definitions

- application: A program that calls methods from the GraphBLAS C API to solve a problem.
- GraphBLAS C API: The application programming interface that fully defines the types, objects, literals, and other elements of the C binding to the GraphBLAS.

function: Refers to a named group of statements in the C programming language. Methods, operators, and user-defined functions are typically implemented as C functions. When referring to the code programmers write, as opposed to the role of functions as an element of the GraphBLAS, they may be referred to as such.

- *method*: A function defined in the GraphBLAS C API that manipulates GraphBLAS objects or other opaque features of the implementation of the GraphBLAS API.
- operator: A function that performs an operation on the elements stored in GraphBLAS matrices and vectors.
- GraphBLAS operation: A mathematical operation defined in the GraphBLAS mathematical specification. These operations (not to be confused with *operators*) typically act on matrices and vectors with elements defined in terms of an algebraic semiring.

279 2.1.2 GraphBLAS objects and their structure

• GraphBLAS object: An instance of a data type defined by the GraphBLAS C API that is opaque and manipulated only through the API. There are three groups of GraphBLAS objects: algebraic objects (operators, monoids and semirings), collections (vectors, matrices and masks), and descriptors. Because the object is based on an opaque datatype, an implementation of the GraphBLAS C API has the flexibility to optimize data structures for a particular platform. GraphBLAS objects are often implemented as sparse data structures, meaning only the subset of the elements that have non-zero values are stored.

- *handle*: A variable that uses one of the GraphBLAS opaque data types. The value of this variable holds a reference to a GraphBLAS object but not the contents of the object itself. Hence, assigning a value of one handle to another variable copies the reference to the GraphBLAS object but not the contents of the object.
- *non-opaque datatype*: Any datatype that exposes its internal structure. This is contrasted
 with an *opaque datatype* that hides its internal structure and can be manipulated only through
 an API.
- domain: The set of valid values for the elements of a GraphBLAS object. Note that some GraphBLAS objects involve functions that map values from one or more input domains onto values in an output domain. These GraphBLAS objects would have multiple domains.
- *implied zero*: Any element that has a valid index (or indices) in a GraphBLAS vector or matrix but is not explicitly identified in the list of elements of that vector or matrix. From a mathematical perspective, an *implied zero* is treated as having the value of the zero element of the relevant monoid or semiring. However, GraphBLAS operations are purposefully defined using set notation in such a way that it makes it unnecessary to reason about implied zeros. Therefore, this concept is not used in the definition of GraphBLAS methods and operators.
- mask: An internal GraphBLAS object used to control how values are stored in a method's output object. The mask exists only inside a method; hence, it is called an *internal opaque object*. A mask is formed from the elements of a collection object (vector or matrix) input as a mask parameter to a method. There are two different operations for forming the internal mask.
- 308 GraphBLAS allows two types of masks:

- 1. The default behavior is that an element of the mask exists for each element that exists in the input collection object when the value of that element cast to a Boolean type evaluates to true.
- 311 312 313

309

310

2. In the structure only case, masks have structure but no values. The input collection describes a structure whereby an element of the mask exists for each element of the input collection regardless of its value.

314 315

316

• complement: The complement of a GraphBLAS mask, M, is another mask, M', where the elements of M' are those elements from M that do not exist.

2.1.3Algebraic structures used in the GraphBLAS 317

- GraphBLAS operators: Binary or unary operators that act on elements of GraphBLAS ob-318 jects. GraphBLAS operators are used to express algebraic structures used in the GraphBLAS 319 such as monoids and semirings. There are two types of *GraphBLAS operators*: (1) predefined 320 operators found in Table 2.4 and (2) user-defined operators created using GrB_UnaryOp_new() 321 or GrB_BinaryOp_new() (see Section 4.2.1). 322
- associative operator: In an expression where a binary operator is used two or more times 323 consecutively, that operator is *associative* if the result does not change regardless of the way 324 operations are grouped (without changing their order) changes. In other words, in a sequence 325 of binary operations created using the same associative operator, the legal placement of 326 parenthesis does not change the value resulting from the sequence operations. Operators that 327 are associative over infinitely precise numbers (e.g., real numbers) are not strictly associative 328 when applied to numbers with finite precision (e.g., floating point numbers). Such non-329 associativity results, for example, from roundoff errors or from the fact some numbers can 330 not be represented exactly as floating point numbers. In the GraphBLAS specification, as is 331 common practice in computing, we refer to operators as *associative* when their mathematical 332 definition over infinitely precise numbers is associative even when they are only approximately 333 associative when applied to finite precision numbers. 334
- No GraphBLAS method will imply a predefined order over any associative operators. Im-335 plementations of the GraphBLAS are encouraged to exploit associativity to optimize per-336 formance of any GraphBLAS method. This holds even if the definition of the graphBLAS 337 method implies a fixed order for the associative operations. 338
- *monoid*: An algebraic structure consisting of a domain, an associative binary operator, and 339 an identity corresponding to that operator. There are two types of *GraphBLAS monoids*: (1) 340 predefined monoids found in Table 2.5 and (2) user-defined monoids created using GrB_Monoid_new() 341 (see Section 4.2.1). 342
- An algebraic structure consisting of a set of allowed values (the *domain*), two • *semiring*: 343 commutative binary operators called addition and multiplication (where multiplication dis-344 tributes over addition), and identities over addition (0) and multiplication (1). The additive 345 identity is an annihilator over multiplication. Note that a *GraphBLAS semiring* is allowed to 346 diverge from the mathematically rigorous definition of a semiring since certain combinations 347 of domains, operators, and identity elements are useful in graph algorithms even when they do 348

not strictly match the mathematical definition of a semiring. There are two types of *Graph-BLAS semirings*: (1) predefined semirings found in Tables 2.6 and 2.7, and (2) user-defined semirings created using GrB_Semiring_new() (see Section 4.2.1).

³⁵² 2.1.4 The execution of an application using the GraphBLAS C API

- *program order*: The order of the GraphBLAS methods as defined by the text of an application
 program.
- sequence: A series of GraphBLAS method calls in program order. An implementation of the 355 GraphBLAS may reorder or even fuse GraphBLAS methods within a sequence as long as the 356 definitions of any GraphBLAS object that is later read by an application are not changed; by 357 "read" we mean that values are copied from an opaque GraphBLAS object into a non-opaque 358 object. A sequence begins when a thread calls the first method that creates or modifies a 359 GraphBLAS object, either (1) the first call in an application or (2) the first call following 360 termination of a prior sequence. In blocking mode, every GraphBLAS method call is its own 361 sequence. In nonblocking mode, a sequence can be terminated by a call to GrB_finalize(), 362 a call to GrB_wait(), or by a series of GrB_wait(obj) method calls to every object that is an 363 output in the sequence. 364
- *complete*: The state of a GraphBLAS object when the computations that implement the 365 mathematical definition of the object have finished and the values associated with that com-366 putation touches that object in the program's address space. A GraphBLAS object is fully 367 defined by the sequence of methods. The execution of a sequence may be deferred, however, 368 so at any point in an application, a GraphBLAS object may not be materialized. That is, 369 the values associated with a particular GraphBLAS object may not have been computed and 370 stored in memory. An object is complete when the sequence that defines the object's value 371 terminates or when a GrB_wait() method is called with that object as an argument. 372
- materialize: Cause the values associated with that object to be resident in memory and visible to an application. A GraphBLAS object has been materialized when the computations that implement the mathematical definition of the object are complete. A GraphBLAS object that is never loaded into a non-opaque data structure may potentially never be materialized. This might happen, for example, if the operations associated with the object are fused or otherwise changed by the runtime system that supports the implementation of the GraphBLAS C API.
- context: An instance of the GraphBLAS C API implementation as seen by an application. An application can have only one context between the start and end of the application. A context begins with the first thread that calls GrB_init() and ends with the first thread to call GrB_finalize(). It is an error for GrB_init() or GrB_finalize() to be called more than one time within an application. The context is used to constrain the behavior of an instance of the GraphBLAS C API implementation and support various execution strategies. Currently, the only supported constraints on a context pertain to the mode of program execution.
- mode: Defines how a GraphBLAS sequence executes, and is associated with the *context* of a GraphBLAS C API implementation. It is set by an application with its call to GrB_init() to one

of two possible states. In *blocking mode*, GraphBLAS methods return after the computations complete and any output objects have been updated. In *nonblocking mode*, a method may return once the arguments are tested as consistent with the method (i.e., there are no API errors), and potentially before any computation has taken place.

³⁹³ 2.1.5 GraphBLAS methods: behaviors and error conditions

- *implementation defined behavior*: Behavior that must be documented by the implementation and is allowed to vary among different compliant implementations.
- *undefined behavior*: Behavior that is not specified by the GraphBLAS C API. A conforming implementation is free to choose results delivered from a method whose behavior is undefined.
- thread-safe routine: A routine that performs its intended function even when executed concurrently (i.e., by more than one thread).
- *shape compatible objects*: GraphBLAS objects (matrices and vectors) that are passed as
 parameters to a GraphBLAS method and have the correct number of dimensions and sizes for
 each dimension to satisfy the rules of the mathematical definition of the operation associated
 with the method. This is also referred to as *dimension compatible*.
- *domain compatible*: Two domains for which values from one domain can be cast to values in the other domain as per the rules of the C language. In particular, domains from Table 2.2 are all compatible with each other, and a domain from a user-defined type is only compatible with itself. If any *domain compatibility* rule above is violated, execution of the GraphBLAS method ends and the domain mismatch error GrB_DOMAIN_MISMATCH is returned.

409 2.2 Notation

Notation		Description		
	$D_{out}, D_{in}, D_{in_1}, D_{in_2}$	Refers to output and input domains of various GraphBLAS operators.		
	$\mathbf{D}_{out}(*), \mathbf{D}_{in}(*),$	Evaluates to output and input domains of GraphBLAS operators (usually		
	$\mathbf{D}_{in_1}(*), \mathbf{D}_{in_2}(*)$	a unary or binary operator, or semiring).		
	$\mathbf{D}(*)$	Evaluates to the (only) domain of a GraphBLAS object (usually a monoid,		
		vector, or matrix).		
	f	An arbitrary unary function, usually a component of a unary operator.		
	$\mathbf{f}(F_u)$	Evaluates to the unary function contained in the unary operator given as		
	(-)	the argument.		
	\odot	An arbitrary binary function, usually a component of a binary operator.		
	$\odot(*)$	Evaluates to the binary function contained in the binary operator or monoid		
	0()	given as the argument.		
	\otimes	Multiplicative binary operator of a semiring.		
	\oplus	Additive binary operator of a semiring.		
	$\bigotimes(S)$	Evaluates to the multiplicative binary operator of the semiring given as the		
	0()	argument.		
	$\bigoplus(S)$	Evaluates to the additive binary operator of the semiring given as the argu-		
	Ψ	ment.		
	0 (*)	The identity of a monoid, or the additive identity of a GraphBLAS semiring.		
	$\mathbf{L}(*)$	The contents (all stored values) of the vector or matrix GraphBLAS objects.		
		For a vector, it is the set of (index, value) pairs, and for a matrix it is the		
		set of (row, col, value) triples.		
LO	$\mathbf{v}(i)$ or v_i	The i^{th} element of the vector v .		
	size(v)	The size of the vector \mathbf{v} .		
	ind(v)	The set of indices corresponding to the stored values of the vector \mathbf{v} .		
	nrows(A)	The number of rows in the A .		
	$\mathbf{ncols}(\mathbf{A})$	The number of columns in the A .		
	indrow(A)	The set of row indices corresponding to rows in \mathbf{A} that have stored values.		
	$\mathbf{indcol}(\mathbf{A})$	The set of column indices corresponding to columns in A that have stored		
		values.		
	$\mathbf{ind}(\mathbf{A})$	The set of (i, j) indices corresponding to the stored values of the matrix.		
	$\mathbf{A}(i,j)$ or A_{ij}	The element of \mathbf{A} with row index i and column index j .		
	$\mathbf{A}(:,j)$	The j^{th} column of the matrix A .		
	$\mathbf{A}(i,:)$	The i^{th} row of the matrix A .		
	\mathbf{A}^T	The transpose of the matrix \mathbf{A} .		
	$\neg \mathbf{M}$	The complement of M .		
	$\widetilde{\mathbf{t}}$	A temporary object created by the GraphBLAS implementation.		
	$\langle type \rangle$	A method argument type that is void * or one of the types from Table 2.2.		
	GrB_ALL	A method argument literal to indicate that all indices of an input array		
		should be used.		
	GrB_Type	A method argument type that is either a user defined type or one of the		
		types from Table 2.2.		
	GrB_Object	A method argument type referencing any of the GraphBLAS object types.		
	GrB_NULL	The GraphBLAS NULL.		

411 2.3 Algebraic and Arithmetic Foundations

Graphs can be represented in terms of matrices. Operations defined by the GraphBLAS standard operate on these matrices to construct graph algorithms. These GraphBLAS operations are defined in terms of GraphBLAS semiring algebraic structures. Modifying the underlying semiring changes the result of an operation to support a wide range of graph algorithms.

Inside a given algorithm, it is often beneficial to change the GraphBLAS semiring that applies to an operation on a matrix. This has two implications for the C binding of the GraphBLAS API. First, it means that we define a separate object for the semiring to pass into functions. Since in many cases the full semiring is not required, we also support passing monoids or even binary operators, which means the semiring is implied rather than explicitly stated.

Second, the ability to change semirings impacts the meaning of the *implied zero* in a sparse repre-421 sentation of a matrix. This element in real arithmetic is zero, which is the identity of the *addition* 422 operator and the annihilator of the *multiplication* operator. As the semiring changes, this implied 423 zero changes to the identity of the *addition* operator and the annihilator of the *multiplication* op-424 erator for the new semiring. Nothing changes in the stored matrix, but the implied zeros within 425 the sparse matrix or vector change with respect to a particular operation. In all cases, the nature 426 of the implied zero does not matter since the GraphBLAS C API treats them as elements of the 427 matrix or vector that do not exist. 428

The mathematical formalism for graph operations in the language of linear algebra assumes that 429 we can operate in the field of real numbers. However, the GraphBLAS C binding is designed for 430 implementation on computers, which by necessity have a finite number of bits to represent numbers. 431 Therefore, we require a conforming implementation to use floating point numbers such as those 432 defined by the IEEE-754 standard (both single- and double-precision) wherever real numbers need 433 to be represented. The practical implications of these finite precision numbers is that the result of a 434 sequence of computations may vary from one execution to the next as the association of operations 435 changes. While techniques are known to reduce these effects, we do not require or even expect an 436 implementation to use them as they may add considerable overhead. In most cases, these roundoff 437 errors are not significant. When they are significant, the problem itself is ill-conditioned and needs 438 to be reformulated. 439

440 2.4 GraphBLAS Opaque Objects

Objects defined in the GraphBLAS standard include collections of elements (matrices and vectors), operators on those elements (unary and binary operators), and algebraic structures (semirings and monoids). GraphBLAS objects are defined as opaque types; that is, they are managed, manipulated, and accessed solely through the GraphBLAS application programming interface. This gives an implementation of the GraphBLAS C specification flexibility to optimize objects for different scenarios or to meet the needs of different hardware platforms.

A GraphBLAS opaque object is accessed through its handle. A handle is a variable that uses one of the types from Table 2.1. An implementation of the GraphBLAS specification has a great deal of flexibility in how these handles are implemented. All that is required is that the handle

GrB_Object types	Description
GrB_Type	User-defined scalar type.
$GrB_UnaryOp$	Unary operator, built-in or associated with a single-argument C function.
$GrB_BinaryOp$	Binary operator, built-in or associated with a two-argument C function.
GrB_Monoid	Monoid algebraic structure.
GrB_Semiring	A GraphBLAS semiring algebraic structure.
GrB_Matrix	Two-dimensional collection of elements; typically sparse.
GrB_Vector	One-dimensional collection of elements.
$GrB_Descriptor$	Descriptor object, used to modify behavior of methods.

Table 2.1: GraphBLAS opaque objects and their types.

corresponds to a type defined in the C language that supports assignment and comparison for equality. The GraphBLAS specification defines a literal GrB_INVALID_HANDLE that is valid for

452 each type. Using the logical equality operator from C, it must be possible to compare a handle to

453 GrB_INVALID_HANDLE to verify that a handle is valid.

An application using the GraphBLAS API will declare variables of the appropriate type for the objects it will use. Before use, the object must be initialized with the appropriate method. This is done with one of the methods that has a "_new" suffix in its name (e.g., GrB_Vector_new). Alternatively, an object can be initialized by duplicating an existing object with one of the methods that has the "_dup" suffix in its name (e.g., GrB_Vector_dup). When an application is finished with an object, any resources associated with that object can be released by a call to the GrB_free method.

These new, dup, and free methods are the only methods that change the value of a handle. Hence, objects changed by these methods are passed into the method as pointers. In all other cases, handles are not changed by the method and are passed by value. For example, even when multiplying matrices, while the contents of the output product matrix changes, the handle for that matrix is unchanged.

Programmers using GraphBLAS handles must be careful to distinguish between a handle and the object manipulated through a handle. For example, a program may declare two GraphBLAS objects of the same type, initialize one, and then assign it to the other variable. That assignment, however, only assigns the handle to the variable. It does not create a copy of that variable (to do that, one would need to use the appropriate duplication method). If later the object is freed by calling GrB_free with the first variable, the object is destroyed and the second variable is left referencing an object that no longer exists (a so-called "dangling handle").

⁴⁷³ In addition to opaque objects manipulated through handles, the GraphBLAS C API defines an ⁴⁷⁴ additional opaque object as an internal object; that is, the object is never exposed as a variable ⁴⁷⁵ within an application. This opaque object is the mask used to control how computed values are ⁴⁷⁶ stored in the output from a method. Masks are described in Section 3.6.

GrB_Type values	C type	domain
GrB_BOOL	bool	$\{\texttt{false}, \texttt{true}\}$
GrB_INT8	$int8_t$	$\mathbb{Z} \cap [-2^7, 2^7)$
GrB_UINT8	uint8_t	$\mathbb{Z} \cap [0, 2^8)$
GrB_INT16	$int16_t$	$\mathbb{Z} \cap [-2^{15}, 2^{15})$
GrB_UINT16	uint16_t	$\mathbb{Z} \cap [0, 2^{16})$
GrB_INT32	int32_t	$\mathbb{Z} \cap [-2^{31}, 2^{31})$
GrB_UINT32	uint32_t	$\mathbb{Z} \cap [0, 2^{32})$
GrB_INT64	$int64_t$	$\mathbb{Z} \cap [-2^{63}, 2^{63})$
GrB_UINT64	uint64_t	$\mathbb{Z} \cap [0, 2^{64})$
GrB_FP32	float	IEEE 754 binary32
GrB_FP64	double	IEEE 754 binary64
	1	

Table 2.2: Predefined GrB_Type values, the corresponding C type (for scalar parameters), and domains for GraphBLAS.

477 **2.5** Domains

GraphBLAS defines two kinds of collections: matrices and vectors. For any given collection, the elements of the collection belong to a *domain*, which is the set of valid values for the elements. In GraphBLAS, domains correspond to the valid values for types from the host language (in our case, the C programming language). For any variable or object V in GraphBLAS we denote as $\mathbf{D}(V)$ the domain of V, that is, the set of possible values that elements of V can take.

The predefined types and corresponding domains used in the GraphBLAS C API are shown in Table 2.2. The Boolean type (bool) is defined in stdbool.h, the integral types (int8_t, uint8_t, int16_t, uint16_t, int32_t, uint32_t, int64_t, uint64_t) are defined in stdint.h, and the floating-point types (float, double) are native to the language and in most cases defined by the IEEE-754 standard.

488 2.6 Operators and Associated Functions

GraphBLAS operators act on elements of GraphBLAS objects. A *binary operator* is a function that maps two input values to one output value. A *unary operator* is a function that maps one input value to one output value. The value of the output is determined by the value of the input(s). Binary operators are defined over two input domains and produce an output from a (possibly different) third domain. Unary operators are specified over one input domain and produce an output from a (possibly different) second domain.

Similar to GraphBLAS types with predefined types and user-defined types, GraphBLAS operators come in two types: (1) predefined operators found in Table 2.4 and (2) user-defined operators using GrB_UnaryOp_new() or GrB_BinaryOp_new() (see Section 4.2.1).

⁴⁹⁸ Likewise, a list of predefined monoids, true semirings and convenience semirings can be found in

Table 2.3: Valid	GraphBLAS domain	suffixes and	corresponding	C types (fo	or I and T in	Tables 2.4 ,
2.5, 2.6, and 2.7).					

Suffix	C type
BOOL	bool
INT8	$int8_t$
UINT8	$uint8_t$
INT16	$int16_t$
UINT16	$uint16_t$
INT32	$int32_t$
UINT32	uint32_t
INT64	$int64_t$
UINT64	$uint64_t$
FP32	float
FP64	double

Tables 2.5, 2.6 and 2.7, respectively. Predefined monoids are named $GrB_op_MONOID_T$, where op is the name of the predefined GraphBLAS operator used as the associative binary operation of the monoid and T is the domain (type) of the monoid. Predefined semirings are named $GrB_add_mul_SEMIRING_T$, where add is the semiring additive operation, mul is the semiring multiplicative operation and T is the domain (type) of the semiring.

The multiplicative inverse (GrB_MINV_F) function is only defined for floating-point types (F = FP32 or FP64). The division (GrB_DIV_T) function is defined for all types, but only if $y \neq 0$ for integral types and $y \neq$ false for the Boolean type.

⁵⁰⁷ 2.7 Indices, Index Arrays, and Scalar Arrays

In order to interface with third-party software (i.e., software other than an implementation of the GraphBLAS), operations such as GrB_Matrix_build (Section 4.2.3.8) and GrB_Matrix_extractTuples (Section 4.2.3.12) must specify how the data should be laid out in non-opaque data structures. To this end we explicitly define the types for indices and the arrays used by these operations.

⁵¹² For indices a typedef is used to give a GraphBLAS name to a concrete type. We define it as follows:

513 typedef uint64_t GrB_Index;

An index array is a pointer to a set of GrB_Index values that are stored in a contiguous block of memory (i.e., GrB_Index^{*}). Likewise, a scalar array is a pointer to a contiguous block of memory storing a number of scalar values as specified by the user. Some GraphBLAS operations (e.g., GrB_assign) include an input parameter with the type of an index array. This input index array selects a subset of elements from a GraphBLAS vector object to be used in the operation. In these cases, the literal GrB_ALL can be used in place of the index array input parameter to indicate that

Operator	GraphBLAS			
type	identifier	Domains	Description	
GrB_UnaryOp	$GrB_IDENTITY_T$	$T \rightarrow T$	f(x) = x,	identity
$GrB_UnaryOp$	GrB_ABS_T	$T \to T$	f(x) = x ,	absolute value
$GrB_UnaryOp$	GrB_AINV_T	$T \to T$	f(x) = -x,	additive inverse
$GrB_UnaryOp$	GrB_MINV_F	$F \to F$	$f(x) = \frac{1}{x},$	multiplicative inverse
$GrB_UnaryOp$	GrB_LNOT	$ extsf{bool} o extsf{bool}$	$f(x) = \neg x,$	logical inverse
$GrB_UnaryOp$	GrB_BNOT_I	$I \rightarrow I$	$f(x) = \tilde{x},$	bitwise complement
$GrB_BinaryOp$	GrB_LOR	bool imes bool o bool	$f(x,y) = x \lor y,$	logical OR
$GrB_BinaryOp$	GrB_LAND	bool imes bool o bool	$f(x,y) = x \wedge y,$	logical AND
$GrB_BinaryOp$	GrB_LXOR	bool $ imes$ bool $ o$ bool	$\int f(x,y) = x \oplus y,$	logical XOR
$GrB_BinaryOp$	GrB_LXNOR	$\mid \texttt{bool} \times \texttt{bool} \to \texttt{bool}$	$f(x,y) = \overline{x \oplus y},$	logical XNOR
$GrB_BinaryOp$	GrB_BOR_I	$I \times I \to I$	$\int f(x,y) = x \mid y,$	bitwise OR
$GrB_BinaryOp$	GrB_BAND_ <i>I</i>	$I \times I \to I$	f(x,y) = x & y,	bitwise AND
$GrB_BinaryOp$	GrB_BXOR_I	$I \times I \to I$	$f(x,y) = x \hat{y},$	bitwise XOR
$GrB_BinaryOp$	GrB_BXNOR_ <i>I</i>	$I \times I \to I$	$f(x,y) = \overline{x \ \hat{y}},$	bitwise XNOR
$GrB_BinaryOp$	GrB_EQ_T	$T \times T \to \texttt{bool}$	f(x,y) = (x == y)	equal
$GrB_BinaryOp$	GrB_NE_T	$T \times T \to \texttt{bool}$	$f(x,y) = (x \neq y)$	not equal
$GrB_BinaryOp$	$GrB_{-}GT_{-}T$	$T \times T \rightarrow \texttt{bool}$	f(x,y) = (x > y)	greater than
$GrB_BinaryOp$	GrB_LT_T	$T \times T \rightarrow \texttt{bool}$	f(x,y) = (x < y)	less than
$GrB_BinaryOp$	GrB_GE_T	$T \times T \rightarrow \texttt{bool}$	$f(x,y) = (x \ge y)$	greater than or equal
$GrB_BinaryOp$	GrB_LE_T	$T \times T \rightarrow \texttt{bool}$	$f(x,y) = (x \le y)$	less than or equal
$GrB_BinaryOp$	GrB_FIRST_T	$T \times T \to T$	f(x,y) = x,	first argument
$GrB_BinaryOp$	GrB_SECOND_T	$T \times T \to T$	f(x,y) = y,	second argument
$GrB_BinaryOp$	GrB_MIN_T	$T \times T \to T$	f(x,y) = (x < y) ? x : y,	minimum
$GrB_BinaryOp$	GrB_MAX_T	$\mid T \times T \to T$	f(x,y) = (x > y) ? x : y,	maximum
$GrB_BinaryOp$	GrB_PLUS_T	$T \times T \to T$	f(x,y) = x + y,	addition
$GrB_BinaryOp$	GrB_MINUS_T	$T \times T \to T$	f(x,y) = x - y,	subtraction
$GrB_BinaryOp$	GrB_TIMES_T	$\mid T \times T \to T$	$\int f(x,y) = xy,$	multiplication
GrB_BinaryOp	GrB_DIV_T	$\mid T \times T \to T$	$\int f(x,y) = \frac{x}{y},$	division

Table 2.4: Predefined unary and binary operators for GraphBLAS in C. The T can be any suffix from Table 2.3, I can be any integer suffix from Table 2.3, and F can be any floating-point suffix from Table 2.3.

Table 2.5: Predefined monoids for GraphBLAS in C. Maximum and minimum values for the various integral types are defined in stdint.h. Floating-point infinities are defined in math.h. The x in UINTx or INTx can be one of 8, 16, 32, or 64; whereas in FPx, it can be 32 or 64.

GraphBLAS	Domains, T		
identifier	$(T \times T \to T)$	Identity	Description
$GrB_PLUS_MONOID_T$	UINTx	0	addition
	INTx	0	
	FPx	0	
$GrB_TIMES_MONOID_T$	UINTx	1	multiplication
	INTx	1	
	FPx	1	
$GrB_MIN_MONOID_T$	UINTx	$\mathtt{UINT}x_\mathtt{MAX}$	minimum
	INTx	$\texttt{INT}x_\texttt{MAX}$	
	FPx	INFINITY	
$GrB_MAX_MONOID_T$	UINTx	0	maximum
	INTx	$INTx_MIN$	
	FPx	-INFINITY	
GrB_LOR_MONOID_BOOL	BOOL	false	logical OR
GrB_LAND_MONOID_BOOL	BOOL	true	logical AND
GrB_LXOR_MONOID_BOOL	BOOL	false	logical XOR (not equal)
GrB_LXNOR_MONOID_BOOL	BOOL	true	logical XNOR (equal)

Table 2.6: Predefined true semirings where the additive identity is the multiplicative annihilator. The x in UINTx or INTx can be one of 8, 16, 32, or 64; whereas in FPx, it can be 32 or 64.

	Domains, T	+ identity	
GraphBLAS identifier	$(T \times T \to T)$	\times annihilator	Description
$GrB_PLUS_TIMES_SEMIRING_T$	UINTx	0	arithmetic semiring
	INTx	0	
	FPx	0	
$GrB_MIN_PLUS_SEMIRING_T$	UINTx	$\mathtt{UINT}x_\mathtt{MAX}$	min-plus semiring
	INTx	$\texttt{INT}x_\texttt{MAX}$	
	FPx	INFINITY	
$GrB_MAX_PLUS_SEMIRING_T$	INTx	$INTx_MIN$	max-plus semiring
	FPx	-INFINITY	
$GrB_MIN_TIMES_SEMIRING_T$	UINTx	$\mathtt{UINT}x_\mathtt{MAX}$	min-times semiring
$GrB_MIN_MAX_SEMIRING_T$	UINTx	$\mathtt{UINT}x_\mathtt{MAX}$	min-max semiring
	INTx	$\texttt{INT}x_\texttt{MAX}$	
	FPx	INFINITY	
$GrB_MAX_MIN_SEMIRING_T$	UINTx	0	max-min semiring
	INTx	$INTx_MIN$	
	FPx	-INFINITY	
$GrB_MAX_TIMES_SEMIRING_T$	UINTx	0	max-times semiring
$GrB_PLUS_MIN_SEMIRING_T$	UINTx	0	plus-min semiring
GrB_LOR_LAND_SEMIRING_BOOL	BOOL	false	Logical semiring
GrB_LAND_LOR_SEMIRING_BOOL	BOOL	true	"and-or" semiring
GrB_LXOR_LAND_SEMIRING_BOOL	BOOL	false	same as NEQ_LAND
GrB_LXNOR_LOR_SEMIRING_BOOL	BOOL	true	same as EQ_LOR

Table 2.7: Other useful predefined semirings that don't have a multiplicative annihilator. The x in UINTx or INTx can be one of 8, 16, 32, or 64; whereas in FPx, it can be 32 or 64.

	Domains, T		
GraphBLAS identifier	$(T \times T \to T)$	+ identity	Description
$GrB_MAX_PLUS_SEMIRING_T$	UINTx	0	max-plus semiring
$GrB_MIN_TIMES_SEMIRING_T$	INTx	$\texttt{INT}x_\texttt{MAX}$	min-times semiring
	FPx	INFINITY	
$GrB_MAX_TIMES_SEMIRING_T$	INTx	$INTx_MIN$	max-times semiring
	FPx	-INFINITY	
$GrB_PLUS_MIN_SEMIRING_T$	INTx	0	plus-min semiring
	FPx	0	
$GrB_MIN_FIRST_SEMIRING_T$	UINTx	$\mathtt{UINT}x_\mathtt{MAX}$	min-select first semiring
	INTx	$\texttt{INT}x_\texttt{MAX}$	
	FPx	INFINITY	
$GrB_MIN_SECOND_SEMIRING_T$	UINTx	$\mathtt{UINT}x_\mathtt{MAX}$	min-select second semiring
	INTx	$\texttt{INT}x_\texttt{MAX}$	
	FPx	INFINITY	
$GrB_MAX_FIRST_SEMIRING_T$	UINTx	0	max-select first semiring
	INTx	$INTx_MIN$	
	FPx	-INFINITY	
$GrB_MAX_SECOND_SEMIRING_T$	UINTx	0	max-select second semiring
	INTx	$INTx_MIN$	
	FPx	-INFINITY	

all indices of the associated GraphBLAS vector object should be used. As with any literal defined in the GraphBLAS, an implementation of the GraphBLAS C API has considerable freedom in terms of how GrB_ALL is defined. Since GrB_ALL is used as an argument for an array parameter, it must use a type consistent with a pointer. GrB_ALL must also have a non-null value to distinguish it from the erroneous case of passing a NULL pointer as an array.

525 2.8 Execution Model

A program using the GraphBLAS C API constructs GraphBLAS objects, manipulates them to implement a graph algorithm, and then extracts values from the GraphBLAS objects as the result of the algorithm. Functions defined within the GraphBLAS C API that manipulate GraphBLAS objects are called *methods*. If the method corresponds to one of the operations defined in the GraphBLAS mathematical specification, we refer to the method as an *operation*.

Graph algorithms are expressed as an ordered collection of GraphBLAS method calls defined by the order they are encountered in a program. This is called the *program order*. Each method in the collection uniquely and unambiguously defines the output GraphBLAS objects based on the GraphBLAS operation and the input GraphBLAS objects. This is the case as long as there are no execution errors, which can put objects in an invalid state (see Section 2.9).

The GraphBLAS method calls in program order are organized into contiguous and nonoverlapping 536 sequences. A sequence is an ordered collection of method calls as encountered by an executing 537 thread. (For more on threads and GraphBLAS, see Section 2.8.2.) A sequence begins with either 538 (1) the first GraphBLAS method called by a thread, or (2) the first method called by a thread 539 after the end of the previous sequence. A sequence can end (terminate) in a variety of ways. A call 540 to the GraphBLAS GrB_wait() method (Section 4.4.1.1) always ends a sequence. The GraphBLAS 541 GrB_finalize() method (Section 4.1.2) also implicitly ends a sequence. Finally, in blocking mode (see 542 below), each GraphBLAS method starts and ends its own sequence. 543

The GraphBLAS objects are fully defined at any point in a sequence by the methods in the sequence 544 as long as there are no execution errors. In particular, as soon as a GraphBLAS method call returns. 545 its output can be used in the next GraphBLAS method call. However, individual operations in a 546 sequence may not be *complete*. We say that an operation is complete when all the computations 547 in the operation have finished and all the values of its output object have been produced and 548 committed to the address space of the program. Furthermore, no additional execution time can 549 be charged to a completed operation and no additional errors can be attributed to a completed 550 operation. 551

The opaqueness of GraphBLAS objects allows execution to proceed from one method to the next even when operations are not complete. Processing of nonopaque objects is never deferred in Graph-BLAS. That is, methods that consume nonopaque objects (e.g., GrB_Matrix_build, Section 4.2.3.8()) and methods that produce nonopaque objects (e.g., GrB_Matrix_extractTuples(), Section 4.2.3.12) always finish consuming or producing those nonopaque objects before returning.

557 2.8.1 Execution modes

The execution model implied by GraphBLAS sequences depends on the *execution mode* of the GraphBLAS program. There are two modes: *blocking* and *nonblocking*.

 blocking: In blocking mode, each method completes the GraphBLAS operation defined by the method before proceeding to the next statement in program order. Output GraphBLAS objects defined by a method are fully produced and stored in memory (i.e., they are materialized). In other words, it is as if each method call is its own sequence. Even mechanisms that break the opaqueness of the GraphBLAS objects (e.g., performance monitors, debuggers, memory dumps) will observe the operation as complete.

nonblocking: In nonblocking mode, each method may return once the input arguments have
 been inspected and verified to define a well formed GraphBLAS operation. (That is, there
 are no API errors; see Section 2.9.) The GraphBLAS operation may not have completed, but
 the output object is ready to be used by the next GraphBLAS method call. Completion of
 all operations in a sequence, including any that may generate execution errors, is guaranteed
 once the sequence terminates. Sequence termination is accomplished by a call to GrB_wait().

An application executing in nonblocking mode is not required to return immediately after input arguments have been verified. A conforming implementation of the GraphBLAS C API running in nonblocking mode may choose to execute *as if* in blocking mode. Further, a sequence in nonblocking mode where every GraphBLAS operation is followed by a GrB_wait() call is equivalent to the same sequence in blocking mode with GrB_wait() calls removed.

Nonblocking mode allows for any execution strategy that satisfies the mathematical definition of the sequence. The methods can be placed into a queue and deferred. They can be chained together and fused (e.g., replacing a chained pair of matrix products with a matrix triple product). Lazy evaluation, greedy evaluation, and asynchronous execution are all valid as long as the final result agrees with the mathematical definition provided by the sequence of GraphBLAS method calls appearing in program order.

Blocking mode forces an implementation to carry out precisely the GraphBLAS operations defined by the methods and to store output objects to memory between method calls. It is valuable for debugging or in cases where an external tool such as a debugger needs to evaluate the state of memory during a sequence.

In a mathematically well-defined sequence with input objects that are well-conditioned and free of execution errors, the results from blocking and nonblocking modes should be identical outside of effects due to roundoff errors associated with floating point arithmetic. Due to the great flexibility afforded to an implementation when using nonblocking mode, we expect execution of a sequence in nonblocking mode to potentially complete execution in less time.

⁵⁹² The mode is defined in the GraphBLAS C API when the context of the library invocation is defined.

⁵⁹³ This occurs once before any GraphBLAS methods are called with a call to the GrB_init() function.

 $_{594}$ This function takes a single argument of type GrB_Mode with the following possible values:

• GrB_BLOCKING specifies the blocking mode context.

• GrB_NONBLOCKING specifies the nonblocking mode context.

After all GraphBLAS methods are complete, the context is terminated with a call to GrB_finalize(). In the current version of the GraphBLAS C API, the context can be set only once in the execution of a program. That is, after GrB_finalize() is called, a subsequent call to GrB_init() is not allowed.

600 2.8.2 Thread safety

The GraphBLAS C API is designed to work in applications that execute with multiple threads; however, management of threads is not exposed within the definition of the GraphBLAS C API. The mapping of GraphBLAS methods onto threads and explicit synchronization between methods running on different threads are not defined. Furthermore, errors exposed within the error model (see Section 2.9) are not required to manage information at a per-thread granularity.

The only requirement concerning the needs of multi-threaded execution found in the GraphBLAS C API is that implementations of GraphBLAS methods must be thread safe. Different threads may create GraphBLAS sequences that do not conflict and expect the results to be the same (within floating point roundoff errors) regardless of whether the sequences execute serially or concurrently.

Sequences that do not conflict are free of data races. A data race occurs when (1) two or more threads access shared objects, (2) those access operations include at least one modify operation, and (3) those operations are not ordered through synchronization operations. The GraphBLAS C API does not provide synchronization operations to define ordered accesses to GraphBLAS objects. Hence the only way to assure that two sequences running concurrently on different threads do not conflict is if neither sequence writes to an object that the other sequence either reads or writes.

616 2.9 Error Model

All GraphBLAS methods return a value of type GrB_Info to provide information available to the system at the time the method returns. The returned value can be either GrB_SUCCESS or one of the defined error values shown in Table 2.8. The errors fall into two groups: API errors (Table 2.8(a)) and execution errors (Table 2.8(b)).

An API error means that a GraphBLAS method was called with parameters that violate the rules 621 for that method. These errors are restricted to those that can be determined by inspecting the types 622 and domains of GraphBLAS objects, GraphBLAS operators, or the values of scalar parameters fixed 623 at the time a method is called. API errors are deterministic and consistent across platforms and 624 implementations. API errors are never deferred, even in nonblocking mode. That is, if a method is 625 called in a manner that would generate an API error, it always returns with the appropriate API 626 error value. If a GraphBLAS method returns with an API error, it is guaranteed that none of the 627 arguments to the method (or any other program data) have been modified. 628

Execution errors indicate that something went wrong during the execution of a legal GraphBLAS method invocation. Their occurrence may depend on specifics of the executing environment and data values being manipulated. This does not mean that execution errors are the fault of the

const char *GrB_error();

Figure 2.1: Signature of GrB_error() function.

GraphBLAS implementation. For example, a memory leak could arise from an error in an application's source code (a "program error"), but it may manifest itself in different points of a program's execution (or not at all) depending on the platform, problem size, or what else is running at that time. Index-out-of-bounds and insuficient space execution errors always indicate a program error.

In blocking mode, where each method executes to completion, a returned execution error value applies to the specific method. If a GraphBLAS method, executing in blocking mode, returns with any execution error from Table 2.8(b) other than GrB_PANIC, it is guaranteed that no argument used as input-only has been modified. Output arguments may be left in an invalid state, and their use downstream in the program flow may cause additional errors. If a GraphBLAS method returns with a GrB_PANIC execution error, no guarantees can be made about the state of any program data.

In nonblocking mode, execution errors can be deferred. A return value of GrB_SUCCESS only guarantees that there are no API errors in the method invocation. If an execution error value is returned by a method in nonblocking mode, it indicates that an error was found during execution of the sequence, up to and including the GrB_wait() method (Section 4.4.1.1) call that ends the sequence. When possible, that return value will provide information concerning the cause of the error.

As discussed in Section 4.4.1.2, a GrB_{wait}(obj) on a specific GraphBLAS object obj does not necessarily end a sequence. However, no additional errors on the methods of the sequence that have obj as an OUT or INOUT argument can be reported. From a GraphBLAS perspective, those methods are *complete*.

If a GraphBLAS method, executing in nonblocking mode, returns with any execution error from Table 2.8(b) other than GrB_PANIC, it is guaranteed that no argument used as input-only through the entire sequence has been modified. Any output argument in the sequence may be left in an invalid state and its use downstream in the program flow may cause additional errors. If a GraphBLAS method returns with a GrB_PANIC, no guarantees can be made about the state of any program data.

After a call to any GraphBLAS method, the program can retrieve additional error information 659 (beyond the error code returned by the method) though a call to the function GrB_error(). The 660 signature of that function is shown in Figure 2.1. The function returns a pointer to a NULL-661 terminated string, and the contents of that string are implementation dependent. In particular, a 662 null string (not a NULL pointer) is always a valid error string. The pointer is valid until the next 663 call to any GraphBLAS method by the same thread. GrB_error() is a thread-safe function, in the 664 sense that multiple threads can call it simultaneously and each will get its own error string back. 665 referring to the last GraphBLAS method it called. 666

Table 2.8:	Error	values	returned	by	GraphBLAS	methods.
------------	-------	--------	----------	----	-----------	----------

(a) API errors

Error code	Description
GrB_UNINITIALIZED_OBJECT	A GraphBLAS object is passed to a method
	before new was called on it.
GrB_NULL_POINTER	A NULL is passed for a pointer parameter.
GrB_INVALID_VALUE	Miscellaneous incorrect values.
GrB_INVALID_INDEX	Indices passed are larger than dimensions of
	the matrix or vector being accessed.
GrB_DOMAIN_MISMATCH	A mismatch between domains of collections
	and operations when user-defined domains are
	in use.
GrB_DIMENSION_MISMATCH	Operations on matrices and vectors with in- compatible dimensions.
GrB_OUTPUT_NOT_EMPTY	An attempt was made to build a matrix or
	vector using an output object that already
	contains valid tuples (elements).
GrB_NO_VALUE	A location in a matrix or vector is being ac-
	cessed that has no stored value at the specified
	location.
(b)	Execution errors
Error code	Description
GrB_OUT_OF_MEMORY	Not enough memory for operations.
GrB_INSUFFICIENT_SPACE	The array provided is not large enough to hold
	output.
GrB_INVALID_OBJECT	One of the opaque GraphBLAS objects (input
	or output) is in an invalid state caused by a
	previous execution error.
GrB_INDEX_OUT_OF_BOUNDS	Reference to a vector or matrix element that is
	outside the defined dimensions of the object.
GrB_PANIC	Unknown internal error.

667 Chapter 3

Objects

The GraphBLAS *algebraic objects* operators, monoids, and semirings are presented below. These objects can be used as input arguments to various GraphBLAS operations, as shown in Table 3.1. The specific rules for each algebraic object are explained in the respective sections of those objects. A summary of the properties and recipes for building these GraphBLAS algebraic objects is presented in Table 3.2.

Once algebraic objects (operators, monoids, and semirings) are described, we introduce *collections* (vectors, matrices, and masks) that algebraic objects operate on. Finally, we introduce *descriptors*, which are a simple way to modify how algebraic objects operate on collections. More concretely, descriptors can be used (among other things) to perform multiplication with transpose of matrix without the user having to manually transpose the collection. A complete list of what descriptors are capable of can be found in the section.

Every GraphBLAS object has a *lifetime*, which consists of the sequence of instructions executed in program order between the *creation* and the *destruction* of the object. Pre-defined objects (types, operators, monoids, semirings and descriptors) are created when the GraphBLAS context is initialized by a call to GrB_init and are destroyed when the GraphBLAS context is terminated by a call to GrB_finalize.

Additional objects can be created by a call to a *constructor*. Each kind of object has its own explicit constructor method: GrB_Type_new, GrB_UnaryOp_new, GrB_BinaryOp_new, GrB_Monoid_new, GrB_Semiring_new, GrB_Descriptor_new, GrB_Vector_new, GrB_Matrix_new. Furthermore, vectors and matrices can be constructed by duplicating another vector or matrix through calls to the methods GrB_Vector_dup and GrB_Matrix_dup, respectively. Objects explicitly created by a call to a constructor can be destroyed by a call to GrB_free. The behavior of a program that calls GrB_free on a pre-defined object is undefined.

Several GraphBLAS constructor methods take objects as input arguments and use these objects to create a new object. For all GrB_*_new methods, the lifetime of the created object must end strictly before the lifetime of any input objects. For example, a vector constructor GrB_Vector_new takes a type object as input. That type object must not be destroyed until after the created vector is destroyed. Similarly, a GrB_Semiring_new method takes a monoid and a binary operator as inputs. Neither of these can be destroyed until after the created semiring is destroyed.

Operation	Operator input
mxm, mxv, vxm	semiring
eWiseAdd	binary operator
	monoid
	semiring
eWiseMult	binary operator
	monoid
	semiring
reduce (to vector)	binary operator
	monoid
reduce (to scalar)	monoid
apply	unary operator
kronecker	binary operator
	monoid
	semiring
dup argument (build methods)	binary operator
accum argument (various methods)	binary operator

Table 3.1: Operator input for relevant GraphBLAS operations. The semiring add and times are shown if applicable.

Table 3.2: Properties and recipes for building GraphBLAS algebraic objects: unary operator, binary operator, monoid, and semiring (composed of operations *add* and *times*).

Note 1: The output domain of the semiring times must be same as the domain of the semiring add. This ensures three domains for a semiring rather than four.

	(a) Properties	of	algebraic	objects.
--	----	--------------	----	-----------	----------

Object	Must be	Must be	Identity	Number
	commutative	associative	must exist	of domains
Unary operator	no	no	no	2
Binary operator	no	no	no	3
Monoid	no	yes	yes	1
Semiring add	yes	yes	yes	1
Semiring times	no	no	no	3 (see Note 1)

(b) Recipes for algebraic objects.

Object	Recipe	Number of domains
Unary operator	Function pointer	2
Binary operator	Function pointer	3
Monoid	Associative binary operator with identity	1
Semiring	Commutative monoid + binary operator	3
	•	•
The GrB_Vector_dup and GrB_Matrix_dup constructor methods behave differently. In these cases, the input vector or matrix can be destroyed as soon as the call returns. However, the original type object used to create the input vector or matrix cannot be destroyed until after the vector or matrix created by GrB_Vector_dup or GrB_Matrix_dup is destroyed. This behavior must hold for any chain of duplicating constructors.

$_{703}$ 3.1 Operators

A GraphBLAS binary operator $F_b = \langle D_{out}, D_{in_1}, D_{in_2}, \odot \rangle$ is defined by three domains, D_{out} , D_{in_1}, D_{in_2} , and an operation $\odot : D_{in_1} \times D_{in_2} \to D_{out}$. For a given GraphBLAS operator $F_b = \langle D_{out}, D_{in_1}, D_{in_2}, \odot \rangle$, we define $\mathbf{D}_{out}(F_b) = D_{out}, \mathbf{D}_{in_1}(F_b) = D_{in_1}, \mathbf{D}_{in_2}(F_b) = D_{in_2}$, and $O(F_b) = \odot$. Note that \odot could be used in place of either \oplus or \otimes in other methods and operations.

A GraphBLAS unary operator $F_u = \langle D_{out}, D_{in}, f \rangle$ is defined by two domains, D_{out} and D_{in} , and an operation $f : D_{in} \to D_{out}$. For a given GraphBLAS operator $F_u = \langle D_{out}, D_{in}, f \rangle$, we define $\mathbf{D}_{out}(F_u) = D_{out}, \mathbf{D}_{in}(F_u) = D_{in}$, and $\mathbf{f}(F_u) = f$.

$_{711}$ 3.2 Monoids

A GraphBLAS monoid $M = \langle D, \odot, 0 \rangle$ is defined by a single domain D, an associative¹ operation $0 : D \times D \to D$, and an identity element $0 \in D$. For a given GraphBLAS monoid $M = \langle D, \odot, 0 \rangle$ we define $\mathbf{D}(M) = D$, $\bigcirc(M) = \odot$, and $\mathbf{0}(M) = 0$. A GraphBLAS monoid is equivalent to the conventional monoid algebraic structure.

Let $F = \langle D, D, D, \odot \rangle$ be an associative GraphBLAS binary operator with identity element $0 \in D$. Then $M = \langle F, 0 \rangle = \langle D, \odot, 0 \rangle$ is a GraphBLAS monoid. If \odot is commutative, then M is said to be a commutative monoid. If a monoid M is created using an operator \odot that is not associative, the outcome of GraphBLAS operations using such a monoid is undefined.

$_{720}$ 3.3 Semirings

A GraphBLAS semiring $S = \langle D_{out}, D_{in_1}, D_{in_2}, \oplus, \otimes, 0 \rangle$ is defined by three domains D_{out}, D_{in_1} , and D_{in_2} ; an associative¹ and commutative additive operation $\oplus : D_{out} \times D_{out} \to D_{out}$; a multiplicative operation $\otimes : D_{in_1} \times D_{in_2} \to D_{out}$; and an identity element $0 \in D_{out}$. For a given GraphBLAS semiring $S = \langle D_{out}, D_{in_1}, D_{in_2}, \oplus, \otimes, 0 \rangle$ we define $\mathbf{D}_{in_1}(S) = D_{in_1}, \mathbf{D}_{in_2}(S) = D_{in_2}, \mathbf{D}_{out}(S) =$ $D_{out}, \bigoplus(S) = \oplus, \bigotimes(S) = \otimes$, and $\mathbf{0}(S) = 0$.

Let $F = \langle D_{out}, D_{in_1}, D_{in_2}, \otimes \rangle$ be an operator and let $A = \langle D_{out}, \oplus, 0 \rangle$ be a commutative monoid, then $S = \langle A, F \rangle = \langle D_{out}, D_{in_1}, D_{in_2}, \oplus, \otimes, 0 \rangle$ is a semiring.

¹It is expected that implementations of the GraphBLAS will utilize floating point arithmetic such as that defined in the IEEE-754 standard even though floating point arithmetic is not strictly associative.

⁷²⁸ In a GraphBLAS semiring, the multiplicative operator does not have to distribute over the additive ⁷²⁹ operator. This is unlike the conventional *semiring* algebraic structure.

Note: There must be one GraphBLAS monoid in every semiring which serves as the semiring's additive operator and specifies the same domain for its inputs and output parameters. If this monoid is not a commutative monoid, the outcome of GraphBLAS operations using the semiring is undefined.

A UML diagram of the conceptual hierarchy of object classes in GraphBLAS algebra (binary operators, monoids, and semirings) is shown in Figure 3.1.

Figure 3.1: Hierarchy of algebraic object classes in GraphBLAS. GraphBLAS semirings consist of a conventional monoid with one domain for the addition function, and a binary operator with three domains for the multiplication function.

736 **3.4** Vectors

A vector $\mathbf{v} = \langle D, N, \{(i, v_i)\}\rangle$ is defined by a domain D, a size N > 0, and a set of tuples (i, v_i) where $0 \leq i < N$ and $v_i \in D$. A particular value of i can appear at most once in \mathbf{v} . We define size $(\mathbf{v}) = N$ and $\mathbf{L}(\mathbf{v}) = \{(i, v_i)\}$. The set $\mathbf{L}(\mathbf{v})$ is called the *content* of vector \mathbf{v} . We also define the set $\mathbf{ind}(\mathbf{v}) = \{i : (i, v_i) \in \mathbf{L}(\mathbf{v})\}$ (called the *structure* of \mathbf{v}), and $\mathbf{D}(\mathbf{v}) = D$. For a vector \mathbf{v} , $\mathbf{v}(i)$ is a reference to v_i if $(i, v_i) \in \mathbf{L}(\mathbf{v})$ and is undefined otherwise.

742 3.5 Matrices

A matrix $\mathbf{A} = \langle D, M, N, \{(i, j, A_{ij})\} \rangle$ is defined by a domain D, its number of rows M > 0, its 743 number of columns N > 0, and a set of tuples (i, j, A_{ij}) where $0 \le i < M, 0 \le j < N$, and 744 $A_{ij} \in D$. A particular pair of values i, j can appear at most once in **A**. We define $\mathbf{ncols}(\mathbf{A}) = N$, 745 nrows(A) = M, and $L(A) = \{(i, j, A_{ij})\}$. The set L(A) is called the *content* of matrix A. We also 746 define the sets $indrow(\mathbf{A}) = \{i : \exists (i, j, A_{ij}) \in \mathbf{A}\}$ and $indcol(\mathbf{A}) = \{j : \exists (i, j, A_{ij}) \in \mathbf{A}\}$. (These 747 are the sets of nonempty rows and columns of A, respectively.) The structure of matrix A is the 748 set $ind(\mathbf{A}) = \{(i, j) : (i, j, A_{ij}) \in \mathbf{L}(\mathbf{A})\}$, and $\mathbf{D}(\mathbf{A}) = D$. For a matrix $\mathbf{A}, \mathbf{A}(i, j)$ is a reference to 749 A_{ij} if $(i, j, A_{ij}) \in \mathbf{L}(\mathbf{A})$ and is undefined otherwise. 750

If **A** is a matrix and $0 \leq j < N$, then $\mathbf{A}(:,j) = \langle D, M, \{(i,A_{ij}) : (i,j,A_{ij}) \in \mathbf{L}(\mathbf{A})\}\rangle$ is a vector called the *j*-th column of **A**. Correspondingly, if **A** is a matrix and $0 \leq i < M$, then $\mathbf{A}(i,:) = \langle D, N, \{(j,A_{ij}) : (i,j,A_{ij}) \in \mathbf{L}(\mathbf{A})\}\rangle$ is a vector called the *i*-th row of **A**.

Given a matrix $\mathbf{A} = \langle D, M, N, \{(i, j, A_{ij})\}\rangle$, its *transpose* is another matrix $\mathbf{A}^T = \langle D, N, M, \{(j, i, A_{ij}) : (i, j, A_{ij}) \in \mathbf{L}(\mathbf{A})\}\rangle$.

756 **3.6** Masks

The GraphBLAS C API defines an opaque object called a *mask*. The mask is used to control how computed values are stored in the output from a method. The mask is an *internal* opaque object; that is, it is never exposed as a variable within an application.

The mask is formed from objects input to the method that uses the mask. For example, a Graph-BLAS method may be called with a matrix as the mask parameter. The internal mask object is constructed from the input matrix in one of two ways. In the default case, an element of the mask is created for each tuple that exists in the matrix for which the value of the tuple cast to Boolean evaluates to **true**. Alternatively, the user can specify *structure*-only behavior where an element of the mask is created for each tuple that exists in the matrix *regardless* of the value stored in the input matrix.

The internal mask object can be either a one- or a two-dimensional construct. One- and twodimensional masks, described more formally below, are similar to vectors and matrices, respectively, except that they have structure (indices) but no values. When needed, a value is implied for the elements of a mask with an implied value of **true** for elements that exist and an implied value of **false** for elements that do not exist (i.e., the locations of the mask that do not have a stored value imply a value of **false**). Hence, even though a mask does not contain any values, it can be considered to imply values from a Boolean domain.

A one-dimensional mask $\mathbf{m} = \langle N, \{i\} \rangle$ is defined by its number of elements N > 0, and a set **ind**(\mathbf{m}) of indices $\{i\}$ where $0 \le i < N$. A particular value of i can appear at most once in \mathbf{m} . We define size(\mathbf{m}) = N. The set **ind**(\mathbf{m}) is called the *structure* of mask \mathbf{m} .

777 A two-dimensional mask $\mathbf{M} = \langle M, N, \{(i, j)\} \rangle$ is defined by its number of rows M > 0, its number

of columns N > 0, and a set $ind(\mathbf{M})$ of tuples (i, j) where $0 \le i < M, 0 \le j < N$. A particular pair

of values i, j can appear at most once in **M**. We define $\mathbf{ncols}(\mathbf{M}) = N$, and $\mathbf{nrows}(\mathbf{M}) = M$. We

also define the sets $\operatorname{indrow}(\mathbf{M}) = \{i : \exists (i, j) \in \operatorname{ind}(\mathbf{M})\}\$ and $\operatorname{indcol}(\mathbf{M}) = \{j : \exists (i, j) \in \operatorname{ind}(\mathbf{M})\}.$

These are the sets of nonempty rows and columns of \mathbf{M} , respectively. The set $\mathbf{ind}(\mathbf{M})$ is called the *structure* of mask \mathbf{M} .

One common operation on masks is the *complement*. For a one-dimensional mask **m** this is denoted as \neg **m**. For a two-dimensional masks, this is denoted as \neg **M**. The complement of a one-dimensional mask **m** is defined as $ind(\neg m) = \{i : 0 \le i < N, i \notin ind(m)\}$. It is the set of all possible indices that do not appear in **m**. The complement of a two-dimensional mask **M** is defined as the set $ind(\neg$ **M**) = $\{(i, j) : 0 \le i < M, 0 \le j < N, (i, j) \notin ind(M)\}$. It is the set of all possible indices that do not appear in **M**.

$_{789}$ 3.7 Descriptors

Descriptors are used to modify the behavior of a GraphBLAS method. When present in the
signature of a method, they appear as the last argument in the method. Descriptors specify how
the other input arguments corresponding to GraphBLAS collections – vectors, matrices, and masks
- should be processed (modified) before the main operation of a method is performed.

The descriptor is a lightweight object. It is composed of (*field*, *value*) pairs where the *field* selects one of the GraphBLAS objects from the argument list of a method and the *value* defines the indicated modification associated with that object. For example, a descriptor may specify that a particular input matrix needs to be transposed or that a mask needs to be complemented (defined in Section 3.6) before using it in the operation.

For the purpose of constructing descriptors, the arguments of a method that can be modified 799 are identified by specific field names. The output parameter (typically the first parameter in a 800 GraphBLAS method) is indicated by the field name, GrB_OUTP. The mask is indicated by the 801 GrB_MASK field name. The input parameters corresponding to the input vectors and matrices are 802 indicated by GrB_INP0 and GrB_INP1 in the order they appear in the signature of the GraphBLAS 803 method. The descriptor is an opaque object and hence we do not define how objects of this type 804 should be implemented. When referring to (*field*, *value*) pairs for a descriptor, however, we often 805 use the informal notation desc[GrB_Desc_Field].GrB_Desc_Value without implying that a descriptor 806 is to be implemented as an array of structures (in fact, field values can be used in conjunction with 807 multiple values that are composable). We summarize all types, field names, and values used with 808 descriptors in Table 3.3. 809

In the definitions of the GraphBLAS methods, we often refer to the *default behavior* of a method with respect to the action of a descriptor. If a descriptor is not provided or if the value associated with a particular field in a descriptor is not set, the default behavior of a GraphBLAS method is defined as follows:

• Input matrices are not transposed.

- The mask is used, as is, without complementing, and stored values are examined to determine whether they evaluate to true or false.
- Values of the output object that are not directly modified by the operation are preserved.

Table 3.3: Descriptors are GraphBLAS objects passed as arguments to Graph_BLAS operations to modify other GraphBLAS objects in the operation's argument list. A descriptor, desc, has one or more (*field*, *value*) pairs indicated as desc[GrB_Desc_Field].GrB_Desc_Value. In this table, we define all types and literals used with descriptors.

(a) Types used with GraphBLAS descriptors.

Type	Description
GrB_Descriptor	Type of a GraphBLAS descriptor object.
GrB_Desc_Field	Type of a descriptor field.
GrB_Desc_Value	Type of a descriptor field's value.

(b) Descriptor field names of type GrB_Desc_Field.

Field name	Description
GrB_OUTP	Field name for the output GraphBLAS object.
GrB_INP0	Field name for the first input GraphBLAS object.
GrB_INP1	Field name for the second input GraphBLAS object.
GrB_MASK	Field name for the mask GraphBLAS object.

(c) Descriptor field values of type GrB_Desc_Value.

Field Value	Description
GrB_STRUCTURE	The write mask is constructed from the structure (pattern of stored
	values) of the associated object. The stored values are not examined.
GrB_COMP	Use the complement of the associated object. When combined
	with GrB_STRUCTURE, the complement of the structure of the associated
	object is used without evaluating the values stored.
GrB_SCMP	Use the complement of the associated object. When combined
	with GrB_STRUCTURE, the complement of the structure of the associated
	object is used without evaluating the values stored. This field value
	is currently deprecated in favor of GrB_COMP above, and may be
	removed in future versions of this API.
GrB_TRAN	Use the transpose of the associated object.
$GrB_REPLACE$	Clear the output object before assigning computed values.

GraphBLAS specifies a set of pre-defined descriptors. Their identifiers and the corresponding set of (field,value) pairs for that identifier are shown in Table 3.4.

Table 3.4: Pre-defined GraphBLAS descriptors. The list includes all possible descriptors, according to the current standard. Columns list the possible fields and entries list the value(s) associated with those fields for a given descriptor.

Identifier	GrB_OUTP	GrB_MASK	GrB₋INP0	GrB_INP1
GrB_NULL	_	_	_	_
GrB_DESC_T1	_	_	_	GrB_TRAN
GrB_DESC_T0	—	_	GrB_TRAN	_
GrB_DESC_T0T1	—	_	GrB_TRAN	GrB_TRAN
GrB_DESC_C	_	GrB_COMP	_	_
GrB_DESC_S	_	GrB_STRUCTURE	_	_
GrB_DESC_CT1	_	GrB_COMP	_	GrB_TRAN
GrB_DESC_ST1	_	GrB_STRUCTURE	_	GrB_TRAN
GrB_DESC_CT0	_	GrB_COMP	GrB_TRAN	_
GrB_DESC_ST0	_	GrB_STRUCTURE	GrB_TRAN	_
GrB_DESC_CT0T1	_	GrB_COMP	GrB_TRAN	GrB_TRAN
GrB_DESC_ST0T1	_	GrB_STRUCTURE	GrB_TRAN	GrB_TRAN
GrB_DESC_SC	_	GrB_STRUCTURE, GrB_COMP	_	_
GrB_DESC_SCT1	_	GrB_STRUCTURE, GrB_COMP	_	GrB_TRAN
GrB_DESC_SCT0	_	GrB_STRUCTURE, GrB_COMP	GrB_TRAN	_
GrB_DESC_SCT0T1	_	GrB_STRUCTURE, GrB_COMP	GrB_TRAN	GrB_TRAN
GrB_DESC_R	GrB_REPLACE	_	_	_
GrB_DESC_RT1	GrB_REPLACE	_	_	GrB_TRAN
GrB_DESC_RT0	GrB_REPLACE	_	GrB_TRAN	_
GrB_DESC_RT0T1	GrB_REPLACE	_	GrB_TRAN	GrB_TRAN
GrB_DESC_RC	GrB_REPLACE	GrB_COMP	_	_
GrB_DESC_RS	GrB_REPLACE	GrB_STRUCTURE	_	_
GrB_DESC_RCT1	GrB_REPLACE	GrB_COMP	_	GrB_TRAN
GrB_DESC_RST1	GrB_REPLACE	GrB_STRUCTURE	_	GrB_TRAN
GrB_DESC_RCT0	GrB_REPLACE	GrB_COMP	GrB_TRAN	_
GrB_DESC_RST0	GrB_REPLACE	GrB_STRUCTURE	GrB_TRAN	_
GrB_DESC_RCT0T1	GrB_REPLACE	GrB_COMP	GrB_TRAN	GrB_TRAN
GrB_DESC_RST0T1	GrB_REPLACE	GrB_STRUCTURE	GrB_TRAN	GrB_TRAN
GrB_DESC_RSC	GrB_REPLACE	GrB_STRUCTURE, GrB_COMP	_	-
GrB_DESC_RSCT1	GrB_REPLACE	GrB_STRUCTURE, GrB_COMP	_	GrB_TRAN
GrB_DESC_RSCT0	GrB_REPLACE	GrB_STRUCTURE, GrB_COMP	GrB_TRAN	_
GrB_DESC_RSCT0T1	GrB_REPLACE	GrB_STRUCTURE, GrB_COMP	GrB_TRAN	GrB_TRAN

⁸²⁰ Chapter 4

$_{\text{\tiny 821}}$ Methods

This chapter defines the behavior of all the methods in the GraphBLAS C API. All methods can be declared for use in programs by including the GraphBLAS.h header file.

We would like to emphasize that no GraphBLAS method will imply a predefined order over any associative operators. Implementations of the GraphBLAS are encouraged to exploit associativity to optimize performance of any GraphBLAS method. This holds even if the definition of the GraphBLAS method implies a fixed order for the associative operations.

4.1 Context Methods

The methods in this section set up and tear down the GraphBLAS context within which all Graph-BLAS methods must be executed. The initialization of this context also includes the specification of which execution mode is to be used.

4.1.1 init: Initialize a GraphBLAS context

⁸³³ Creates and initializes a GraphBLAS C API context.

834 C Syntax

835 GrB_Info GrB_init(GrB_Mode mode);

836 Parameters

mode Mode for the GraphBLAS context. Must be either GrB_BLOCKING or GrB_NONBLOCKING.

838 Return Values

839	GrB_SUCCESS o	operation completed successfully.
840	GrB_PANIC u	inknown internal error.
841	GrB_INVALID_VALUE in	nvalid mode specified, or method called multiple times.

842 Description

The init method creates and initializes a GraphBLAS C API context. The argument to GrB_init defines the mode for the context. The two available modes are:

GrB_BLOCKING: In this mode, each method in a sequence returns after its computations have completed and output arguments are available to subsequent statements in an application.
 When executing in GrB_BLOCKING mode, the methods execute in program order.

• GrB_NONBLOCKING: In this mode, methods in a sequence may return after arguments in the method have been tested for dimension and domain compatibility within the method but potentially before their computations complete. Output arguments are available to subsequent GraphBLAS methods in an application. When executing in GrB_NONBLOCKING mode, the methods in a sequence may execute in any order that preserves the mathematical result defined by the sequence.

An application can only create one context per execution instance. An application may only call GrB_Init once. Calling GrB_Init more than once results in undefined behavior.

⁸⁵⁶ 4.1.2 finalize: Finalize a GraphBLAS context

⁸⁵⁷ Terminates and frees any internal resources created to support the GraphBLAS C API context.

858 C Syntax

859 GrB_Info GrB_finalize();

- GrB_SUCCESS operation completed successfully.
- ⁸⁶² GrB_PANIC unknown internal error.

The finalize method terminates and frees any internal resources created to support the GraphBLAS 864 C API context. GrB_finalize may only be called after a context has been initialized by calling 865 GrB_init, or else undefined behavior occurs. After GrB_finalize has been called to finalize a Graph-866 BLAS context, calls to any GraphBLAS methods, including GrB_finalize, will result in undefined 867 behavior. 868

4.1.3getVersion: Get the version number of the standard. 869

Query the library for the version number of the standard that this library implements. 870

C Syntax 871

872	GrB_Info GrB	_getVersion(unsigned	int	*version,
873			unsigned	int	<pre>*subversion);</pre>

Parameters 874

875	version ((OUT)	On successful	return	will hold	the valu	ue of the	major	version	number.
876	version ((OUT)	On successful	return	will hold	the valu	ie of the	subvers	sion nur	nber.

Return Values 877

GrB_SUCCESS operation completed successfully. 878 GrB_PANIC unknown internal error. 879

Description 880

The getVersion method is used to query the major and minor version number of the GraphBLAS 881 C API specification that the library implements at runtime. To support compile time queries the 882 following two macros shall also be defined by the library. 883

#define GRB_VERSION 1 884 #define GrB_SUBVERSION 3 885

4.2**Object** Methods 886

This section describes methods that setup and operate on GraphBLAS opaque objects but are not 887 part of the GraphBLAS math specification. 888

889 4.2.1 Algebra Methods

4.2.1.1 Type_new: Create a new GraphBLAS (user-defined) type

⁸⁹¹ Creates a new user-defined GraphBLAS type. This type can then be used to create new operators,
 ⁸⁹² monoids, semirings, vectors and matrices.

893	C Syntax
894 895	<pre>GrB_Info GrB_Type_new(GrB_Type *utype,</pre>
896	Parameters
897 898	utype (INOUT) On successful return, contains a handle to the newly created user-defined GraphBLAS type object.
899	$ctype\ (IN)$ A C type that defines the new GraphBLAS user-defined type.
900	Return Values
901	GrB_SUCCESS operation completed successfully.
902	GrB_PANIC unknown internal error.
903	$GrB_OUT_OF_MEMORY$ not enough memory available for operation.
904	GrB_NULL_POINTER utype pointer is NULL.

905 Description

Given a C type ctype, the Type_new method returns in utype a handle to a new GraphBLAS type
that is equivalent to the C type. Variables of this ctype must be a struct, union, or fixed-size array.
In particular, given two variables, src and dst, of type ctype, the following operation must be a
valid way to copy the contents of src to dst:

910

memcpy(&dst, &src, sizeof(ctype))

A new, user-defined type utype should be destroyed with a call to $GrB_free(utype)$ when no longer needed.

⁹¹³ It is not an error to call this method more than once on the same variable; however, the handle to ⁹¹⁴ the previously created object will be overwritten.

915 4.2.1.2 UnaryOp_new: Create a new GraphBLAS unary operator

⁹¹⁶ Initializes a new GraphBLAS unary operator with a specified user-defined function and its types⁹¹⁷ (domains).

918 C Syntax

919	GrB_Info GrB_UnaryOp_new(GrB_Unary	Op *unary_op,	
920	void	(*unary_func)(void*, cons	t void*),
921	GrB_Type	d_out,	
922	GrB_Type	d_in);	

923 Parameters

924 925	unary_op	(INOUT) On successful return, contains a handle to the newly created GraphBLAS unary operator object.
926	unary_func	(IN) a pointer to a user-defined function that takes one input parameter of $d_in's$
927		type and returns a value of d_{out} 's type, both passed as void pointers. Specifically the signature of the function is expected to be of the form:
920		the signature of the function is expected to be of the form.
929		<pre>void func(void *out, const void *in);</pre>
930		
931	d_out	(IN) The GrB_Type of the return value of the unary operator being created. Should
932		be one of the predefined GraphBLAS types in Table 2.2, or a user-defined Graph-
933		BLAS type.
934	d_in	(IN) The GrB_-Type of the input argument of the unary operator being created.
935		Should be one of the predefined GraphBLAS types in Table 2.2, or a user-defined
936		GraphBLAS type.
937	Return Values	5
938		GrB_SUCCESS operation completed successfully.
939		GrB_PANIC unknown internal error.
940	GrB_OUT	_OF_MEMORY not enough memory available for operation.
941 942	GrB_UNINITIAL	IZED_OBJECT any GrB_Type parameter (for user-defined types) has not been ini- tialized by a call to GrB_Type_new.
943	GrB_N	ULL_POINTER unary_op or unary_func pointers are NULL.

The UnaryOp_new method creates a new GraphBLAS unary operator $f_u = \langle \mathbf{D}(\mathsf{d_out}), \mathbf{D}(\mathsf{d_in}), \mathsf{unary_func} \rangle$ and returns a handle to it in unary_op.

The implementation of unary_func must be such that it works even if the d_out and d_in arguments are aliased. In other words, for all invocations of the function:

949 unary_func(out,in);

⁹⁵⁰ the value of out must be the same as if the following code was executed:

```
951 D(d_in) tmp = malloc(sizeof(D(d_in)));
952 memcpy(tmp,in,sizeof(D(d_in)));
953 unary_func(out,tmp);
954 free(tmp);
```

It is not an error to call this method more than once on the same variable; however, the handle to the previously created object will be overwritten.

957 4.2.1.3 BinaryOp_new: Create a new GraphBLAS binary operator

Initializes a new GraphBLAS binary operator with a specified user-defined function and its types
 (domains).

960 C Syntax

961	GrB_Info GrB_BinaryOp_new	(GrB_BinaryOp	<pre>*binary_op,</pre>		
962		void (<pre>*binary_func)</pre>	(void*,	
963				const	void*,
964				const	void*),
965		GrB_Type	d_out,		
966		GrB_Type	d_in1,		
967		GrB_Type	d_in2);		

968 Parameters

binary_op (INOUT) On successful return, contains a handle to the newly created GraphBLAS
 binary operator object.

971binary_func (IN) A pointer to a user-defined function that takes two input parameters of types972d_in1 and d_in2 and returns a value of type d_out, all passed as void pointers.973Specifically the signature of the function is expected to be of the form:

974		<pre>void func(void *out, const void *in1, const void *in2);</pre>
975		
976 977 978	d₋out	(IN) The GrB_Type of the return value of the binary operator being created. Should be one of the predefined GraphBLAS types in Table 2.2, or a user-defined GraphBLAS type.
979 980 981	d_in1	(IN) The GrB_Type of the left hand argument of the binary operator being created. Should be one of the predefined GraphBLAS types in Table 2.2, or a user-defined GraphBLAS type.
982 983 984	d_in2	(IN) The GrB_Type of the right hand argument of the binary operator being created. Should be one of the predefined GraphBLAS types in Table 2.2, or a user-defined GraphBLAS type.
985	Return Value	5
986		GrB_SUCCESS operation completed successfully.

987	GrB_PANIC	unknown internal error.
988	GrB_OUT_OF_MEMORY	not enough memory available for operation.
989 990	GrB_UNINITIALIZED_OBJECT	the GrB_Type (for user-defined types) has not been initialized by a call to $GrB_Type_new.$

991 GrB_NULL_POINTER binary_op or binary_func pointer is NULL.

992 Description

⁹⁹³ The BinaryOp_new methods creates a new GraphBLAS binary operator $f_b = \langle \mathbf{D}(d_out), \mathbf{D}(d_in1), \mathbf{D}(d_in2), binary_fu$ ⁹⁹⁴ and returns a handle to it in binary_op.

 $_{995}$ The implementation of binary_func must be such that it works even if any of the d_out, d_in1, and

 $_{996}$ d_in2 arguments are aliased to each other. In other words, for all invocations of the function:

997 binary_func(out,in1,in2);

⁹⁹⁸ the value of out must be the same as if the following code was executed:

999	$D(d_in1)$ tmp1 = malloc(sizeof($D(d_in1)$));
1000	$D(d_{in2}) \text{ tmp2} = malloc(sizeof(D(d_{in2})));$
1001	$memcpy(tmp1,in1,sizeof(D(d_in1)));$
1002	$memcpy(tmp2,in2,sizeof(D(d_in2)));$
1003	<pre>binary_func(out,tmp1,tmp2);</pre>
1004	<pre>free(tmp2);</pre>
1005	<pre>free(tmp1);</pre>

1006 It is not an error to call this method more than once on the same variable; however, the handle to 1007 the previously created object will be overwritten.

1008 4.2.1.4 Monoid_new: Create new GraphBLAS monoid

¹⁰⁰⁹ Creates a new monoid with specified binary operator and identity value.

1010 C Syntax

1011	GrB_Info	GrB_Monoid_new(GrB_Monoid	<pre>*monoid,</pre>
1012		GrB_BinaryOp	<pre>binary_op,</pre>
1013		<type></type>	<pre>identity);</pre>

1014 Parameters

1015 1016	monoid	(INOUT) On successful return, contains a handle to the newly created GraphBLAS monoid object.
1017 1018	binary_op	(IN) An existing GraphBLAS associative binary operator whose input and output types are the same.
1019 1020	identity	(IN) The value of the identity element of the monoid. Must be the same type as the type used by the <code>binary_op</code> operator.

1021 Return Values

1022	GrB_SUCCESS	operation completed successfully.
1023	GrB_PANIC	unknown internal error.
1024	GrB_OUT_OF_MEMORY	not enough memory available for operation.
1025	$GrB_{U}UNINITIALIZED_{U}OBJECT$	the $GrB_BinaryOp$ has not been initialized by a call to $GrB_BinaryOp_new.$
1026	GrB_NULL_POINTER	monoid pointer is NULL.
1027 1028	GrB_DOMAIN_MISMATCH	all three argument types of the binary operator and the type of the identity value are not the same.

1029 Description

¹⁰³⁰ The Monoid_new method creates a new monoid $M = \langle \mathbf{D}(\mathsf{binary_op}), \mathsf{binary_op}, \mathsf{identity} \rangle$ and returns ¹⁰³¹ a handle to it in monoid.

¹⁰³² If binary_op is not associative, the results of GraphBLAS operations that require associativity of ¹⁰³³ this monoid will be undefined. It is not an error to call this method more than once on the same variable; however, the handle to
 the previously created object will be overwritten.

1036 4.2.1.5 Semiring_new: Create new GraphBLAS semiring

1037 Creates a new semiring with specified domain, operators, and elements.

1038 C Syntax

1039	GrB_Info	GrB_Semiring_new(GrB_Semiring	*semiring,
1040			GrB_Monoid	add_op,
1041			GrB_BinaryOp	<pre>mul_op);</pre>

1042 Parameters

1043	semiring	(INOUT) On successful return, contains a handle to the newly created GraphBLAS
1044		semiring.
1045	add_op	(IN) An existing GraphBLAS commutative monoid that specifies the addition op-
1046		erator and its identity.
1047	mul_op	(IN) An existing GraphBLAS binary operator that specifies the semiring's multi-
1048		plication operator. In addition, mul_op 's output domain, $D_{out}(mul_op)$, must be
1049		the same as the add_op 's domain $D(add_op)$.

1051	GrB_SUCCESS	operation completed successfully.
1052	GrB_PANIC	unknown internal error.
1053	GrB_OUT_OF_MEMORY	not enough memory available for this method to complete.
1054 1055 1056	GrB_UNINITIALIZED_OBJECT	the add_op object has not been initialized with a call to GrB_Monoid_new or the mul_op object has not been not been initialized by a call to $GrB_BinaryOp_new$.
1057	GrB_NULL_POINTER	semiring pointer is NULL.
1058 1059	GrB_DOMAIN_MISMATCH	the output domain of mul_op does not match the domain of the add_op monoid.

The Semiring_new method creates a new semiring $S = \langle \mathbf{D}_{out}(\mathsf{mul_op}), \mathbf{D}_{in_1}(\mathsf{mul_op}), \mathbf{D}_{in_2}(\mathsf{mul_op}), \mathsf{add_op}, \mathsf{mul_op}, \mathbf{0}$ and returns a handle to it in semiring. Note that $\mathbf{D}_{out}(\mathsf{mul_op})$ must be the same as $\mathbf{D}(\mathsf{add_op})$.

¹⁰⁶³ If add_op is not commutative, then GraphBLAS operations using this semiring will be undefined.

1064 It is not an error to call this method more than once on the same variable; however, the handle to 1065 the previously created object will be overwritten.

1066 4.2.2 Vector Methods

- 1067 4.2.2.1 Vector_new: Create new vector
- 1068 Creates a new vector with specified domain and size.

1069 C Syntax

1070	GrB_Info	GrB_Vector_new(GrB_Vector	*v,
1071			GrB_Type	d,
1072			GrB_Index	nsize);

1073 Parameters

1074 1075	$\nu~(INOUT)$ On successful return, contains a handle to the newly created GraphBLAS vector.
1076 1077 1078	d (IN) The type corresponding to the domain of the vector being created. Can be one of the predefined GraphBLAS types in Table 2.2, or an existing user-defined GraphBLAS type.
1079	nsize (IN) The size of the vector being created.

1081	GrB_SUCCESS	In blocking mode, the operation completed successfully. In non-
1082		blocking mode, this indicates that the API checks for the input
1083		arguments passed successfully. Either way, output vector \boldsymbol{v} is ready
1084		to be used in the next method of the sequence.
1085	GrB_PANIC	Unknown internal error.
1086	GrB_INVALID_OBJECT	This is returned in any execution mode whenever one of the opaque
1087		GraphBLAS objects (input or output) is in an invalid state caused
1088		by a previous execution error. Call $GrB_error()$ to access any error
1089		messages generated by the implementation.

GrB_OUT_OF_MEMORY Not enough memory available for operation.
 GrB_UNINITIALIZED_OBJECT The GrB_Type object has not been initialized by a call to GrB_Type_new (needed for user-defined types).
 GrB_NULL_POINTER The v pointer is NULL.
 GrB_INVALID_VALUE nsize is zero.

1095 Description

¹⁰⁹⁶ Creates a new vector \mathbf{v} of domain $\mathbf{D}(d)$, size nsize, and empty $\mathbf{L}(\mathbf{v})$. The method returns a handle ¹⁰⁹⁷ to the new vector in \mathbf{v} .

¹⁰⁹⁸ It is not an error to call this method more than once on the same variable; however, the handle to ¹⁰⁹⁹ the previously created object will be overwritten.

1100 4.2.2.2 Vector_dup: Create a copy of a GraphBLAS vector

¹¹⁰¹ Creates a new vector with the same domain, size, and contents as another vector.

1102 C Syntax

1103 GrB_Info GrB_Vector_dup(GrB_Vector *w, 1104 const GrB_Vector u);

1105 Parameters

1106	w (INOUT) On successful return, contains a handle to the newly created GraphBLAS
1107	vector.

$_{1108}$ $\,$ u (IN) The GraphBLAS vector to be duplicated.

1110	GrB_SUCCESS	In blocking mode, the operation completed successfully. In non-
1111		blocking mode, this indicates that the API checks for the input
1112		arguments passed successfully. Either way, output vector \boldsymbol{w} is ready
1113		to be used in the next method of the sequence.
1114	GrB_PANIC	Unknown internal error.
1115	GrB_INVALID_OBJECT	This is returned in any execution mode whenever one of the opaque
1116		GraphBLAS objects (input or output) is in an invalid state caused
1117		by a previous execution error. Call $GrB_error()$ to access any error
1118		messages generated by the implementation.

1119 GrB_OUT_OF_MEMORY Not	enough memory available for ope	ration.
----------------------------	---------------------------------	---------

¹¹²⁰ GrB_UNINITIALIZED_OBJECT The GraphBLAS vector, u, has not been initialized by a call to ¹¹²¹ Vector_new or Vector_dup.

1122 GrB_NULL_POINTER The w pointer is NULL.

1123 Description

¹¹²⁴ Creates a new vector \mathbf{w} of domain $\mathbf{D}(u)$, size size(u), and contents $\mathbf{L}(u)$. The method returns a ¹¹²⁵ handle to the new vector in w.

1126 It is not an error to call this method more than once on the same variable; however, the handle to 1127 the previously created object will be overwritten.

1128 4.2.2.3 Vector_resize: Resize a vector

¹¹²⁹ Changes the size of an existing vector.

1130 C Syntax

1131	GrB_Info	GrB_Vector_	_resize(GrB_Vector	W,
1132				GrB_Index	<pre>nsize);</pre>

1133 Parameters

w (INOUT) An existing Vector object that is being resized.
 nsize (IN) The new size of the vector. It can be smaller or larger than the current size.

1137	GrB_SUCCESS	In blocking mode, the operation completed successfully. In non-
1138		blocking mode, this indicates that the API checks for the input
1139		arguments passed successfully. Either way, output vector \boldsymbol{w} is ready
1140		to be used in the next method of the sequence.
1141	GrB_PANIC	Unknown internal error.
1142	GrB_INVALID_OBJECT	This is returned in any execution mode whenever one of the opaque
1143		GraphBLAS objects (input or output) is in an invalid state caused
1144		by a previous execution error. Call $GrB_error()$ to access any error
1145		messages generated by the implementation.
1146	GrB OUT OF MEMORY	Not enough memory available for operation.

1147 GrB_NULL_POINTER The w pointer is NULL.

1148 GrB_INVALID_VALUE nsize is zero.

1149 Description

¹¹⁵⁰ Changes the size of w to nsize. The domain D(w) of vector w remains the same. The contents L(w)¹¹⁵¹ are modified as described below.

Let $w = \langle \mathbf{D}(w), N, \mathbf{L}(w) \rangle$ when the method is called. When the method returns, $w = \langle \mathbf{D}(w), \mathsf{nsize}, \mathbf{L}'(w) \rangle$ where $\mathbf{L}'(w) = \{(i, w_i) : (i, w_i) \in \mathbf{L}(w) \land (i < \mathsf{nsize})\}$. That is, all elements of w with index greater than or equal to the new vector size (nsize) are dropped.

1155 4.2.2.4 Vector_clear: Clear a vector

1156 Removes all the elements (tuples) from a vector.

```
1157 C Syntax
```

1158 GrB_Info GrB_Vector_clear(GrB_Vector v);

1159 Parameters

v (INOUT) An existing GraphBLAS vector to clear.

1162 1163	GrB_SUCCESS	In blocking mode, the operation completed successfully. In non- blocking mode, this indicates that the API checks for the input
1164		arguments passed successfully. Either way, output vector \boldsymbol{v} is ready
1165		to be used in the next method of the sequence.
1166	GrB₋PANIC	Unknown internal error.
1167	GrB_INVALID_OBJECT	This is returned in any execution mode whenever one of the opaque
1168		GraphBLAS objects (input or output) is in an invalid state caused
1169		by a previous execution error. Call $GrB_error()$ to access any error
1170		messages generated by the implementation.
1171	GrB_OUT_OF_MEMORY	Not enough memory available for operation.
1172	GrB_UNINITIALIZED_OBJECT	The GraphBLAS vector, $\boldsymbol{v},$ has not been initialized by a call to
1173		Vector_new or Vector_dup.

Removes all elements (tuples) from an existing vector. After the call to $GrB_Vector_clear(v)$, $L(v) = \emptyset$. The size of the vector does not change.

1177	4.2.2.5 Ve	ector_size: Size of a	a vector
1178	Retrieve the	size of a vector.	
1179	C Syntax		
1180 1181	Gr	B_Info GrB_Vecto	r_size(GrB_Index *nsize, const GrB_Vector v);
1182	Parameter	S	
1183	n	size (OUT) On suc	cessful return, is set to the size of the vector.
1184		v~(IN) An existin	ng GraphBLAS vector being queried.
1185	Return Va	lues	
1186 1187		GrB_SUCCESS	In blocking or non-blocking mode, the operation completed successfully and the value of nsize has been set.
1188		GrB_PANIC	Unknown internal error.
1189 1190 1191 1192	GrB₋	INVALID_OBJECT.	This is returned in any execution mode whenever one of the opaque GraphBLAS objects (input or output) is in an invalid state caused by a previous execution error. Call GrB_error() to access any error messages generated by the implementation.
1193 1194	GrB_UNINIT	TALIZED_OBJECT	The GraphBLAS vector, $v,$ has not been initialized by a call to ${\sf Vector_new}$ or ${\sf Vector_dup}.$
1195	Gr	B_NULL_POINTER	nsize pointer is NULL.
1196	Description	n	
1197	Return size	(v) in nsize.	

1198 4.2.2.6 Vector_nvals: Number of stored elements in a vector

1199 Retrieve the number of stored elements (tuples) in a vector.

1200	C Syntax	
1201 1202	GrB_Info GrB_Vecto	r_nvals(GrB_Index *nvals, const GrB_Vector v);
1203	Parameters	
1204 1205	nvals (OUT) On suc in the vector.	cessful return, this is set to the number of stored elements (tuples)
1206	v~(IN) An existin	ng GraphBLAS vector being queried.
1207	Return Values	
1208 1209	GrB_SUCCESS	In blocking or non-blocking mode, the operation completed successfully and the value of $nvals$ has been set.
1210	GrB_PANIC	Unknown internal error.
1211 1212 1213 1214	GrB_INVALID_OBJECT	This is returned in any execution mode whenever one of the opaque GraphBLAS objects (input or output) is in an invalid state caused by a previous execution error. Call GrB_error() to access any error messages generated by the implementation.
1215	GrB_OUT_OF_MEMORY	Not enough memory available for operation.
1216 1217	GrB_UNINITIALIZED_OBJECT	The GraphBLAS vector, $v,$ has not been initialized by a call to ${\sf Vector_new}$ or ${\sf Vector_dup}.$
1218	GrB_NULL_POINTER	The nvals pointer is NULL.
1219	Description	
1220 1221	Return $nvals(v)$ in $nvals$. This $L(v)$ (see Section 3.4).	s is the number of stored elements in vector $\boldsymbol{v},$ which is the size of

 $_{1222}$ 4.2.2.7 Vector_build: Store elements from tuples into a vector

1223 C Syntax

1224	GrB_Info GrB_Vector_build(GrB_Vect	or	W,
1225	const Gr	B_Index >	*indices,
1226	const <t< td=""><td>ype> ,</td><td>*values,</td></t<>	ype> ,	*values,
1227	GrB_Inde	x	n,
1228	const Gr	B_BinaryOp	dup);

1229 Parameters

1230	W	(INOUT) An existing Vector object to store the result.
1231	indices	(IN) Pointer to an array of indices.
1232 1233	values	(IN) Pointer to an array of scalars of a type that is compatible with the domain of vector $w.$
1234	n	(IN) The number of entries contained in each array (the same for indices and values).
1235 1236 1237	dup	(IN) An associative and commutative binary operator to apply when duplicate values for the same location are present in the input arrays. All three domains of dup must be the same; hence $dup = \langle D_{dup}, D_{dup}, D_{dup}, \oplus \rangle$.

1239	GrB_SUCCESS	In blocking mode, the operation completed successfully. In non-
1240		blocking mode, this indicates that the API checks for the input
1241		arguments passed successfully. Either way, output vector w is ready
1242		to be used in the next method of the sequence.
1243	GrB_PANIC	Unknown internal error.
1244	GrB_INVALID_OBJECT	This is returned in any execution mode whenever one of the opaque
1245		GraphBLAS objects (input or output) is in an invalid state caused
1246		by a previous execution error. Call $GrB_error()$ to access any error
1247		messages generated by the implementation.
1248	GrB_OUT_OF_MEMORY	Not enough memory available for operation.
1249	GrB_UNINITIALIZED_OBJECT	Either w has not been initialized by a call to by GrB_Vector_new or
1250		by GrB_Vector_dup, or dup has not been initialized by a call to by
1251		GrB_BinaryOp_new.
1252	GrB_NULL_POINTER	indices or values pointer is NULL.
1253	GrB_INDEX_OUT_OF_BOUNDS	A value in $indices$ is outside the allowed range for $w.$
1254	GrB_DOMAIN_MISMATCH	Either the domains of the GraphBLAS binary operator dup are not
1255		all the same, or the domains of values and w are incompatible with
1256		each other or D_{dup} .
		-
1257	GrB_OUTPUT_NOT_EMPTY	Output vector ${\sf w}$ already contains valid tuples (elements). In other
1258		words, GrB_Vector_nvals(C) returns a positive value.

1260 An internal vector $\widetilde{\mathbf{w}} = \langle D_{dup}, \mathbf{size}(\mathbf{w}), \emptyset \rangle$ is created, which only differs from w in its domain.

Each tuple {indices[k], values[k]}, where $0 \le k < n$, is a contribution to the output in the form of

$$\widetilde{\mathbf{w}}(\mathsf{indices}[\mathsf{k}]) = (D_{dup}) \,\mathsf{values}[\mathsf{k}].$$

If multiple values for the same location are present in the input arrays, the dup binary operand is used to reduce them before assignment into $\tilde{\mathbf{w}}$ as follows:

1264
$$\widetilde{\mathbf{w}}_i = \bigoplus_{k: \text{ indices}[k]=i} (D_{dup}) \text{ values}[k],$$

where \oplus is the dup binary operator. Finally, the resulting $\tilde{\mathbf{w}}$ is copied into w via typecasting its values to $\mathbf{D}(w)$ if necessary. If \oplus is not associative or not commutative, the result is undefined.

 $_{1267}$ The nonopaque input arrays, indices and values, must be at least as large as n.

It is an error to call this function on an output object with existing elements. In other words, GrB_Vector_nvals(w) should evaluate to zero prior to calling this function.

After GrB_Vector_build returns, it is safe for a programmer to modify or delete the arrays indices or values.

1272 4.2.2.8 Vector_setElement: Set a single element in a vector

1273 Set one element of a vector to a given value.

1274 C Syntax

1275	GrB_Info GrB_Vector_setElement	(GrB_Vector	w,
1276		<type></type>	val,
1277		GrB_Index	<pre>index);</pre>

1278 Parameters

1279	w (INOUT) An existing GraphBLAS vector for which an element is to be assigned.
1280	val (IN) Scalar value to assign. The type must be compatible with the domain of $w.$
1281	index (IN) The location of the element to be assigned.

1282 Return Values

1283	GrB_SUCCESS	In blocking mode, the operation completed successfully. In non-
1284		blocking mode, this indicates that the compatibility tests on in-
1285		dex/dimensions and domains for the input arguments passed suc-
1286		cessfully. Either way, the output vector \boldsymbol{w} is ready to be used in
1287		the next method of the sequence.
1288	GrB_PANIC	Unknown internal error.
1289	GrB_INVALID_OBJECT	This is returned in any execution mode whenever one of the opaque
1290		GraphBLAS objects (input or output) is in an invalid state caused
1291		by a previous execution error. Call $GrB_error()$ to access any error
1292		messages generated by the implementation.
1293	GrB_OUT_OF_MEMORY	Not enough memory available for operation.
1294	GrB_UNINITIALIZED_OBJECT	The GraphBLAS vector, w, has not been initialized by a call to
1295		Vector_new or Vector_dup.
1296	GrB_INVALID_INDEX	index specifies a location that is outside the dimensions of ${\sf w}.$
1297	GrB DOMAIN MISMATCH	The domains of w and val are incompatible.

1298 Description

First, the scalar and output vector are tested for domain compatibility as follows: D(val) must be compatible with D(w). Two domains are compatible with each other if values from one domain can be cast to values in the other domain as per the rules of the C language. In particular, domains from Table 2.2 are all compatible with each other. A domain from a user-defined type is only compatible with itself. If any compatibility rule above is violated, execution of GrB_Vector_setElement ends and the domain mismatch error listed above is returned.

¹³⁰⁵ Then, the index parameter is checked for a valid value where the following condition must hold:

 $0 \leq index < size(w)$

If this condition is violated, execution of GrB_Vector_extractElement ends and the invalid index error
 listed above is returned.

¹³⁰⁹ We are now ready to carry out the assignment val; that is:

$$w(index) = val$$

If a value existed at this location in w, it will be overwritten; otherwise, and new value is stored inW.

¹³¹³ In GrB_BLOCKING mode, the method exits with return value GrB_SUCCESS and the new contents ¹³¹⁴ of w is as defined above and fully computed. In GrB_NONBLOCKING mode, the method exits with ¹³¹⁵ return value GrB_SUCCESS and the new content of vector w is as defined above but may not be ¹³¹⁶ fully computed; however, it can be used in the next GraphBLAS method call in a sequence.

1317 4.2.2.9 Vector_removeElement: Remove an element from a vector

1318 Remove (annihilate) one stored element from a vector.

1319 C Syntax

1320 GrB_Info GrB_Vector_removeElement(GrB_Vector w, 1321 GrB_Index index);

1322 Parameters

w (INOUT) An existing GraphBLAS vector from which an element is to be removed.
 index (IN) The location of the element to be removed.

1325 Return Values

1326	GrB_SUCCESS	In blocking mode, the operation completed successfully. In non-
1327		blocking mode, this indicates that the compatibility tests on in-
1328		dex/dimensions and domains for the input arguments passed suc-
1329		cessfully. Either way, the output vector \boldsymbol{w} is ready to be used in
1330		the next method of the sequence.
1331	GrB_PANIC	Unknown internal error.
1332	GrB_INVALID_OBJECT	This is returned in any execution mode whenever one of the opaque
1333		GraphBLAS objects (input or output) is in an invalid state caused
1334		by a previous execution error. Call $GrB_error()$ to access any error
1335		messages generated by the implementation.
1336	GrB_OUT_OF_MEMORY	Not enough memory available for operation.
1337	GrB_UNINITIALIZED_OBJECT	The GraphBLAS vector, w, has not been initialized by a call to
1338		Vector_new or Vector_dup.
1339	GrB_INVALID_INDEX	index specifies a location that is outside the dimensions of $w.$

1340 Description

¹³⁴¹ First, the index parameter is checked for a valid value where the following condition must hold:

 $0 \leq index < size(w)$

If this condition is violated, execution of GrB_Vector_removeElement ends and the invalid index error
 listed above is returned.

We are now ready to carry out the removal of a value that may be stored at the location specified by index. If a value does not exist at the specified location in w, no error is reported and the operation has no effect on the state of w. In either case, the following will be true on return from the method: index \notin ind(w).

¹³⁴⁹ In GrB_BLOCKING mode, the method exits with return value GrB_SUCCESS and the new contents ¹³⁵⁰ of w is as defined above and fully computed. In GrB_NONBLOCKING mode, the method exits with ¹³⁵¹ return value GrB_SUCCESS and the new content of vector w is as defined above but may not be ¹³⁵² fully computed; however, it can be used in the next GraphBLAS method call in a sequence.

1353 4.2.2.10 Vector_extractElement: Extract a single element from a vector.

1354 Extract one element of a vector into a scalar.

1355 C Syntax

1356	${\tt GrB_Info}$	GrB_Vector_	extractElement(<type></type>	*val,
1357				const GrB_Vector	u,
1358				GrB_Index	<pre>index);</pre>

index (IN) The location in u to extract.

1359 Parameters

1360	val (INOUT) Pointer to a scalar of type that is compatible with the domain of vector
1361	w. On successful return, this scalar holds the result of the operation. Any previous
1362	value in val is overwritten.
1363	$u~\left(IN\right)$ The GraphBLAS vector from which an element is extracted.

1365 **Return Values**

1364

1366	GrB_SUCCESS	In blocking or non-blocking mode, the operation completed suc- cossfully. This indicates that the compatibility tests on dimensions
1367		and domains for the input arguments passed successfully, and the
1369		output scalar, $val,$ has been computed and is ready to be used in
1370		the next method of the sequence.
1371	GrB_PANIC	Unknown internal error.
1372	GrB_INVALID_OBJECT	This is returned in any execution mode whenever one of the opaque
1373		GraphBLAS objects (input or output) is in an invalid state caused
1374		by a previous execution error. Call GrB_error() to access any error
1375		messages generated by the implementation.
1376	GrB_OUT_OF_MEMORY	Not enough memory available for operation.

1377 1378	GrB_UNINITIALIZED_OBJECT	The GraphBLAS vector, u , has not been initialized by a call to Vector_new or Vector_dup.
1379	GrB_NULL_POINTER	val pointer is NULL.
1380	GrB_NO_VALUE	There is no stored value at specified location.
1381	GrB_INVALID_INDEX	index specifies a location that is outside the dimensions of $w.$
1382	GrB_DOMAIN_MISMATCH	The domains of the vector or scalar are incompatible.

First, the scalar and input vector are tested for domain compatibility as follows: D(val) must be compatible with D(u). Two domains are compatible with each other if values from one domain can be cast to values in the other domain as per the rules of the C language. In particular, domains from Table 2.2 are all compatible with each other. A domain from a user-defined type is only compatible with itself. If any compatibility rule above is violated, execution of GrB_Vector_extractElement ends and the domain mismatch error listed above is returned.

¹³⁹⁰ Then, the index parameter is checked for a valid value where the following condition must hold:

$$0 \leq index < size(u)$$

If this condition is violated, execution of GrB_Vector_extractElement ends and the invalid index error listed above is returned.

¹³⁹⁴ We are now ready to carry out the extract into the output argument, val; that is:

val = u(index)

¹³⁹⁶ where the following condition must be true:

index \in ind(u)

¹³⁹⁸ If this condition is violated, execution of GrB_Vector_extractElement ends and the "no value" error ¹³⁹⁹ listed above is returned.

In both $GrB_BLOCKING$ mode $GrB_NONBLOCKING$ mode if the method exits with return value $GrB_SUCCESS$, the new contents of val are as defined above.

¹⁴⁰² 4.2.2.11 Vector_extractTuples: Extract tuples from a vector

¹⁴⁰³ Extract the contents of a GraphBLAS vector into non-opaque data structures.

1404 C Syntax

1405	GrB_Info GrB_Vecto	r_extractTuples(GrB_In	dex	<pre>*indices,</pre>
1406		<type></type>		*values,
1407		GrB_In	dex	*n,
1408		const	GrB_Vector	v);
1409				
1410	indices (OUT) Pointer	to an array of indices that	is large enough	to hold all of the stored
1411	values' indices			
1412	values (OUT) Pointer	to an array of scalars of a	a type that is larg	ge enough to hold all of
1413	the stored value	es whose type is compatible	le with $\mathbf{D}(\mathbf{v})$.	
1414	n (INOUT) Poin	ter to a value indicating	(on input) the n	umber of elements the
1415	values and ind	ices arrays can hold. Upo	on return, it will	contain the number of
1416	values written	to the arrays.		
1417	$v~({\sf IN})$ An existin	ng GraphBLAS vector.		
1418	Return Values			
1419	GrB_SUCCESS	In blocking or non-blocki	ng mode, the op	eration completed suc-
1420		cessfully. This indicates t	hat the compatib	bility tests on the input
1421		argument passed successful	ully, and the out	put arrays, indices and
1422		values, have been compute	ed.	
1423	GrB_PANIC	Unknown internal error.		
1424	GrB_INVALID_OBJECT	This is returned in any exe	ecution mode whe	never one of the opaque
1425		GraphBLAS objects (inpu	t or output) is in	an invalid state caused
1426		by a previous execution er	ror. Call GrB_err	or() to access any error
1427		messages generated by the	e implementation.	
1428	GrB_OUT_OF_MEMORY	Not enough memory availa	able for operation	1.
1429	GrB_INSUFFICIENT_SPACE	Not enough space in indic	es and values (as	indicated by the \boldsymbol{n} pa-
1430		rameter) to hold all of the	tuples that will	be extacted.
1431	GrB_UNINITIALIZED_OBJECT	The GraphBLAS vector.	v. has not been	initialized by a call to
1432		Vector_new or Vector_dup.)	
1433	GrB_NULL_POINTER	indices, values, or n pointer	r is NULL.	
1434 1435	GrB_DOMAIN_MISMATCH	The domains of the ν vect one another.	or or values array	v are incompatible with

This method will extract all the tuples from the GraphBLAS vector v. The values associated with those tuples are placed in the values array and the indices are placed in the indices array. Both indices and values must be pre-allocated by the user to have enough space to hold at least GrB_Vector_nvals(v) elements before calling this function.

¹⁴⁴¹ Upon return of this function, n will be set to the number of values (and indices) copied. Also, the ¹⁴⁴² entries of indices are unique, but not necessarily sorted. Each tuple (i, v_i) in v is unzipped and ¹⁴⁴³ copied into a distinct kth location in output vectors:

{indices[k], values[k]} $\leftarrow (i, v_i)$,

where $0 \le k < \text{GrB}_\text{Vector_nvals}(v)$. No gaps in output vectors are allowed; that is, if indices[k] and values[k] exist upon return, so does indices[j] and values[j] for all j such that $0 \le j < k$.

Note that if the value in n on input is less than the number of values contained in the vector v, then a GrB_INSUFFICIENT_SPACE error is returned because it is undefined which subset of values would be extracted otherwise.

In both GrB_BLOCKING mode GrB_NONBLOCKING mode if the method exits with return value GrB_SUCCESS, the new contents of the arrays indices and values are as defined above.

1451 4.2.3 Matrix Methods

1452 4.2.3.1 Matrix_new: Create new matrix

¹⁴⁵³ Creates a new matrix with specified domain and dimensions.

1454 C Syntax

1455	${\tt GrB_Info}$	<pre>GrB_Matrix_new(GrB_Matrix</pre>	*A,
1456		GrB_Type	d,
1457		GrB_Index	nrows,
1458		GrB_Index	<pre>ncols);</pre>

1459 Parameters

1460	A (INOUT) On successful return, contains a handle to the newly created GraphBLAS
1461	matrix.
1462	$d\ (IN)$ The type corresponding to the domain of the matrix being created. Can be
1463	one of the predefined GraphBLAS types in Table 2.2, or an existing user-defined
1464	GraphBLAS type.

1465 nrows (IN) The number of rows of the matrix being created.

1466

ncols (IN) The number of columns of the matrix being created.

1467 Return Values

1468 1469 1470 1471	GrB_SUCCESS	In blocking mode, the operation completed successfully. In non- blocking mode, this indicates that the API checks for the input ar- guments passed successfully. Either way, output matrix A is ready to be used in the next method of the sequence.
1472	GrB_PANIC	Unknown internal error.
1473 1474 1475 1476	GrB_INVALID_OBJECT	This is returned in any execution mode whenever one of the opaque GraphBLAS objects (input or output) is in an invalid state caused by a previous execution error. Call GrB_error() to access any error messages generated by the implementation.
1477	GrB_OUT_OF_MEMORY	Not enough memory available for operation.
1478 1479	GrB_UNINITIALIZED_OBJECT	The GrB_Type object has not been initialized by a call to GrB_Type_new (needed for user-defined types).
1480	GrB_NULL_POINTER	The A pointer is NULL.
1481	GrB_INVALID_VALUE	nrows or ncols is zero.

1482 Description

¹⁴⁸³ Creates a new matrix **A** of domain D(d), size nrows \times ncols, and empty L(A). The method returns ¹⁴⁸⁴ a handle to the new matrix in A.

1485 It is not an error to call this method more than once on the same variable; however, the handle to1486 the previously created object will be overwritten.

1487 4.2.3.2 Matrix_dup: Create a copy of a GraphBLAS matrix

1488 Creates a new matrix with the same domain, dimensions, and contents as another matrix.

1489 C Syntax

```
1490GrB_Info GrB_Matrix_dup(GrB_Matrix *C,1491const GrB_Matrix A);
```

1492 Parameters

¹⁴⁹³ C (INOUT) On successful return, contains a handle to the newly created GraphBLAS
 ¹⁴⁹⁴ matrix.

1495

A (IN) The GraphBLAS matrix to be duplicated.

1496 Return Values

1497 1498 1499 1500	GrB_SUCCESS	In blocking mode, the operation completed successfully. In non- blocking mode, this indicates that the API checks for the input arguments passed successfully. Either way, output matrix C is ready to be used in the next method of the sequence.
1501	GrB_PANIC	Unknown internal error.
1502 1503 1504 1505	GrB_INVALID_OBJECT	This is returned in any execution mode whenever one of the opaque GraphBLAS objects (input or output) is in an invalid state caused by a previous execution error. Call GrB_error() to access any error messages generated by the implementation.
1506	GrB_OUT_OF_MEMORY	Not enough memory available for operation.
1507 1508	GrB_UNINITIALIZED_OBJECT	The GraphBLAS matrix, A, has not been initialized by a call to Matrix_new or Matrix_dup.
1509	GrB_NULL_POINTER	The C pointer is NULL.

1510 Description

¹⁵¹¹ Creates a new matrix **C** of domain $\mathbf{D}(A)$, size $\mathbf{nrows}(A) \times \mathbf{ncols}(A)$, and contents $\mathbf{L}(A)$. It returns ¹⁵¹² a handle to it in C.

It is not an error to call this method more than once on the same variable; however, the handle tothe previously created object will be overwritten.

1515 4.2.3.3 Matrix_resize: Resize a matrix

¹⁵¹⁶ Changes the dimensions of an existing matrix.

1517 C Syntax

1518	GrB_Info	GrB_Matrix_resize(GrB_Matrix	С,
1519			GrB_Index	nrows,
1520			GrB_Index	<pre>ncols);</pre>

1521 Parameters

¹⁵²² C (INOUT) An existing Matrix object that is being resized.

1523	nrows (IN) The new number of rows of the matrix. It can be smaller or larger than the
1524	current number of rows.
	node (IN) The many much an effective of the matrice. It can be another an lemma them

1525	ncols	(IN) The new	number of	columns	of the	matrix.	It can	be smal	ler or	larger	than
1526		the current n	umber of co	olumns.							

1527 Return Values

1528	GrB_SUCCESS	In blocking mode, the operation completed successfully. In non-
1529		blocking mode, this indicates that the API checks for the input
1530		arguments passed successfully. Either way, output matrix ${\sf C}$ is ready
1531		to be used in the next method of the sequence.
1532	GrB_PANIC	Unknown internal error.
1533	GrB_INVALID_OBJECT	This is returned in any execution mode whenever one of the opaque
1534		GraphBLAS objects (input or output) is in an invalid state caused
1535		by a previous execution error. Call $GrB_error()$ to access any error
1536		messages generated by the implementation.
1537	GrB_OUT_OF_MEMORY	Not enough memory available for operation.
1538	GrB_NULL_POINTER	The C pointer is NULL.
1539	GrB_INVALID_VALUE	nrows or ncols is zero.

1540 Description

¹⁵⁴¹ Changes the number of rows and columns of C to nrows and ncols, respectively. The domain D(C)¹⁵⁴² of matrix C remains the same. The contents L(C) are modified as described below.

Let $C = \langle D(C), M, N, L(C) \rangle$ when the method is called. When the method returns C is modified to $C = \langle D(C), nrows, ncols, L'(C) \rangle$ where $L'(C) = \{(i, j, C_{ij}) : (i, j, C_{ij}) \in L(C) \land (i < nrows) \land (j < ncols)\}$. That is, all elements of C with row index greater than or equal to nrows or column index greater than or equal to ncols are dropped.

1547 4.2.3.4 Matrix_clear: Clear a matrix

1548 Removes all elements (tuples) from a matrix.

1549 C Syntax

1550 GrB_Info GrB_Matrix_clear(GrB_Matrix A);

1551 Parameters

1552	4	(IN)	An	exising	GraphBLAS	matrix to	o clear.
------	---	------	----	---------	-----------	-----------	----------

1553 Return Values

1554	GrB_SUCCESS	In blocking mode, the operation completed successfully. In non-
1555		blocking mode, this indicates that the API checks for the input ar-
1556		guments passed successfully. Either way, output matrix ${\sf A}$ is ready
1557		to be used in the next method of the sequence.
1558	GrB_PANIC	Unknown internal error.
1559	GrB_INVALID_OBJECT	This is returned in any execution mode whenever one of the opaque
1560		GraphBLAS objects (input or output) is in an invalid state caused
1561		by a previous execution error. Call $GrB_error()$ to access any error
1562		messages generated by the implementation.
1563	GrB_OUT_OF_MEMORY	Not enough memory available for operation.
1564	GrB_UNINITIALIZED_OBJECT	The GraphBLAS matrix, *A, has not been initialized by a call to
1565		Matrix_new or Matrix_dup.

1566 Description

Removes all elements (tuples) from an existing matrix. After the call to $GrB_Matrix_Clear(A)$, L(A) = \emptyset . The dimensions of the matrix do not change.

1569 4.2.3.5 Matrix_nrows: Number of rows in a matrix

1570 Retrieve the number of rows in a matrix.

1571 C Syntax

1572	GrB_Info GrB_Matrix_nrows(GrB_Index	*nrows,
1573	const GrB_Matrix	A);

1574 Parameters

1575	$nrows\ (OUT)$ On successful return, contains the number of rows in the matrix.
1576	A (IN) An existing GraphBLAS matrix being queried.

1578 1579	GrB_SUCCESS	In blocking or non-blocking mode, the operation completed successfully and the value of nrows has been set.
1580	GrB_PANIC	Unknown internal error.
1581 1582 1583 1584	GrB_INVALID_OBJECT	This is returned in any execution mode whenever one of the opaque GraphBLAS objects (input or output) is in an invalid state caused by a previous execution error. Call GrB_error() to access any error messages generated by the implementation.
1585 1586	GrB_UNINITIALIZED_OBJECT	The GraphBLAS matrix, $A,\ has not been initialized by a call to Matrix_new or Matrix_dup.$
1587	GrB_NULL_POINTER	nrows pointer is NULL.
1588	Description	
1589	Return $\mathbf{nrows}(A)$ in \mathbf{nrows} (the	e number of rows).
1590	4.2.3.6 Matrix_ncols: Numb	er of columns in a matrix
1591	Retrieve the number of column	s in a matrix.
1592	C Syntax	
1593 1594	GrB_Info GrB_Matri	x_ncols(GrB_Index *ncols, const GrB_Matrix A);
1595	Parameters	
1596	ncols (OUT) On such	cessful return, contains the number of columns in the matrix.
1597	A (IN) An existin	ng GraphBLAS matrix being queried.
1598	Return Values	
1599 1600	GrB_SUCCESS	In blocking or non-blocking mode, the operation completed successfully and the value of ncols has been set.
1601	GrB_PANIC	Unknown internal error.

1602 1603 1604 1605	GrB_INVALID_OBJECT	This is returned in any execution mode whenever one of the opaque GraphBLAS objects (input or output) is in an invalid state caused by a previous execution error. Call GrB_error() to access any error messages generated by the implementation.
1606 1607	GrB_UNINITIALIZED_OBJECT	The GraphBLAS matrix, A, has not been initialized by a call to Matrix_new or Matrix_dup.
1608	GrB_NULL_POINTER	ncols pointer is NULL.
1609	Description	
1610	Return $\mathbf{ncols}(A)$ in \mathbf{ncols} (the n	number of columns).
1611	4.2.3.7 Matrix_nvals: Numb	er of stored elements in a matrix
1612	Retrieve the number of stored	elements (tuples) in a matrix.
1613	C Syntax	
1614 1615	GrB_Info GrB_Matri	x_nvals(GrB_Index *nvals, const GrB_Matrix A);
1616	Parameters	
1617 1618	nvals (OUT) On such the matrix.	cessful return, contains the number of stored elements (tuples) in
1619	A (IN) An existin	ng GraphBLAS matrix being queried.
1620	Return Values	
1621 1622	GrB_SUCCESS	In blocking or non-blocking mode, the operation completed successfully and the value of nvals has been set.
1623	GrB_PANIC	Unknown internal error.
1624 1625 1626 1627	GrB_INVALID_OBJECT	This is returned in any execution mode whenever one of the opaque GraphBLAS objects (input or output) is in an invalid state caused by a previous execution error. Call GrB_error() to access any error messages generated by the implementation.
1628	GrB_OUT_OF_MEMORY	Not enough memory available for operation.

GrB_UNINITIALIZED_OBJECT The GraphBLAS matrix, A, has not been initialized by a call to
 Matrix_new or Matrix_dup.

1631 GrB_NULL_POINTER The nvals pointer is NULL.

1632 Description

Return nvals(A) in nvals. This is the number of tuples stored in matrix A, which is the size of L(A) (see Section 3.5).

1635 4.2.3.8 Matrix_build: Store elements from tuples into a matrix

1636 C Syntax

GrB_Info GrB_Matrix_build(GrB_Matrix	С,
const GrB_Index	<pre>*row_indices,</pre>
const GrB_Index	*col_indices,
const <type></type>	*values,
GrB_Index	n,
const GrB_BinaryOp	dup);

1637 Parameters

1638	C	(INOUT) An existing Matrix object to store the result.
1639	row_indices	(IN) Pointer to an array of row indices.
1640	col_indices	(IN) Pointer to an array of column indices.
1641 1642	values	(IN) Pointer to an array of scalars of a type that is compatible with the domain of matrix, $C.$
1643 1644	n	(IN) The number of entries contained in each array (the same for <code>row_indices</code> , <code>col_indices</code> , and <code>values</code>).
1645 1646 1647	dup	(IN) An associative and commutative binary function to apply when duplicate values for the same location are present in the input arrays. All three domains of dup must be the same; hence $dup = \langle D_{dup}, D_{dup}, D_{dup}, \oplus \rangle$.

1649	GrB_SUCCESS In blocking mode, the operation completed successfully. In non-	
1650	blocking mode, this indicates that the API checks for the input	
1651	arguments passed successfully. Either way, output matrix C is ready	
1652	to be used in the next method of the sequence.	
1653	GrB_PANIC	Unknown internal error.
------------------------------	--------------------------	---
1654 1655 1656 1657	GrB_INVALID_OBJECT	This is returned in any execution mode whenever one of the opaque GraphBLAS objects (input or output) is in an invalid state caused by a previous execution error. Call GrB_error() to access any error messages generated by the implementation.
1658	GrB_OUT_OF_MEMORY	Not enough memory available for operation.
1659 1660 1661	GrB_UNINITIALIZED_OBJECT	Either C has not been initialized by a call to by GrB_Matrix_new or by GrB_Matrix_dup , or dup has not been initialized by a call to by $GrB_BinaryOp_new$.
1662	GrB_NULL_POINTER	row_indices, col_indices or values $pointer$ is NULL.
1663 1664	GrB_INDEX_OUT_OF_BOUNDS	A value in $row_indices$ or $col_indices$ is outside the allowed range for C.
1665 1666 1667	GrB_DOMAIN_MISMATCH	Either the domains of the GraphBLAS binary operator dup are not all the same, or the domains of values and C are incompatible with each other or D_{dup} .
1668 1669	GrB_OUTPUT_NOT_EMPTY	Output matrix C already contains valid tuples (elements). In other words, $\mbox{GrB}_Matrix_nvals(C)$ returns a positive value.

¹⁶⁷¹ An internal matrix $\tilde{\mathbf{C}} = \langle D_{dup}, \mathbf{nrows}(\mathsf{C}), \mathbf{ncols}(\mathsf{C}), \emptyset \rangle$ is created, which only differs from C in its ¹⁶⁷² domain.

Each tuple {row_indices[k], col_indices[k], values[k]}, where $0 \le k < n$, is a contribution to the output in the form of

 $\widetilde{\mathbf{C}}(\mathsf{row_indices}[k], \mathsf{col_indices}[k]) = (D_{dup}) \mathsf{values}[k].$

If multiple values for the same location are present in the input arrays, the dup binary operand is used to reduce them before assignment into \widetilde{C} as follows:

1677
$$\widetilde{\mathbf{C}}_{ij} = \bigoplus_{k: \, \mathsf{row_indices}[k]=i \, \land \, \mathsf{col_indices}[k]=j} (D_{dup}) \, \mathsf{values}[k],$$

where \oplus is the dup binary operator. Finally, the resulting \tilde{C} is copied into C via typecasting its values to D(C) if necessary. If \oplus is not associative or not commutative, the result is undefined.

 $_{1680}$ The nonopaque input arrays row_indices, col_indices, and values must be at least as large as n.

It is an error to call this function on an output object with existing elements. In other words, $GrB_Matrix_nvals(C)$ should evaluate to zero prior to calling this function.

¹⁶⁸³ After GrB_Matrix_build returns, it is safe for a programmer to modify or delete the arrays row_indices, ¹⁶⁸⁴ col_indices, or values.

1685 4.2.3.9 Matrix_setElement: Set a single element in matrix

1686 Set one element of a matrix to a given value.

1687 C Syntax

1688	GrB_Info	<pre>GrB_Matrix_setElement(GrB_Matrix</pre>	С,
1689		<type></type>	val,
1690		GrB_Index	row_index,
1691		GrB_Index	<pre>col_index);</pre>

1692 Parameters

1693	C (INOUT) An existing GraphBLAS matrix for which an element is to be assigned.
1694	val~(IN) Scalar value to assign. The type must be compatible with the domain of $C.$
1695	row_index (IN) Row index of element to be assigned
1696	col_index (IN) Column index of element to be assigned

1697 Return Values

1698	GrB_SUCCESS	In blocking mode, the operation completed successfully. In non-
1699		blocking mode, this indicates that the compatibility tests on in-
1700		dex/dimensions and domains for the input arguments passed suc-
1701		cessfully. Either way, the output matrix C is ready to be used in
1702		the next method of the sequence.
1703	GrB_PANIC	Unknown internal error.
1704	GrB_INVALID_OBJECT	This is returned in any execution mode whenever one of the opaque
1705		GraphBLAS objects (input or output) is in an invalid state caused
1706		by a previous execution error. Call GrB_error() to access any error
1707		messages generated by the implementation.
1708	GrB_OUT_OF_MEMORY	Not enough memory available for operation.
1709	GrB_UNINITIALIZED_OBJECT	The GraphBLAS matrix, C , has not been initialized by a call to
1710		Matrix_new or Matrix_dup.
1711	GrB_INVALID_INDEX	row_index or col_index is outside the allowable range (i.e., not less
1712		than $\mathbf{nrows}(C)$ or $\mathbf{ncols}(C)$, respectively).
1713	GrB_DOMAIN_MISMATCH	The domains of ${\sf C}$ and ${\sf val}$ are incompatible.

First, the scalar and output matrix are tested for domain compatibility as follows: D(val) must be compatible with D(C). Two domains are compatible with each other if values from one domain can be cast to values in the other domain as per the rules of the C language. In particular, domains from Table 2.2 are all compatible with each other. A domain from a user-defined type is only compatible with itself. If any compatibility rule above is violated, execution of GrB_Matrix_extractElement ends and the domain mismatch error listed above is returned.

¹⁷²¹ Then, both index parameters are checked for valid values where following conditions must hold:

$$\begin{array}{rl} 0 &\leq \mbox{row_index} &< \mbox{nrows}(C), \\ 0 &\leq \mbox{col_index} &< \mbox{ncols}(C) \end{array}$$

¹⁷²³ If either of these conditions is violated, execution of GrB_Matrix_extractElement ends and the invalid ¹⁷²⁴ index error listed above is returned.

¹⁷²⁵ We are now ready to carry out the assignment of val; that is,

$$C(row_index, col_index) = va$$

If a value existed at this location in C, it will be overwritten; otherwise, and new value is stored in C. C.

In GrB_BLOCKING mode, the method exits with return value GrB_SUCCESS and the new contents of C is as defined above and fully computed. In GrB_NONBLOCKING mode, the method exits with return value GrB_SUCCESS and the new content of vector C is as defined above but may not be fully computed; however, it can be used in the next GraphBLAS method call in a sequence.

1733 4.2.3.10 Matrix_removeElement: Remove an element from a matrix

1734 Remove (annihilate) one stored element from a matrix.

1735 C Syntax

1736	GrB_Info GrB_Matrix_removeElement(GrB_Matrix	С,
1737	GrB_Index	row_index,
1738	GrB_Index	<pre>col_index);</pre>

- ¹⁷⁴⁰ C (INOUT) An existing GraphBLAS matrix from which an element is to be removed.
- row_index (IN) Row index of element to be removed
- col_index (IN) Column index of element to be removed

1744	GrB_SUCCESS	In blocking mode, the operation completed successfully. In non-
1745		blocking mode, this indicates that the compatibility tests on in-
1746		$\mathrm{dex}/\mathrm{dimensions}$ and domains for the input arguments passed suc-
1747		cessfully. Either way, the output matrix C is ready to be used in
1748		the next method of the sequence.
1749	GrB_PANIC	Unknown internal error.
1750	GrB_INVALID_OBJECT	This is returned in any execution mode whenever one of the opaque
1751		GraphBLAS objects (input or output) is in an invalid state caused
1752		by a previous execution error. Call $GrB_error()$ to access any error
1753		messages generated by the implementation.
1754	GrB_OUT_OF_MEMORY	Not enough memory available for operation.
1755	GrB_UNINITIALIZED_OBJECT	The GraphBLAS matrix, C, has not been initialized by a call to
1756		Matrix_new or Matrix_dup.
1757	GrB_INVALID_INDEX	$row_index\ \mathrm{or}\ col_index\ \mathrm{is}\ \mathrm{outside}\ \mathrm{the}\ \mathrm{allowable}\ \mathrm{range}\ (\mathrm{i.e.},\ \mathrm{not}\ \mathrm{less}$
1758		than $\mathbf{nrows}(C)$ or $\mathbf{ncols}(C)$, respectively).

¹⁷⁶⁰ First, both index parameters are checked for valid values where following conditions must hold:

	$0 \leq row_index <$	$\mathbf{nrows}(C)$
1761	$0 \leq {\sf col_index} <$	$\mathbf{ncols}(C)$

¹⁷⁶² If either of these conditions is violated, execution of GrB_Matrix_removeElement ends and the invalid ¹⁷⁶³ index error listed above is returned.

We are now ready to carry out the removal of a value that may be stored at the location specified by (row_index, col_index). If a value does not exist at the specified location in C, no error is reported and the operation has no effect on the state of C. In either case, the following will be true on return from this method: (row_index, col_index) \notin ind(C)

In GrB_BLOCKING mode, the method exits with return value GrB_SUCCESS and the new contents of C is as defined above and fully computed. In GrB_NONBLOCKING mode, the method exits with return value GrB_SUCCESS and the new content of vector C is as defined above but may not be fully computed; however, it can be used in the next GraphBLAS method call in a sequence.

1772 4.2.3.11 Matrix_extractElement: Extract a single element from a matrix

1773 Extract one element of a matrix into a scalar.

1774 C Syntax

1775	GrB_Info GrB_Matrix_extractElement	(<type></type>	*val,
1776		const GrB_Matrix	Α,
1777		GrB_Index	row_index,
1778		GrB_Index	<pre>col_index);</pre>
1779			

1780 Parameters

- 1781val (OUT) Pointer to a scalar of type that is compatible with the domain of matrix A.1782On successful return, this scalar holds the result of the operation. Any previous1783value in val is overwritten.
- 1784 A (IN) The GraphBLAS matrix from which an element is extracted.
- 1785 row_index (IN) The row index of location in A to extract.
- ¹⁷⁸⁶ col_index (IN) The column index of location in A to extract.

1787 Return Values

1788 1789 1790 1791 1792	GrB_SUCCESS	In blocking or non-blocking mode, the operation completed successfully. This indicates that the compatibility tests on dimensions and domains for the input arguments passed successfully, and the output scalar, val, has been computed and is ready to be used in the next method of the sequence.
1793	GrB_PANIC	Unknown internal error.
1794 1795 1796 1797	GrB_INVALID_OBJECT	This is returned in any execution mode whenever one of the opaque GraphBLAS objects (input or output) is in an invalid state caused by a previous execution error. Call GrB_error() to access any error messages generated by the implementation.
1798	GrB_OUT_OF_MEMORY	Not enough memory available for operation.
1799 1800	GrB_UNINITIALIZED_OBJECT	The GraphBLAS matrix, $A,\ has not been initialized by a call to Matrix_new or Matrix_dup.$
1801	GrB_NULL_POINTER	val pointer is NULL.
1802	GrB_NO_VALUE	There is no stored value at specified location.
1803 1804 1805	GrB_INVALID_INDEX	row_index or col_index is outside the allowable range (i.e. less than zero or greater than or equal to $\mathbf{nrows}(A)$ or $\mathbf{ncols}(A)$, respectively).
1806	GrB_DOMAIN_MISMATCH	The domains of the matrix and scalar are incompatible.

First, the scalar and input matrix are tested for domain compatibility as follows: D(val) must be compatible with D(A). Two domains are compatible with each other if values from one domain can be cast to values in the other domain as per the rules of the C language. In particular, domains from Table 2.2 are all compatible with each other. A domain from a user-defined type is only compatible with itself. If any compatibility rule above is violated, execution of GrB_Matrix_extractElement ends and the domain mismatch error listed above is returned.

¹⁸¹⁴ Then, both index parameters are checked for valid values where following conditions must hold:

$$\begin{array}{rl} 0 &\leq \operatorname{row_index} &< \operatorname{nrows}(\mathsf{A}), \\ 0 &\leq \operatorname{col_index} &< \operatorname{ncols}(\mathsf{A}) \end{array}$$

¹⁸¹⁶ If either of these conditions is violated, execution of GrB_Matrix_extractElement ends and the invalid ¹⁸¹⁷ index error listed above is returned.

¹⁸¹⁸ We are now ready to carry out the extract into the output argument, val; that is,

val =
$$A(row_index, col_index)$$

1820 where the following condition must be true:

$$(row_index, col_index) \in ind(A)$$

¹⁸²² If this condition is violated, execution of GrB_Matrix_extractElement ends and the "no value" error ¹⁸²³ listed above is returned.

In both GrB_BLOCKING mode GrB_NONBLOCKING mode if the method exits with return value GrB_SUCCESS, the new contents of val are as defined above.

1826 4.2.3.12 Matrix_extractTuples: Extract tuples from a matrix

1827 Extract the contents of a GraphBLAS matrix into non-opaque data structures.

1828 C Syntax

1829	GrB_Info GrB_Matrix_extractTuples	(GrB_Index	*row_indices,
1830		GrB_Index	*col_indices,
1831		<type></type>	*values,
1832		GrB_Index	*n,
1833		const GrB_Matrix	A);

1834 Parameters

row_indices (OUT) Pointer to an array of row indices that is large enough to hold all of the row indices.

1837	col_indices	(OUT) Pointer to an array of column indices that is large enough to hold all of the column indices
1839	values	(OUT) Pointer to an array of scalars of a type that is large enough to hold all of
1840	n	the stored values whose type is compatible with $\mathbf{D}(\mathbf{A})$. (INOUT) Pointer to a value indicating (in input) the number of elements the values
1842		row_indices, and col_indices arrays can hold. Upon return, it will contain the number of values written to the arrays
1844	A	(IN) An existing GraphBLAS matrix.

1845 Return Values

1846 1847 1848 1849	GrB_SUCCESS	In blocking or non-blocking mode, the operation completed successfully. This indicates that the compatibility tests on the input argument passed successfully, and the output arrays, indices and values, have been computed.
1850	GrB_PANIC	Unknown internal error.
1851 1852 1853 1854	GrB_INVALID_OBJECT	This is returned in any execution mode whenever one of the opaque GraphBLAS objects (input or output) is in an invalid state caused by a previous execution error. Call GrB_error() to access any error messages generated by the implementation.
1855	GrB_OUT_OF_MEMORY	Not enough memory available for operation.
1856 1857	GrB_INSUFFICIENT_SPACE	Not enough space in $row_indices$, $col_indices$, and $values$ (as indicated by the n parameter) to hold all of the tuples that will be extacted.
1858 1859	GrB_UNINITIALIZED_OBJECT	The GraphBLAS matrix, $A,\ has not been initialized by a call to Matrix_new or Matrix_dup.$
1860	GrB_NULL_POINTER	row_indices, col_indices, values or n pointer is NULL.
1861 1862	GrB_DOMAIN_MISMATCH	The domains of the ${\sf A}$ matrix and ${\sf values}$ array are incompatible with one another.

1863 Description

This method will extract all the tuples from the GraphBLAS matrix A. The values associated with those tuples are placed in the values array, the column indices are placed in the col_indices array, and the row indices are placed in the row_indices array. These output arrays are pre-allocated by the user before calling this function such that each output array has enough space to hold at least GrB_Matrix_nvals(A) elements. ¹⁸⁶⁹ Upon return of this function, a pair of {row_indices[k], col_indices[k]} are unique for every valid k, ¹⁸⁷⁰ but they are not required to be sorted in any particular order. Each tuple (i, j, A_{ij}) in A is unzipped ¹⁸⁷¹ and copied into a distinct kth location in output vectors:

{row_indices[k], col_indices[k], values[k]} \leftarrow (i, j, A_{ij}),

where $0 \le k < \text{GrB}_\text{Matrix_nvals}(v)$. No gaps in output vectors are allowed; that is, if row_indices[k], col_indices[k] and values[k] exist upon return, so does row_indices[j], col_indices[j] and values[j] for all isrd j such that $0 \le j < k$.

Note that if the value in n on input is less than the number of values contained in the matrix A, then a GrB_INSUFFICIENT_SPACE error is returned since it is undefined which subset of values would be extracted.

In both GrB_BLOCKING mode GrB_NONBLOCKING mode if the method exits with return value GrB_SUCCESS, the new contents of the arrays row_indices, col_indices and values are as defined above.

1881 4.2.4 Descriptor Methods

The methods in this section create and set values in descriptors. A descriptor is an opaque Graph-BLAS object the values of which are used to modify the behavior of GraphBLAS operations.

1884 4.2.4.1 Descriptor_new: Create new descriptor

1885 Creates a new (empty or default) descriptor.

1886 C Syntax

1887 GrB_Info GrB_Descriptor_new(GrB_Descriptor *desc);

1888 Parameters

desc (INOUT) On successful return, contains a handle to the newly created GraphBLAS
 descriptor.

1891 Return Value

1892	GrB_SUCCESS T	The method completed successfully.
1893	GrB_PANIC u	nknown internal error.
1894	$GrB_OUT_OF_MEMORY$ n	ot enough memory available for operation.
1895	GrB_NULL_POINTER de	esc pointer is NULL.

1897 Creates a new descriptor object and returns a handle to it in desc. A newly created descriptor can
 1898 be populated by calls to Descriptor_set.

1899 It is not an error to call this method more than once on the same variable; however, the handle to 1900 the previously created object will be overwritten.

1901 4.2.4.2 Descriptor_set: Set content of descriptor

¹⁹⁰² Sets the content for a field for an existing descriptor.

1903 C Syntax

1904	GrB_Info GrB_Descriptor_set(GrB_Descriptor	desc,
1905	GrB_Desc_Field	field,
1906	GrB_Desc_Value	<pre>val);</pre>

1907 Parameters

1908	desc (IN) An existing GraphBLAS descriptor to be modified.
1909	field (IN) The field being set.
1910	val (IN) New value for the field being set.

1911 Return Values

1912	GrB_SUCCESS	operation completed successfully.
1913	GrB_PANIC	unknown internal error.
1914	GrB_OUT_OF_MEMORY	not enough memory available for operation.
1915	GrB_UNINITIALIZED_OBJECT	the desc parameter has not been initialized by a call to new.

¹⁹¹⁶ GrB_INVALID_VALUE invalid value set on the field, or invalid field.

1917 Description

1920

For a given descriptor, the GrB_Descriptor_set method can be called for each field in the descriptor to set the value associated with that field. Valid values for the field parameter include the following:

GrB_OUTP refers to the output parameter (result) of the operation.

1921	GrB_MASK refers to the mask parameter of the operation.				
1922	$GrB_{-}INP0$ refers to the first input parameters of the operation (matrices and vectors).				
1923	$GrB_{-}INP1$ refers to the second input parameters of the operation (matrices and vectors).				
1924	Valid values for the val parameter are:				
1925 1926	GrB_STRUCTURE	Use only the structure of the stored values of the corresponding mask ($GrB_-MASK)$ parameter.			
1927 1928 1929	GrB_COMP	Use the complement of the corresponding mask (GrB_MASK) parameter. When combined with $GrB_STRUCTURE$, the complement of the structure of the mask is used without evaluating the values stored.			
1930 1931	GrB_TRAN	Use the transpose of the corresponding matrix parameter (valid for input matrix parameters only).			
1932 1933 1934 1935	GrB_REPLACE	When assigning the masked values to the output matrix or vector, clear the matrix first (or clear the non-masked entries). The default behavior is to leave non-masked locations unchanged. Valid for the GrB_OUTP parameter only.			

Descriptor values can only be set, and once set, cannot be cleared. As, in the case of GrB_MASK,
multiple values can be set and all will apply (for example, both GrB_COMP and GrB_STRUCTURE).
A value for a given field may be set multiple times but will have no additional effect. Fields that
have no values set result in their default behavior, as defined in Section 3.7.

$_{1940}$ 4.2.5 free method

¹⁹⁴¹ Destroys a previously created GraphBLAS object and releases any resources associated with the ¹⁹⁴² object.

1943 C Syntax

1944 GrB_Info GrB_free(GrB_Object *obj);

1946	obj (INOUT) An existing GraphBLAS object to be destroyed. The object must have
1947	been created by an explicit call to a GraphBLAS constructor. Can be any of the
1948	opaque GraphBLAS objects such as matrix, vector, descriptor, semiring, monoid,
1949	binary op, unary op, or type. On successful completion of GrB_free, obj behaves
1950	as an uninitialized object.

1952	GrB_SUCCESS	operation completed successfully
1953	GrB_PANIC	unknown internal error. If this return value is encountered when
1954		in nonblocking mode, the error responsible for the panic condition
1955		could be from any method involved in the computation of the input
1956		object. The $GrB_error()$ method should be called for additional
1957		information.

GraphBLAS objects consume memory and other resources managed by the GraphBLAS runtime system. A call to GrB_free frees those resources so they are available for use by other GraphBLAS objects.

The parameter passed into GrB_free is a handle referencing a GraphBLAS opaque object of a data type from table 2.1. The object must have been created by an explicit call to a GraphBLAS constructor. The behavior of a program that calls GrB_free on a pre-defined object is implementation defined.

After the GrB_free method returns, the object referenced by the input handle is destroyed and the handle has the value GrB_INVALID_HANDLE. The handle can be used in subsequent GraphBLAS methods but only after the handle has been reinitialized with a call the the appropriate _new or _dup method.

Note that unlike other GraphBLAS methods, calling GrB_free with an object with an invalid handle is legal. The system may attempt to free resources that might be associated with that object, if possible, and return normally.

When using GrB_free it is possible to create a dangling reference to an object. This would occur when a handle is assigned to a second variable of the same opaque type. This creates two handles that reference the same object. If GrB_free is called with one of the variables, the object is destroyed and the handle associated with the other variable no longer references a valid object. This is not an error condition that the implementation of the GraphBLAS API can be expected to catch, hence programmers must take care to prevent this situation from occurring.

¹⁹⁷⁹ 4.3 GraphBLAS Operations

The GraphBLAS operations are defined in the GraphBLAS math specification and summarized in Table 4.1. In addition to methods that implement these fundamental GraphBLAS operations, we support a number of variants that have been found to be especially useful in algorithm development. A flowchart of the overall behavior of a GraphBLAS operation is shown in Figure 4.1. Table 4.1: A mathematical notation for the fundamental GraphBLAS operations supported in this specification. Input matrices **A** and **B** may be optionally transposed (not shown). Use of an optional accumulate with existing values in the output object is indicated with \odot . Use of optional write masks and replace flags are indicated as $\mathbf{C}\langle \mathbf{M}, z \rangle$ when applied to the output matrix, **C**. The mask controls which values resulting from the operation on the right-hand side are written into the output object (complement and structure flags are not shown). The "replace" option, indicated by specifying the z flag, means that all values in the output object are removed prior to assignment. If "replace" is not specifed, only the values/locations computed on the right-hand side and allowed by the mask will be written to the output ("merge" mode).

Operation Name	Math	nema	tical No	tati	on
mxm	$\mathbf{C}\langle \mathbf{M},z angle$	=	С	\odot	$\mathbf{A} \oplus . \otimes \mathbf{B}$
mxv	$\mathbf{w}\langle \mathbf{m},z angle$	=	\mathbf{w}	\odot	$\mathbf{A} \oplus . \otimes \mathbf{u}$
vxm	$\mathbf{w}^T \langle \mathbf{m}^T, z angle$	=	\mathbf{w}^T	\odot	$\mathbf{u}^T \oplus . \otimes \mathbf{A}$
eWiseMult	$\mathbf{C}\langle \mathbf{M},z angle$	=	\mathbf{C}	\odot	$\mathbf{A}\otimes \mathbf{B}$
	$\mathbf{w}\langle \mathbf{m},z angle$	=	\mathbf{w}	\odot	$\mathbf{u}\otimes \mathbf{v}$
eWiseAdd	$\mathbf{C}\langle \mathbf{M},z angle$	=	\mathbf{C}	\odot	$\mathbf{A} \oplus \mathbf{B}$
	$\mathbf{w}\langle \mathbf{m},z angle$	=	\mathbf{w}	\odot	$\mathbf{u} \oplus \mathbf{v}$
extract	$\mathbf{C}\langle \mathbf{M},z angle$	=	\mathbf{C}	\odot	$\mathbf{A}(oldsymbol{i},oldsymbol{j})$
	$\mathbf{w}\langle \mathbf{m},z angle$	=	\mathbf{w}	\odot	$\mathbf{u}(oldsymbol{i})$
assign	$\mathbf{C} \langle \mathbf{M}, z angle (oldsymbol{i}, oldsymbol{j})$	=	$\mathbf{C}(oldsymbol{i},oldsymbol{j})$	\odot	Α
	$\mathbf{w} \langle \mathbf{m}, z angle (oldsymbol{i})$	=	$\mathbf{w}(oldsymbol{i})$	\odot	u
reduce (row)	$\mathbf{w}\langle \mathbf{m},z angle$	=	\mathbf{w}	\odot	$[\oplus_j \mathbf{A}(:,j)]$
reduce (scalar)	s	=	s	\odot	$[\oplus_{i,j}\mathbf{A}(i,j)]$
	s	=	s	\odot	$[\oplus_i \mathbf{u}(i)]$
apply	$\mathbf{C}\langle \mathbf{M},z angle$	=	\mathbf{C}	\odot	$f_u(\mathbf{A})$
	$\mathbf{w}\langle \mathbf{m},z angle$	=	\mathbf{w}	\odot	$f_u(\mathbf{u})$
transpose	$\mathbf{C}\langle \mathbf{M},z angle$	=	\mathbf{C}	\odot	\mathbf{A}^T
kronecker	$\mathbf{C}\langle \mathbf{M},z angle$	=	\mathbf{C}	\odot	$\mathbf{A} \otimes \mathbf{B}$
	•				

1984 Domains and Casting

A GraphBLAS operation is only valid when the domains of the GraphBLAS objects are mathemat-1985 ically consistent. The C programming language defines implicit casts between built-in data types. 1986 For example, floats, doubles, and ints can be freely mixed according to the rules defined for implicit 1987 casts. It is the responsibility of the user to assure that these casts are appropriate for the algorithm 1988 in question. For example, a cast to int implies truncation of a floating point type. Depending on 1989 the operation, this truncation error could lead to erroneous results. Furthermore, casting a wider 1990 type onto a narrower type can lead to overflow errors. The GraphBLAS operations do not attempt 1991 to protect a user from these sorts of errors. 1992

When user-define types are involved, however, GraphBLAS requires strict equivalence between types and no casting is supported. If GraphBLAS detects these mismatches, it will return a domain mismatch error.

Figure 4.1: Flowchart for the GraphBLAS operations. Although shown specifically for the mxm operation, many elements are common to all operations: such as the "ACCUM" and "MASK and REPLACE" blocks. The triple arrows (\Rightarrow) denote where "as if copy" takes place (including both collections and descriptor settings). The bold, dotted arrows indicate where casting may occur between different domains.

1996 Dimensions and Transposes

GraphBLAS operations also make assumptions about the numbers of dimensions and the sizes of vectors and matrices in an operation. An operation will test these sizes and report an error if they are not *shape compatible*. For example, when multiplying two matrices, $\mathbf{C} = \mathbf{A} \times \mathbf{B}$, the number of rows of \mathbf{C} must equal the number of rows of \mathbf{A} , the number of columns of \mathbf{A} must match the number of rows of \mathbf{B} , and the number of columns of \mathbf{C} must match the number of columns of \mathbf{B} . This is the behavior expected given the mathematical definition of the operations.

For most of the GraphBLAS operations involving matrices, an optional descriptor can modify the matrix associated with an input GraphBLAS matrix object. For example, if an input matrix is an argument to a GraphBLAS operation and the associated descriptor indicates the transpose option, then the operation occurs as if on the transposed matrix. In this case, the relationships between the sizes in each dimension shift in the mathematically expected way.

2008 Masks: Structure-only, Complement, and Replace

When a GraphBLAS operation supports the use of an optional mask, that mask is specified through 2009 a GraphBLAS vector (for one-dimensional masks) or a GraphBLAS matrix (for two-dimensional 2010 masks). When a mask is used and the GrB_STRUCTURE descriptor value is not set, it is applied 2011 to the result from the operation wherever the stored values in the mask evaluate to true. If the 2012 GrB_STRUCTURE descriptor is set, the mask is applied to the result from the operation wherever the 2013 mask as a stored value (regardless of that value). Wherever the mask is applied, the result from 2014 the operation is either assigned to the provided output matrix/vector or, if a binary accumulation 2015 operation is provided, the result is accumulated into the corresponding elements of the provided 2016 output matrix/vector. 2017

Given a GraphBLAS vector $\mathbf{v} = \langle D, N, \{(i, v_i)\}\rangle$, a one-dimensional mask is derived for use in the operation as follows:

2020

$$\mathbf{m} = \begin{cases} \langle N, \{ \mathbf{ind}(\mathbf{v}) \} \rangle, & \text{if } \mathbf{GrB}_{\mathbf{STRUCTURE}} \text{ is specified}, \\ \langle N, \{ i : (\mathsf{bool}) v_i = \mathsf{true} \} \rangle, & \text{otherwise} \end{cases}$$

where (bool) v_i denotes casting the value v_i to a Boolean value (true or false). Likewise, given a GraphBLAS matrix $\mathbf{A} = \langle D, M, N, \{(i, j, A_{ij})\}\rangle$, a two-dimensional mask is derived for use in the operation as follows:

2024

$$\mathbf{M} = \begin{cases} \langle M, N, \{ \mathbf{ind}(\mathbf{A}) \} \rangle, & \text{if GrB_STRUCTURE is specified,} \\ \langle M, N, \{ (i, j) : (bool) A_{ij} = true \} \rangle, & \text{otherwise} \end{cases}$$

where (bool) A_{ij} denotes casting the value A_{ij} to a Boolean value. (true or false)

In both the one- and two-dimensional cases, the mask may also have a subsequent complement operation applied (*Section* 3.6) as specified in the descriptor, before a final mask is generated for use in the operation.

When the descriptor of an operation with a mask has specified that the GrB_REPLACE value is to be applied to the output (GrB_OUTP), then anywhere the mask is not true, the corresponding location in the output is cleared.

2032 Invalid and uninitialized objects

²⁰³³ Upon entering a GraphBLAS operation, the first step is a check that all objects are valid and ini-²⁰³⁴ tialized. (Optional parameters can be set to GrB_NULL, which always counts as a valid object.) An ²⁰³⁵ invalid object is one that could not be computed due to a previous execution error. An unitialized ²⁰³⁶ object is one that has not yet been created by a corresponding new or dup method. Appropriate ²⁰³⁷ error codes are returned if an object is not initialized (GrB_UNINITIALIZED_OBJECT) or invalid ²⁰³⁸ (GrB_INVALID_OBJECT).

To support the detection of as many cases of uninitialized objects as possible, it is strongly recommended to initialize all GraphBLAS objects to the predefined value GrB_INVALID_HANDLE at the point of their declaration, as shown in the following examples:

2042	GrB_Type	<pre>type = GrB_INVALID_HANDLE;</pre>
2043	GrB_Semiring	<pre>semiring = GrB_INVALID_HANDLE;</pre>
2044	GrB_Matrix	<pre>matrix = GrB_INVALID_HANDLE;</pre>

2045 Compliance

We follow a *prescriptive* approach to the definition of the semantics of GraphBLAS operations. That is, for each operation we give a recipe for producing its outcome. Any implementation that produces the same outcome, and follows the GraphBLAS execution model (Section 2.8) and error model (Section 2.9) is a conforming implementation.

2050 4.3.1 mxm: Matrix-matrix multiply

²⁰⁵¹ Multiplies a matrix with another matrix on a semiring. The result is a matrix.

2052 C Syntax

2053	GrB_Info GrB_mxm(GrB_Matrix	С,
2054	const GrB_Matrix	Mask,
2055	const GrB_BinaryOp	accum,
2056	const GrB_Semiring	op,
2057	const GrB_Matrix	A,
2058	const GrB_Matrix	В,
2059	const GrB_Descriptor	desc);

2061	C (INOUT) An existing GraphBLAS matrix. On input, the matrix provides values
2062	that may be accumulated with the result of the matrix product. On output, the
2063	matrix holds the results of the operation.

2064	Mask (II	N) An optional	"write" mask that co	ntrols which results from this operation are
2065	St	ored into the ou	$\mathbf{C}_{\mathbf{P}} \mathbf{C}_{\mathbf{T}} \mathbf{P} \mathbf{C}_{T$	mask dimensions must match those of the
2066	III of	the Meek meet	SID_SIRUCIURE des	scriptor is <i>not</i> set for the mask, the domain
2067	01 in	Table 2.2 If the	he default maginized	solution any of the predefined built-in types
2068	lli di	$\frac{1}{2} \frac{1}{2} \frac{1}$	CrB NIII I should be	specified
2009	u	$\frac{1}{2}$		e specified.
2070	accum (II	N) An optional	binary operator use	ed for accumulating entries into existing ${\sf C}$
2071	en	tries. If assignment	ment rather than acc	cumulation is desired, GrB_NULL should be
2072	sp	ecified.		
2073	op (ll	N) The semiring	g used in the matrix-	matrix multiply.
2074	A (II	N) The GraphB	LAS matrix holding	the values for the left-hand matrix in the
2075	m	ultiplication.		
		F		
2076	B (II	V) The GraphB	LAS matrix holding	the values for the right-hand matrix in the
2077	m	ultiplication.		
2078	desc (II	N) An optional o	operation descriptor	If a <i>default</i> descriptor is desired GrB NULL
2079	sh	ould be specifie	d. Non-default field/	value pairs are listed as follows:
2080		o dia 50 specific	ar rion actuart nora	tarao pano are nota de tenetro.
	Para	n Field	Value	Description
	C	GrB_OUTP	GrB_REPLACE	Output matrix C is cleared (all elements
				removed) before the result is stored in it.
	Mask	GrB_MASK	GrB_STRUCTURE	The write mask is constructed from the
				structure (pattern of stored values) of the
2081				input Mask matrix. The stored values are
				not examined.
	Mask	GrB_MASK	GrB_COMP	Use the complement of $Mask$.
	А	GrB_INP0	GrB_TRAN	Use transpose of A for the operation.
	В	GrB_INP1	GrB_TRAN	Use transpose of B for the operation.

2082 Return Values

2083	GrB_SUCCESS	In blocking mode, the operation completed successfully. In non-
2084		blocking mode, this indicates that the compatibility tests on di-
2085		mensions and domains for the input arguments passed successfully.
2086		Either way, output matrix ${\sf C}$ is ready to be used in the next method
2087		of the sequence.
2088	GrB_PANIC	Unknown internal error.
2089	GrB_INVALID_OBJECT	This is returned in any execution mode whenever one of the opaque
2090		GraphBLAS objects (input or output) is in an invalid state caused
2091		by a previous execution error. Call $GrB_error()$ to access any error
2092		messages generated by the implementation.

2093	GrB_OUT_OF_MEMORY	Not enough memory available for the operation.
2094 2095	GrB_UNINITIALIZED_OBJECT	One or more of the GraphBLAS objects has not been initialized by a call to new (or Matrix_dup for matrix parameters).
2096	GrB_DIMENSION_MISMATCH	Mask and/or matrix dimensions are incompatible.
2097	GrB_DOMAIN_MISMATCH	The domains of the various matrices are incompatible with the
2098		corresponding domains of the semiring or accumulation operator,
2099		or the mask's domain is not compatible with $bool$ (in the case where
2100		desc[GrB_MASK].GrB_STRUCTURE is not set).

²¹⁰² GrB_mxm computes the matrix product $C = A \oplus . \otimes B$ or, if an optional binary accumulation operator ²¹⁰³ (\odot) is provided, $C = C \odot (A \oplus . \otimes B)$ (where matrices A and B can be optionally transposed). ²¹⁰⁴ Logically, this operation occurs in three steps:

Setup The internal matrices and mask used in the computation are formed and their domains
 and dimensions are tested for compatibility.

2107 **Compute** The indicated computations are carried out.

2108 **Output** The result is written into the output matrix, possibly under control of a mask.

²¹⁰⁹ Up to four argument matrices are used in the GrB₋mxm operation:

1. $C = \langle \mathbf{D}(C), \mathbf{nrows}(C), \mathbf{ncols}(C), \mathbf{L}(C) = \{(i, j, C_{ij})\} \rangle$

2111 2. $\mathsf{Mask} = \langle \mathbf{D}(\mathsf{Mask}), \mathbf{nrows}(\mathsf{Mask}), \mathbf{ncols}(\mathsf{Mask}), \mathbf{L}(\mathsf{Mask}) = \{(i, j, M_{ij})\} \rangle$ (optional)

2112 3. $A = \langle \mathbf{D}(A), \mathbf{nrows}(A), \mathbf{ncols}(A), \mathbf{L}(A) = \{(i, j, A_{ij})\} \rangle$

2113 4. $\mathsf{B} = \langle \mathbf{D}(\mathsf{B}), \mathbf{nrows}(\mathsf{B}), \mathbf{ncols}(\mathsf{B}), \mathbf{L}(\mathsf{B}) = \{(i, j, B_{ij})\} \rangle$

The argument matrices, the semiring, and the accumulation operator (if provided) are tested for domain compatibility as follows:

- If Mask is not GrB_NULL, and desc[GrB_MASK].GrB_STRUCTURE is not set, then D(Mask)
 must be from one of the pre-defined types of Table 2.2.
- 2118 2. $\mathbf{D}(\mathsf{A})$ must be compatible with $\mathbf{D}_{in_1}(\mathsf{op})$ of the semiring.
- 3. D(B) must be compatible with $D_{in_2}(op)$ of the semiring.
- 4. D(C) must be compatible with $D_{out}(op)$ of the semiring.

5. If accum is not GrB_NULL, then D(C) must be compatible with $D_{in_1}(accum)$ and $D_{out}(accum)$ of the accumulation operator and $D_{out}(op)$ of the semiring must be compatible with $D_{in_2}(accum)$ of the accumulation operator.

Two domains are compatible with each other if values from one domain can be cast to values in 2124 the other domain as per the rules of the C language. In particular, domains from Table 2.2 are 2125 all compatible with each other. A domain from a user-defined type is only compatible with itself. 2126 If any compatibility rule above is violated, execution of GrB_mxm ends and the domain mismatch 2127 error listed above is returned. 2128

From the argument matrices, the internal matrices and mask used in the computation are formed 2129 $(\leftarrow \text{denotes copy})$: 2130

1. Matrix $\widetilde{\mathbf{C}} \leftarrow \mathsf{C}$. 2131

2. Two-dimensional mask, $\widetilde{\mathbf{M}}$, is computed from argument Mask as follows: 2132

- 2133 $j < \mathbf{ncols}(\mathsf{C}) \}$. 2134
- (b) If Mask \neq GrB_NULL, 2135
- 2136

2137 2138

i. If desc[GrB_MASK].GrB_STRUCTURE is set, then $\widetilde{\mathbf{M}} = \langle \mathbf{nrows}(\mathsf{Mask}), \mathbf{ncols}(\mathsf{Mask}), \{(i, j) :$ $(i, j) \in \mathbf{ind}(\mathsf{Mask}) \rangle$,

ii. Otherwise,
$$\mathbf{M} = \langle \mathbf{nrows}(\mathsf{Mask}), \mathbf{ncols}(\mathsf{Mask}), \rangle$$

- $\{(i, j) : (i, j) \in \mathbf{ind}(\mathsf{Mask}) \land (\mathsf{bool})\mathsf{Mask}(i, j) = \mathsf{true}\}$. 2139
- (c) If desc[GrB_MASK].GrB_COMP is set, then $\widetilde{\mathbf{M}} \leftarrow \neg \widetilde{\mathbf{M}}$. 2140
- 3. Matrix $\widetilde{\mathbf{A}} \leftarrow \mathsf{desc}[\mathsf{GrB}_\mathsf{INP0}].\mathsf{GrB}_\mathsf{TRAN} ? \mathsf{A}^T : \mathsf{A}$. 2141
- 4. Matrix $\widetilde{\mathbf{B}} \leftarrow \mathsf{desc}[\mathsf{GrB}_\mathsf{INP1}].\mathsf{GrB}_\mathsf{TRAN} ? \mathsf{B}^T : \mathsf{B}.$ 2142

The internal matrices and masks are checked for dimension compatibility. The following conditions 2143 must hold: 2144

- 1. $\operatorname{nrows}(\widetilde{\mathbf{C}}) = \operatorname{nrows}(\widetilde{\mathbf{M}}).$ 2145
- 2. $\mathbf{ncols}(\widetilde{\mathbf{C}}) = \mathbf{ncols}(\widetilde{\mathbf{M}}).$ 2146
- 3. $\operatorname{nrows}(\widetilde{\mathbf{C}}) = \operatorname{nrows}(\widetilde{\mathbf{A}}).$ 2147
- 4. $\operatorname{ncols}(\widetilde{\mathbf{C}}) = \operatorname{ncols}(\widetilde{\mathbf{B}}).$ 2148
- 5. $\operatorname{ncols}(\widetilde{\mathbf{A}}) = \operatorname{nrows}(\widetilde{\mathbf{B}}).$ 2149

If any compatibility rule above is violated, execution of GrB_mxm ends and the dimension mismatch 2150 error listed above is returned. 2151

From this point forward, in GrB_NONBLOCKING mode, the method can optionally exit with 2152 GrB_SUCCESS return code and defer any computation and/or execution error codes. 2153

We are now ready to carry out the matrix multiplication and any additional associated operations. 2154 We describe this in terms of two intermediate matrices: 2155

• $\widetilde{\mathbf{T}}$: The matrix holding the product of matrices $\widetilde{\mathbf{A}}$ and $\widetilde{\mathbf{B}}$. 2156

• $\tilde{\mathbf{Z}}$: The matrix holding the result after application of the (optional) accumulation operator.

The intermediate matrix $\widetilde{\mathbf{T}} = \langle \mathbf{D}_{out}(\mathsf{op}), \mathbf{nrows}(\widetilde{\mathbf{A}}), \mathbf{ncols}(\widetilde{\mathbf{B}}), \{(i, j, T_{ij}) : \mathbf{ind}(\widetilde{\mathbf{A}}(i, :)) \cap \mathbf{ind}(\widetilde{\mathbf{B}}(: , j)) \neq \emptyset \rangle$ is created. The value of each of its elements is computed by

2160
$$T_{ij} = \bigoplus_{k \in \mathbf{ind}(\widetilde{\mathbf{A}}(i,:)) \cap \mathbf{ind}(\widetilde{\mathbf{B}}(:,j))} (\widetilde{\mathbf{A}}(i,k) \otimes \widetilde{\mathbf{B}}(k,j)),$$

where \oplus and \otimes are the additive and multiplicative operators of semiring op, respectively.

The intermediate matrix $\widetilde{\mathbf{Z}}$ is created as follows, using what is called a *standard matrix accumulate*:

• If accum = GrB_NULL, then $\widetilde{\mathbf{Z}} = \widetilde{\mathbf{T}}$.

• If accum is a binary operator, then $\widetilde{\mathbf{Z}}$ is defined as

2179

 $\widetilde{\mathbf{Z}} = \langle \mathbf{D}_{out}(\mathsf{accum}), \mathbf{nrows}(\widetilde{\mathbf{C}}), \mathbf{ncols}(\widetilde{\mathbf{C}}), \{(i, j, Z_{ij}) \forall (i, j) \in \mathbf{ind}(\widetilde{\mathbf{C}}) \cup \mathbf{ind}(\widetilde{\mathbf{T}}) \} \rangle.$

The values of the elements of $\widetilde{\mathbf{Z}}$ are computed based on the relationships between the sets of indices in $\widetilde{\mathbf{C}}$ and $\widetilde{\mathbf{T}}$.

 $\begin{aligned} Z_{ij} &= \widetilde{\mathbf{C}}(i,j) \odot \widetilde{\mathbf{T}}(i,j), \text{ if } (i,j) \in (\mathbf{ind}(\widetilde{\mathbf{T}}) \cap \mathbf{ind}(\widetilde{\mathbf{C}})), \\ Z_{ij} &= \widetilde{\mathbf{C}}(i,j), \text{ if } (i,j) \in (\mathbf{ind}(\widetilde{\mathbf{C}}) - (\mathbf{ind}(\widetilde{\mathbf{T}}) \cap \mathbf{ind}(\widetilde{\mathbf{C}}))), \\ Z_{ij} &= \widetilde{\mathbf{T}}(i,j), \text{ if } (i,j) \in (\mathbf{ind}(\widetilde{\mathbf{T}}) - (\mathbf{ind}(\widetilde{\mathbf{T}}) \cap \mathbf{ind}(\widetilde{\mathbf{C}}))), \\ Z_{ij} &= \widetilde{\mathbf{T}}(i,j), \text{ if } (i,j) \in (\mathbf{ind}(\widetilde{\mathbf{T}}) - (\mathbf{ind}(\widetilde{\mathbf{T}}) \cap \mathbf{ind}(\widetilde{\mathbf{C}}))), \end{aligned}$

where
$$\odot = \bigcirc(\mathsf{accum})$$
, and the difference operator refers to set difference.

Finally, the set of output values that make up matrix $\tilde{\mathbf{Z}}$ are written into the final result matrix C, using what is called a *standard matrix mask and replace*. This is carried out under control of the mask which acts as a "write mask".

• If desc[GrB_OUTP].GrB_REPLACE is set, then any values in C on input to this operation are deleted and the content of the new output matrix, C, is defined as,

$$\mathbf{L}(\mathsf{C}) = \{(i, j, Z_{ij}) : (i, j) \in (\mathbf{ind}(\mathbf{Z}) \cap \mathbf{ind}(\mathbf{M}))\}.$$

• If desc[GrB_OUTP].GrB_REPLACE is not set, the elements of $\widetilde{\mathbf{Z}}$ indicated by the mask are copied into the result matrix, C, and elements of C that fall outside the set indicated by the mask are unchanged:

$$\mathbf{L}(\mathsf{C}) = \{(i, j, C_{ij}) : (i, j) \in (\mathbf{ind}(\mathsf{C}) \cap \mathbf{ind}(\neg \widetilde{\mathbf{M}}))\} \cup \{(i, j, Z_{ij}) : (i, j) \in (\mathbf{ind}(\widetilde{\mathbf{Z}}) \cap \mathbf{ind}(\widetilde{\mathbf{M}}))\}.$$

In GrB_BLOCKING mode, the method exits with return value GrB_SUCCESS and the new content of matrix C is as defined above and fully computed. In GrB_NONBLOCKING mode, the method exits with return value GrB_SUCCESS and the new content of matrix C is as defined above but may not be fully computed. However, it can be used in the next GraphBLAS method call in a sequence.

2189 4.3.2 vxm: Vector-matrix multiply

2190 Multiplies a (row) vector with a matrix on an semiring. The result is a vector.

2191 C Syntax

2192	GrB_Info GrB_vxm(GrB_V	ector	W,
2193	const	GrB_Vector	mask,
2194	const	GrB_BinaryOp	accum,
2195	const	GrB_Semiring	op,
2196	const	GrB_Vector	u,
2197	const	GrB_Matrix	A,
2198	const	GrB_Descriptor	desc);

2200	W	(INOUT) An existing GraphBLAS vector. On input, the vector provides values
2201		that may be accumulated with the result of the vector-matrix product. On output,
2202		this vector holds the results of the operation.
2203	mask	(IN) An optional "write" mask that controls which results from this operation are
2204		stored into the output vector w. The mask dimensions must match those of the
2205		vector w. If the $GrB_STRUCTURE$ descriptor is <i>not</i> set for the mask, the domain
2206		of the mask vector must be of type bool or any of the predefined "built-in" types
2207		in Table 2.2. If the default mask is desired (i.e., a mask that is all true with the
2208		dimensions of w), GrB_NULL should be specified.
2209	accum	(IN) An optional binary operator used for accumulating entries into existing w
2210		entries. If assignment rather than accumulation is desired, GrB_NULL should be
2211		specified.
2212	ор	(IN) Semiring used in the vector-matrix multiply.
2213	u	(IN) The GraphBLAS vector holding the values for the left-hand vector in the
2214	_	multiplication.
		•
2215	А	(IN) The GraphBLAS matrix holding the values for the right-hand matrix in the
2216		multiplication.
2217	desc	(IN) An optional operation descriptor. If a <i>default</i> descriptor is desired, GrB NULL
2218		should be specified. Non-default field/value pairs are listed as follows:
2219		

	Param	Field	Value	Description
	W	GrB_OUTP	GrB_REPLACE	Output vector w is cleared (all elements
				removed) before the result is stored in it.
	mask	GrB_MASK	GrB_STRUCTURE	The write mask is constructed from the
2220				structure (pattern of stored values) of the
				input mask vector. The stored values are
				not examined.
	mask	GrB_MASK	GrB_COMP	Use the complement of mask.
	А	GrB_INP1	GrB_TRAN	Use transpose of A for the operation.

2221 Return Values

2222	GrB_SUCCESS	In blocking mode, the operation completed successfully. In non-
2223		blocking mode, this indicates that the compatibility tests on di-
2224		mensions and domains for the input arguments passed successfully.
2225		Either way, output vector w is ready to be used in the next method
2226		of the sequence.
2227	GrB_PANIC	Unknown internal error.
2228	GrB_INVALID_OBJECT	This is returned in any execution mode whenever one of the opaque
2229		GraphBLAS objects (input or output) is in an invalid state caused
2230		by a previous execution error. Call $GrB_error()$ to access any error
2231		messages generated by the implementation.
2232	GrB_OUT_OF_MEMORY	Not enough memory available for the operation.
2233	GrB_UNINITIALIZED_OBJECT	One or more of the GraphBLAS objects has not been initialized by
2234		a call to new (or dup for matrix or vector parameters).
2235	GrB_DIMENSION_MISMATCH	Mask, vector, and/or matrix dimensions are incompatible.
2236	GrB_DOMAIN_MISMATCH	The domains of the various vectors/matrices are incompatible with
2237		the corresponding domains of the semiring or accumulation opera-
2238		tor, or the mask's domain is not compatible with bool (in the case
2239		where desc[GrB_MASK].GrB_STRUCTURE is not set).
		• • · · · · · · · · · · · · · · · · · ·

2240 Description

GrB_vxm computes the vector-matrix product $w^T = u^T \oplus . \otimes A$, or, if an optional binary accumulation operator (\odot) is provided, $w^T = w^T \odot (u^T \oplus . \otimes A)$ (where matrix A can be optionally transposed). Logically, this operation occurs in three steps:

- Setup The internal vectors, matrices and mask used in the computation are formed and their
 domains/dimensions are tested for compatibility.
- 2246 **Compute** The indicated computations are carried out.

2247 **Output** The result is written into the output vector, possibly under control of a mask.

²²⁴⁸ Up to four argument vectors or matrices are used in the GrB_vxm operation:

1.
$$\mathsf{w} = \langle \mathbf{D}(\mathsf{w}), \mathbf{size}(\mathsf{w}), \mathbf{L}(\mathsf{w}) = \{(i, w_i)\} \rangle$$

2250 2. mask =
$$\langle \mathbf{D}(\mathsf{mask}), \mathbf{size}(\mathsf{mask}), \mathbf{L}(\mathsf{mask}) = \{(i, m_i)\} \rangle$$
 (optional)

2251 3.
$$\mathbf{u} = \langle \mathbf{D}(\mathbf{u}), \mathbf{size}(\mathbf{u}), \mathbf{L}(\mathbf{u}) = \{(i, u_i)\} \rangle$$

2252 4. $A = \langle \mathbf{D}(A), \mathbf{nrows}(A), \mathbf{ncols}(A), \mathbf{L}(A) = \{(i, j, A_{ij})\} \rangle$

The argument matrices, vectors, the semiring, and the accumulation operator (if provided) are tested for domain compatibility as follows:

- 1. If mask is not GrB_NULL, and desc[GrB_MASK].GrB_STRUCTURE is not set, then D(mask) must be from one of the pre-defined types of Table 2.2.
- 2257 2. $\mathbf{D}(\mathbf{u})$ must be compatible with $\mathbf{D}_{in_1}(\mathsf{op})$ of the semiring.
- 3. D(A) must be compatible with $D_{in_2}(op)$ of the semiring.
- 4. $\mathbf{D}(w)$ must be compatible with $\mathbf{D}_{out}(\mathsf{op})$ of the semiring.
- 5. If accum is not GrB_NULL, then $\mathbf{D}(\mathbf{w})$ must be compatible with $\mathbf{D}_{in_1}(\mathsf{accum})$ and $\mathbf{D}_{out}(\mathsf{accum})$ of the accumulation operator and $\mathbf{D}_{out}(\mathsf{op})$ of the semiring must be compatible with $\mathbf{D}_{in_2}(\mathsf{accum})$ of the accumulation operator.

Two domains are compatible with each other if values from one domain can be cast to values in the other domain as per the rules of the C language. In particular, domains from Table 2.2 are all compatible with each other. A domain from a user-defined type is only compatible with itself. If any compatibility rule above is violated, execution of GrB_vxm ends and the domain mismatch error listed above is returned.

From the argument vectors and matrices, the internal matrices and mask used in the computation are formed (\leftarrow denotes copy):

1. Vector $\widetilde{\mathbf{w}} \leftarrow \mathbf{w}$.

2271 2. One-dimensional mask, $\widetilde{\mathbf{m}}$, is computed from argument mask as follows:

(a) If mask = GrB_NULL, then $\widetilde{\mathbf{m}} = \langle \mathbf{size}(\mathsf{w}), \{i, \forall i : 0 \le i < \mathbf{size}(\mathsf{w})\} \rangle$.

- (b) If mask \neq GrB_NULL,
- 2274 2275

i. If desc[GrB_MASK].GrB_STRUCTURE is set, then $\widetilde{\mathbf{m}} = \langle \mathbf{size}(\mathsf{mask}), \{i : i \in \mathbf{ind}(\mathsf{mask})\} \rangle$,

- ii. Otherwise, $\widetilde{\mathbf{m}} = \langle \mathbf{size}(\mathsf{mask}), \{i : i \in \mathbf{ind}(\mathsf{mask}) \land (\mathsf{bool})\mathsf{mask}(i) = \mathsf{true}\} \rangle$.
- 2276 (c) If desc[GrB_MASK].GrB_COMP is set, then $\widetilde{\mathbf{m}} \leftarrow \neg \widetilde{\mathbf{m}}$.

2277 3. Vector $\tilde{\mathbf{u}} \leftarrow \mathbf{u}$.

4. Matrix $\widetilde{\mathbf{A}} \leftarrow \mathsf{desc}[\mathsf{GrB}_\mathsf{INP1}].\mathsf{GrB}_\mathsf{TRAN} ? \mathsf{A}^T : \mathsf{A}$.

²²⁷⁹ The internal matrices and masks are checked for shape compatibility. The following conditions ²²⁸⁰ must hold:

1. $\operatorname{size}(\widetilde{\mathbf{w}}) = \operatorname{size}(\widetilde{\mathbf{m}}).$

2282 2. $\operatorname{size}(\widetilde{\mathbf{w}}) = \operatorname{ncols}(\mathbf{A}).$

2283 3. $\operatorname{size}(\widetilde{\mathbf{u}}) = \operatorname{\mathbf{nrows}}(\widetilde{\mathbf{A}}).$

If any compatibility rule above is violated, execution of GrB_vxm ends and the dimension mismatch error listed above is returned.

From this point forward, in GrB_NONBLOCKING mode, the method can optionally exit with GrB_SUCCESS return code and defer any computation and/or execution error codes.

We are now ready to carry out the vector-matrix multiplication and any additional associated operations. We describe this in terms of two intermediate vectors:

• $\tilde{\mathbf{t}}$: The vector holding the product of vector $\tilde{\mathbf{u}}^T$ and matrix $\tilde{\mathbf{A}}$.

• \tilde{z} : The vector holding the result after application of the (optional) accumulation operator.

The intermediate vector $\tilde{\mathbf{t}} = \langle \mathbf{D}_{out}(\mathsf{op}), \mathbf{ncols}(\tilde{\mathbf{A}}), \{(j, t_j) : \mathbf{ind}(\tilde{\mathbf{u}}) \cap \mathbf{ind}(\tilde{\mathbf{A}}(:, j)) \neq \emptyset \} \rangle$ is created. The value of each of its elements is computed by

2294 $t_j = \bigoplus_{k \in \operatorname{ind}(\widetilde{\mathbf{u}}) \cap \operatorname{ind}(\widetilde{\mathbf{A}}(:,j))} (\widetilde{\mathbf{u}}(k) \otimes \widetilde{\mathbf{A}}(k,j)),$

where \oplus and \otimes are the additive and multiplicative operators of semiring op, respectively.

The intermediate vector $\tilde{\mathbf{z}}$ is created as follows, using what is called a *standard vector accumulate*:

• If accum = GrB_NULL, then $\widetilde{\mathbf{z}} = \widetilde{\mathbf{t}}$.

• If accum is a binary operator, then $\tilde{\mathbf{z}}$ is defined as

2299
$$\widetilde{\mathbf{z}} = \langle \mathbf{D}_{out}(\mathsf{accum}), \mathbf{size}(\widetilde{\mathbf{w}}), \{(i, z_i) \ \forall \ i \in \mathbf{ind}(\widetilde{\mathbf{w}}) \cup \mathbf{ind}(\mathbf{t})\} \rangle$$

The values of the elements of $\tilde{\mathbf{z}}$ are computed based on the relationships between the sets of indices in $\tilde{\mathbf{w}}$ and $\tilde{\mathbf{t}}$.

 $z_{i} = \widetilde{\mathbf{w}}(i) \odot \widetilde{\mathbf{t}}(i), \text{ if } i \in (\mathbf{ind}(\widetilde{\mathbf{t}}) \cap \mathbf{ind}(\widetilde{\mathbf{w}})),$ $\widetilde{\mathbf{c}}(i) = if : (\mathbf{t} = \mathbf{t}(\widetilde{\mathbf{c}}) - (\mathbf{t} = \mathbf{t}(\widetilde{\mathbf{c}})))$

$$z_{i} = \mathbf{w}(i), \text{ if } i \in (\mathbf{ind}(\mathbf{w}) - (\mathbf{ind}(\mathbf{t}) \cap \mathbf{ind}(\mathbf{w}))),$$

 $z_{i} = \widetilde{\mathbf{t}}(i), \text{ if } i \in (\mathbf{ind}(\widetilde{\mathbf{t}}) - (\mathbf{ind}(\widetilde{\mathbf{t}}) \cap \mathbf{ind}(\widetilde{\mathbf{w}}))),$

where $\odot = \bigcirc(\mathsf{accum})$, and the difference operator refers to set difference.

Finally, the set of output values that make up vector $\tilde{\mathbf{z}}$ are written into the final result vector w, using what is called a *standard vector mask and replace*. This is carried out under control of the mask which acts as a "write mask".

• If desc[GrB_OUTP].GrB_REPLACE is set, then any values in w on input to this operation are deleted and the content of the new output vector, w, is defined as,

$$\mathbf{L}(\mathsf{w}) = \{(i, z_i) : i \in (\mathbf{ind}(\widetilde{\mathbf{z}}) \cap \mathbf{ind}(\widetilde{\mathbf{m}}))\}.$$

• If desc[GrB_OUTP].GrB_REPLACE is not set, the elements of \tilde{z} indicated by the mask are copied into the result vector, w, and elements of w that fall outside the set indicated by the mask are unchanged:

2317

2313

 $\mathbf{L}(\mathsf{w}) = \{(i, w_i) : i \in (\mathbf{ind}(\mathsf{w}) \cap \mathbf{ind}(\neg \widetilde{\mathbf{m}}))\} \cup \{(i, z_i) : i \in (\mathbf{ind}(\widetilde{\mathbf{z}}) \cap \mathbf{ind}(\widetilde{\mathbf{m}}))\}.$

In GrB_BLOCKING mode, the method exits with return value GrB_SUCCESS and the new content of vector w is as defined above and fully computed. In GrB_NONBLOCKING mode, the method exits with return value GrB_SUCCESS and the new content of vector w is as defined above but may not be fully computed. However, it can be used in the next GraphBLAS method call in a sequence.

2322 4.3.3 mxv: Matrix-vector multiply

²³²³ Multiplies a matrix by a vector on a semiring. The result is a vector.

2324 C Syntax

2325	GrB_Info GrB_mxv(GrB_Vector	W,
2326	const GrB_Vector	mask,
2327	const GrB_BinaryOp	accum,
2328	const GrB_Semiring	op,
2329	const GrB_Matrix	A,
2330	const GrB_Vector	u,
2331	const GrB_Descriptor	desc);

- w (INOUT) An existing GraphBLAS vector. On input, the vector provides values that may be accumulated with the result of the matrix-vector product. On output, this vector holds the results of the operation.
- mask (IN) An optional "write" mask that controls which results from this operation are stored into the output vector w. The mask dimensions must match those of the vector w. If the GrB_STRUCTURE descriptor is *not* set for the mask, the domain of the mask vector must be of type bool or any of the predefined "built-in" types in Table 2.2. If the default mask is desired (i.e., a mask that is all true with the dimensions of w), GrB_NULL should be specified.

accum (IN) entri spec	An optional les. If assignm ified.	binary operator use nent rather than acc	d for accumulating entries into existing w umulation is desired, GrB_NULL should be
op (IN)	Semiring used	l in the vector-matri	x multiply.
A (IN) mult	The GraphB	LAS matrix holding	the values for the left-hand matrix in the
u (IN) mult	The GraphB	LAS vector holding	the values for the right-hand vector in the
desc (IN) shou	An optional o ld be specified	peration descriptor. l. Non-default field/	If a <i>default</i> descriptor is desired, GrB_NULL value pairs are listed as follows:
Param	Field	Value	Description
w mask	GrB_OUTP GrB_MASK	GrB_REPLACE GrB_STRUCTURE	Output vector w is cleared (all elements removed) before the result is stored in it. The write mask is constructed from the structure (pattern of stored values) of the
mask A	GrB_MASK GrB_INP0	GrB_COMP GrB_TRAN	input mask vector. The stored values are not examined.Use the complement of mask.Use transpose of A for the operation.
	op (IN) A (IN) Mult u (IN) mult desc (IN) shou Param w mask A	 accum (IN) An optional entries. If assignn specified. op (IN) Semiring used A (IN) The GraphBimultiplication. u (IN) The GraphBimultiplication. desc (IN) An optional of should be specified Param Field w GrB_OUTP mask GrB_MASK A GrB_INP0 	 accuint (IN) An optional binary operator use entries. If assignment rather than accuspecified. op (IN) Semiring used in the vector-matries A (IN) The GraphBLAS matrix holding multiplication. u (IN) The GraphBLAS vector holding multiplication. desc (IN) An optional operation descriptor. should be specified. Non-default field/ Param Field Value w GrB_OUTP GrB_REPLACE mask GrB_MASK GrB_STRUCTURE mask GrB_MASK GrB_COMP A GrB_INP0 GrB_TRAN

2354 Return Values

2355	GrB_SUCCESS	In blocking mode, the operation completed successfully. In non-
2356		blocking mode, this indicates that the compatibility tests on di-
2357		mensions and domains for the input arguments passed successfully.
2358		Either way, output vector w is ready to be used in the next method
2359		of the sequence.
2360	GrB_PANIC	Unknown internal error.
2361	GrB_INVALID_OBJECT	This is returned in any execution mode whenever one of the opaque
2362		GraphBLAS objects (input or output) is in an invalid state caused
2363		by a previous execution error. Call GrB_error() to access any error
2364		messages generated by the implementation.
2365	GrB_OUT_OF_MEMORY	Not enough memory available for the operation.
2266		One or more of the GraphBLAS objects has not been initialized by
2300		a call to new (or dup for matrix or vector parameters).
2368	GrB_DIMENSION_MISMATCH	Mask, vector, and/or matrix dimensions are incompatible.

2369	GrB_DOMAIN_MISMATCH	The domains of the various vectors/matrices are incompatible with
2370		the corresponding domains of the semiring or accumulation opera-
2371		tor, or the mask's domain is not compatible with bool (in the case
2372		where $desc[GrB_MASK]$.GrB_STRUCTURE is not set).

GrB_mxv computes the matrix-vector product $w = A \oplus . \otimes u$, or, if an optional binary accumulation operator (\odot) is provided, $w = w \odot (A \oplus . \otimes u)$ (where matrix A can be optionally transposed). Logically, this operation occurs in three steps:

- 2377 Setup The internal vectors, matrices and mask used in the computation are formed and their
 2378 domains/dimensions are tested for compatibility.
- 2379 **Compute** The indicated computations are carried out.
- 2380 **Output** The result is written into the output vector, possibly under control of a mask.

²³⁸¹ Up to four argument vectors or matrices are used in the GrB_mxv operation:

2382 1.
$$w = \langle \mathbf{D}(w), \mathbf{size}(w), \mathbf{L}(w) = \{(i, w_i)\} \rangle$$

- 2383 2. mask = $\langle \mathbf{D}(\mathsf{mask}), \mathsf{size}(\mathsf{mask}), \mathbf{L}(\mathsf{mask}) = \{(i, m_i)\} \rangle$ (optional)
- 2384 3. $A = \langle \mathbf{D}(A), \mathbf{nrows}(A), \mathbf{ncols}(A), \mathbf{L}(A) = \{(i, j, A_{ij})\} \rangle$
- 2385 4. $u = \langle \mathbf{D}(u), \mathbf{size}(u), \mathbf{L}(u) = \{(i, u_i)\} \rangle$

The argument matrices, vectors, the semiring, and the accumulation operator (if provided) are tested for domain compatibility as follows:

- 1. If mask is not GrB_NULL, and desc[GrB_MASK].GrB_STRUCTURE is not set, then D(mask) must be from one of the pre-defined types of Table 2.2.
- 2390 2. $\mathbf{D}(\mathsf{A})$ must be compatible with $\mathbf{D}_{in_1}(\mathsf{op})$ of the semiring.
- 2391 3. $\mathbf{D}(\mathbf{u})$ must be compatible with $\mathbf{D}_{in_2}(\mathsf{op})$ of the semiring.
- 2392 4. $\mathbf{D}(w)$ must be compatible with $\mathbf{D}_{out}(\mathsf{op})$ of the semiring.
- 5. If accum is not GrB_NULL, then D(w) must be compatible with $D_{in_1}(accum)$ and $D_{out}(accum)$ of the accumulation operator and $D_{out}(op)$ of the semiring must be compatible with $D_{in_2}(accum)$ of the accumulation operator.

Two domains are compatible with each other if values from one domain can be cast to values in the other domain as per the rules of the C language. In particular, domains from Table 2.2 are all compatible with each other. A domain from a user-defined type is only compatible with itself. If any compatibility rule above is violated, execution of GrB_mxv ends and the domain mismatch error listed above is returned.

From the argument vectors and matrices, the internal matrices and mask used in the computation are formed (\leftarrow denotes copy):

2403 1. Vector $\widetilde{\mathbf{w}} \leftarrow \mathbf{w}$.

2404 2. One-dimensional mask, $\widetilde{\mathbf{m}}$, is computed from argument mask as follows:

(a) If mask = GrB_NULL, then $\widetilde{\mathbf{m}} = \langle \mathbf{size}(\mathsf{w}), \{i, \forall i : 0 \le i < \mathbf{size}(\mathsf{w})\} \rangle$.

- (b) If mask \neq GrB_NULL,
- 2407

2408

i. If desc[GrB_MASK].GrB_STRUCTURE is set, then $\widetilde{\mathbf{m}} = \langle \mathbf{size}(\mathsf{mask}), \{i : i \in \mathbf{ind}(\mathsf{mask})\} \rangle$,

- ii. Otherwise, $\widetilde{\mathbf{m}} = \langle \mathbf{size}(\mathsf{mask}), \{i : i \in \mathbf{ind}(\mathsf{mask}) \land (\mathsf{bool})\mathsf{mask}(i) = \mathsf{true} \} \rangle$.
- $\text{ (c) If desc[GrB_MASK].GrB_COMP is set, then } \widetilde{\mathbf{m}} \leftarrow \neg \widetilde{\mathbf{m}}.$
- 2410 3. Matrix $\widetilde{\mathbf{A}} \leftarrow \mathsf{desc}[\mathsf{GrB}_{\mathsf{I}}\mathsf{INP0}].\mathsf{GrB}_{\mathsf{T}}\mathsf{TRAN} ? \mathsf{A}^T : \mathsf{A}.$

2412 The internal matrices and masks are checked for shape compatibility. The following conditions 2413 must hold:

2414 1. $\operatorname{size}(\widetilde{\mathbf{w}}) = \operatorname{size}(\widetilde{\mathbf{m}}).$

2415 2. $\operatorname{size}(\widetilde{\mathbf{w}}) = \operatorname{\mathbf{nrows}}(\widetilde{\mathbf{A}}).$

2416 3. $\operatorname{size}(\widetilde{\mathbf{u}}) = \operatorname{ncols}(\widetilde{\mathbf{A}}).$

²⁴¹⁷ If any compatibility rule above is violated, execution of GrB_mxv ends and the dimension mismatch ²⁴¹⁸ error listed above is returned.

From this point forward, in $GrB_NONBLOCKING$ mode, the method can optionally exit with $GrB_SUCCESS$ return code and defer any computation and/or execution error codes.

We are now ready to carry out the matrix-vector multiplication and any additional associated operations. We describe this in terms of two intermediate vectors:

• $\tilde{\mathbf{t}}$: The vector holding the product of matrix $\tilde{\mathbf{A}}$ and vector $\tilde{\mathbf{u}}$.

• $\tilde{\mathbf{z}}$: The vector holding the result after application of the (optional) accumulation operator.

The intermediate vector $\tilde{\mathbf{t}} = \langle \mathbf{D}_{out}(\mathsf{op}), \mathbf{nrows}(\tilde{\mathbf{A}}), \{(i, t_i) : \mathbf{ind}(\tilde{\mathbf{A}}(i, :)) \cap \mathbf{ind}(\tilde{\mathbf{u}}) \neq \emptyset \} \rangle$ is created. The value of each of its elements is computed by

2427
$$t_i = \bigoplus_{k \in \operatorname{ind}(\widetilde{\mathbf{A}}(i,:)) \cap \operatorname{ind}(\widetilde{\mathbf{u}})} (\widetilde{\mathbf{A}}(i,k) \otimes \widetilde{\mathbf{u}}(k)),$$

where \oplus and \otimes are the additive and multiplicative operators of semiring op, respectively.

²⁴²⁹ The intermediate vector $\tilde{\mathbf{z}}$ is created as follows, using what is called a *standard vector accumulate*:

^{4.} Vector $\widetilde{\mathbf{u}} \leftarrow \mathbf{u}$.

• If accum = GrB_NULL, then $\widetilde{\mathbf{z}} = \widetilde{\mathbf{t}}$.

• If accum is a binary operator, then $\tilde{\mathbf{z}}$ is defined as

$$\widetilde{\mathbf{z}} = \langle \mathbf{D}_{out}(\mathsf{accum}), \mathbf{size}(\widetilde{\mathbf{w}}), \{(i, z_i) \ \forall \ i \in \mathbf{ind}(\widetilde{\mathbf{w}}) \cup \mathbf{ind}(\widetilde{\mathbf{t}})\} \rangle.$$

The values of the elements of $\tilde{\mathbf{z}}$ are computed based on the relationships between the sets of indices in $\tilde{\mathbf{w}}$ and $\tilde{\mathbf{t}}$.

where
$$\odot = \bigcirc(\mathsf{accum})$$
, and the difference operator refers to set difference.

Finally, the set of output values that make up vector $\tilde{\mathbf{z}}$ are written into the final result vector w, using what is called a *standard vector mask and replace*. This is carried out under control of the mask which acts as a "write mask".

• If desc[GrB_OUTP].GrB_REPLACE is set, then any values in w on input to this operation are deleted and the content of the new output vector, w, is defined as,

$$\mathbf{L}(\mathsf{w}) = \{(i, z_i) : i \in (\mathbf{ind}(\widetilde{\mathbf{z}}) \cap \mathbf{ind}(\widetilde{\mathbf{m}}))\}.$$

• If desc[GrB_OUTP].GrB_REPLACE is not set, the elements of \tilde{z} indicated by the mask are copied into the result vector, w, and elements of w that fall outside the set indicated by the mask are unchanged:

2450

2446

2432

$$\mathbf{L}(\mathsf{w}) = \{(i, w_i) : i \in (\mathbf{ind}(\mathsf{w}) \cap \mathbf{ind}(\neg \widetilde{\mathbf{m}}))\} \cup \{(i, z_i) : i \in (\mathbf{ind}(\widetilde{\mathbf{z}}) \cap \mathbf{ind}(\widetilde{\mathbf{m}}))\}$$

In GrB_BLOCKING mode, the method exits with return value GrB_SUCCESS and the new content of vector w is as defined above and fully computed. In GrB_NONBLOCKING mode, the method exits with return value GrB_SUCCESS and the new content of vector w is as defined above but may not be fully computed. However, it can be used in the next GraphBLAS method call in a sequence.

2455 4.3.4 eWiseMult: Element-wise multiplication

Note: The difference between eWiseAdd and eWiseMult is not about the element-wise operation but how the index sets are treated. eWiseAdd returns an object whose indices are the "union" of the indices of the inputs whereas eWiseMult returns an object whose indices are the "intersection" of the indices of the inputs. In both cases, the passed semiring, monoid, or operator operates on the set of values from the resulting index set.

2461 4.3.4.1 eWiseMult: Vector variant

Perform element-wise (general) multiplication on the intersection of elements of two vectors, producing a third vector as result.

2464 C Syntax

2465 GID_IIIO GID_EWISEMULt(GID_VECTOR	W,
2466 const GrB_Vector	r mask,
2467 const GrB_Binary	yOp accum,
2468 const GrB_Semir:	ing op,
2469 const GrB_Vector	r u,
2470 const GrB_Vector	rv,
2471 const GrB_Descr:	iptor desc);
2472	
2473 GrB_Info GrB_eWiseMult(GrB_Vector	W,
2474 const GrB_Vector	r mask,
2475 const GrB_Binary	yOp accum,
2476 const GrB_Monoid	d op,
2477 const GrB_Vector	r u,
2478 const GrB_Vector	rv,
2479 const GrB_Descr	iptor desc);
2480	
2481 GrB_Info GrB_eWiseMult(GrB_Vector	W,
2482 const GrB_Vector	r mask,
2483 const GrB_Binary	yOp accum,
2484 const GrB_Binary	yOp op,
2485 const GrB_Vector	r u,
2486 const GrB_Vector	rv,

2489	w	(INOUT) An existing GraphBLAS vector. On input, the vector provides values
2490		that may be accumulated with the result of the element-wise operation. On output,
2491		this vector holds the results of the operation.
2492	mask	(IN) An optional "write" mask that controls which results from this operation are
2493		stored into the output vector w. The mask dimensions must match those of the
2494		vector w. If the $GrB_STRUCTURE$ descriptor is <i>not</i> set for the mask, the domain
2495		of the mask vector must be of type bool or any of the predefined "built-in" types
2496		in Table 2.2. If the default mask is desired (i.e., a mask that is all true with the
2497		dimensions of w), GrB_NULL should be specified.
2498	accum	$\left(IN\right)$ An optional binary operator used for accumulating entries into existing w
2499		entries. If assignment rather than accumulation is desired, GrB_NULL should be
2500		specified.
2501	ор	(IN) The semiring, monoid, or binary operator used in the element-wise "product"
2502		operation. Depending on which type is passed, the following defines the binary
2503		operator, $F_b = \langle \mathbf{D}_{out}(op), \mathbf{D}_{in_1}(op), \mathbf{D}_{in_2}(op), \otimes \rangle$, used:

2504		BinaryOp: F	$\mathbf{f}_b = \langle \mathbf{D}_{out}(op), \mathbf{D}_{in_1}(\mathbf{op}) \rangle$	$(op), \mathbf{D}_{in_2}(op), \bigcirc (op) \rangle.$
2505		Monoid: F	$\mathbf{f}_b = \langle \mathbf{D}(op), \mathbf{D}(op), \mathbf{D}$	$D(op), \bigcirc(op)\rangle$; the identity element is ig-
2506		11	orea.	
2507		Semiring: F	$\mathbf{D}_{b} = \langle \mathbf{D}_{out}(op), \mathbf{D}_{in_1}(\mathbf{p}) \rangle$	$(op), \mathbf{D}_{in_2}(op), \bigotimes(op));$ the additive monoid
2508		18	ignored.	
2509	u (IN)	The GraphB	LAS vector holding	the values for the left-hand vector in the
2510	oper	ation.		
2511	v (IN)	The GraphB	LAS vector holding	the values for the right-hand vector in the
2512	oper	ation.		
2513	desc (IN)	An optional o	peration descriptor.	If a <i>default</i> descriptor is desired, GrB_NULL
2514	chou	111 .0	1 17 1 0 1 0 1 1 /	
	snou	ld be specified	d. Non-default field/	value pairs are listed as follows:
2515	Shou	ld be specified	d. Non-default field/	value pairs are listed as follows:
2515	Param	ld be specified Field	1. Non-default field/ Value	value pairs are listed as follows: Description
2515	Param w	Id be specified Field GrB_OUTP	1. Non-default field/ Value GrB_REPLACE	Description Output vector w is cleared (all elements)
2515	Param w	Id be specified Field GrB_OUTP	1. Non-default field/ Value GrB_REPLACE	value pairs are listed as follows: Description Output vector w is cleared (all elements removed) before the result is stored in it.
2515	Param w mask	Id be specified Field GrB_OUTP GrB_MASK	1. Non-default field/ Value GrB_REPLACE GrB_STRUCTURE	Description Output vector w is cleared (all elements removed) before the result is stored in it. The write mask is constructed from the
2515 2516	Param w mask	Id be specified Field GrB_OUTP GrB_MASK	l. Non-default field/ Value GrB_REPLACE GrB_STRUCTURE	Description Output vector w is cleared (all elements removed) before the result is stored in it. The write mask is constructed from the structure (pattern of stored values) of the
2515 2516	Param w mask	Id be specified Field GrB_OUTP GrB_MASK	l. Non-default field/ Value GrB_REPLACE GrB_STRUCTURE	Description Output vector w is cleared (all elements removed) before the result is stored in it. The write mask is constructed from the structure (pattern of stored values) of the input mask vector. The stored values are
2515 2516	Param w mask	Id be specified Field GrB_OUTP GrB_MASK	1. Non-default field/ Value GrB_REPLACE GrB_STRUCTURE	Description Output vector w is cleared (all elements removed) before the result is stored in it. The write mask is constructed from the structure (pattern of stored values) of the input mask vector. The stored values are not examined.
2515 2516	Param w mask	Id be specified Field GrB_OUTP GrB_MASK	I. Non-default field/ Value GrB_REPLACE GrB_STRUCTURE	Description Output vector w is cleared (all elements removed) before the result is stored in it. The write mask is constructed from the structure (pattern of stored values) of the input mask vector. The stored values are not examined. Use the complement of mask
2515 2516	Param w mask	Id be specified Field GrB_OUTP GrB_MASK GrB_MASK	I. Non-default field/ Value GrB_REPLACE GrB_STRUCTURE GrB_COMP	Description Output vector w is cleared (all elements removed) before the result is stored in it. The write mask is constructed from the structure (pattern of stored values) of the input mask vector. The stored values are not examined. Use the complement of mask.

2517 Return Values

2518	GrB_SUCCESS	In blocking mode, the operation completed successfully. In non-
2519		blocking mode, this indicates that the compatibility tests on di-
2520		mensions and domains for the input arguments passed successfully.
2521		Either way, output vector w is ready to be used in the next method
2522		of the sequence.
2523	GrB_PANIC	Unknown internal error.
2524	GrB_INVALID_OBJECT	This is returned in any execution mode whenever one of the opaque
2525		GraphBLAS objects (input or output) is in an invalid state caused
2526		by a previous execution error. Call $GrB_error()$ to access any error
2527		messages generated by the implementation.
2528	GrB_OUT_OF_MEMORY	Not enough memory available for the operation.
2529	GrB_UNINITIALIZED_OBJECT	One or more of the GraphBLAS objects has not been initialized by
2530		a call to new (or dup for vector parameters).
2531	GrB_DIMENSION_MISMATCH	Mask or vector dimensions are incompatible.

2532	GrB_DOMAIN_MISMATCH	The domains of the various vectors are incompatible with the cor-
2533		responding domains of the binary operator (op) or accumulation
2534		operator, or the mask's domain is not compatible with bool (in the
2535		case where desc[GrB_MASK].GrB_STRUCTURE is not set).

This variant of GrB_eWiseMult computes the element-wise "product" of two GraphBLAS vectors: $w = u \otimes v$, or, if an optional binary accumulation operator (\odot) is provided, $w = w \odot (u \otimes v)$. Logically, this operation occurs in three steps:

- Setup The internal vectors and mask used in the computation are formed and their domains
 and dimensions are tested for compatibility.
- ²⁵⁴² Compute The indicated computations are carried out.
- ²⁵⁴³ **Output** The result is written into the output vector, possibly under control of a mask.
- ²⁵⁴⁴ Up to four argument vectors are used in the GrB_eWiseMult operation:

2545 1.
$$\mathsf{w} = \langle \mathbf{D}(\mathsf{w}), \mathbf{size}(\mathsf{w}), \mathbf{L}(\mathsf{w}) = \{(i, w_i)\} \rangle$$

2546 2. mask = $\langle \mathbf{D}(\mathsf{mask}), \mathsf{size}(\mathsf{mask}), \mathbf{L}(\mathsf{mask}) = \{(i, m_i)\} \rangle$ (optional)

2547 3.
$$u = \langle \mathbf{D}(u), \mathbf{size}(u), \mathbf{L}(u) = \{(i, u_i)\} \rangle$$

2548 4.
$$\mathbf{v} = \langle \mathbf{D}(\mathbf{v}), \mathbf{size}(\mathbf{v}), \mathbf{L}(\mathbf{v}) = \{(i, v_i)\} \rangle$$

The argument vectors, the "product" operator (op), and the accumulation operator (if provided) are tested for domain compatibility as follows:

- 1. If mask is not GrB_NULL, and desc[GrB_MASK].GrB_STRUCTURE is not set, then D(mask) must be from one of the pre-defined types of Table 2.2.
- 2553 2. $\mathbf{D}(\mathbf{u})$ must be compatible with $\mathbf{D}_{in_1}(\mathsf{op})$.
- 2554 3. $\mathbf{D}(\mathbf{v})$ must be compatible with $\mathbf{D}_{in_2}(\mathsf{op})$.
- 4. $\mathbf{D}(w)$ must be compatible with $\mathbf{D}_{out}(\mathsf{op})$.
- 5. If accum is not GrB_NULL, then $\mathbf{D}(\mathbf{w})$ must be compatible with $\mathbf{D}_{in_1}(\operatorname{accum})$ and $\mathbf{D}_{out}(\operatorname{accum})$ of the accumulation operator and $\mathbf{D}_{out}(\operatorname{op})$ of op must be compatible with $\mathbf{D}_{in_2}(\operatorname{accum})$ of the accumulation operator.

Two domains are compatible with each other if values from one domain can be cast to values in the other domain as per the rules of the C language. In particular, domains from Table 2.2 are all compatible with each other. A domain from a user-defined type is only compatible with itself. If any compatibility rule above is violated, execution of GrB_eWiseMult ends and the domain mismatch error listed above is returned.

From the argument vectors, the internal vectors and mask used in the computation are formed (\leftarrow denotes copy):

1. Vector $\widetilde{\mathbf{w}} \leftarrow \mathbf{w}$.

2567 2. One-dimensional mask, $\widetilde{\mathbf{m}}$, is computed from argument mask as follows:

(a) If mask = GrB_NULL, then $\widetilde{\mathbf{m}} = \langle \mathbf{size}(\mathsf{w}), \{i, \forall i : 0 \le i < \mathbf{size}(\mathsf{w})\} \rangle$.

(b) If mask \neq GrB_NULL,

2570 2571 i. If desc[GrB_MASK].GrB_STRUCTURE is set, then $\widetilde{\mathbf{m}} = \langle \mathbf{size}(\mathsf{mask}), \{i : i \in \mathbf{ind}(\mathsf{mask})\} \rangle$,

- ii. Otherwise, $\widetilde{\mathbf{m}} = \langle \mathbf{size}(\mathsf{mask}), \{i : i \in \mathbf{ind}(\mathsf{mask}) \land (\mathsf{bool})\mathsf{mask}(i) = \mathsf{true}\} \rangle$.
- 2572 (c) If desc[GrB_MASK].GrB_COMP is set, then $\widetilde{\mathbf{m}} \leftarrow \neg \widetilde{\mathbf{m}}$.

2573 3. Vector $\widetilde{\mathbf{u}} \leftarrow \mathbf{u}$.

4. Vector
$$\widetilde{\mathbf{v}} \leftarrow \mathbf{v}$$
.

²⁵⁷⁵ The internal vectors and mask are checked for dimension compatibility. The following conditions ²⁵⁷⁶ must hold:

2577 1.
$$\operatorname{size}(\widetilde{\mathbf{w}}) = \operatorname{size}(\widetilde{\mathbf{m}}) = \operatorname{size}(\widetilde{\mathbf{u}}) = \operatorname{size}(\widetilde{\mathbf{v}})$$

²⁵⁷⁸ If any compatibility rule above is violated, execution of GrB_eWiseMult ends and the dimension ²⁵⁷⁹ mismatch error listed above is returned.

From this point forward, in GrB_NONBLOCKING mode, the method can optionally exit with GrB_SUCCESS return code and defer any computation and/or execution error codes.

We are now ready to carry out the element-wise "product" and any additional associated operations. We describe this in terms of two intermediate vectors:

• $\tilde{\mathbf{t}}$: The vector holding the element-wise "product" of $\tilde{\mathbf{u}}$ and vector $\tilde{\mathbf{v}}$.

• $\tilde{\mathbf{z}}$: The vector holding the result after application of the (optional) accumulation operator.

The intermediate vector $\tilde{\mathbf{t}} = \langle \mathbf{D}_{out}(\mathsf{op}), \mathbf{size}(\tilde{\mathbf{u}}), \mathbf{L}(\tilde{\mathbf{t}}) = \{(i, t_i) : \mathbf{ind}(\tilde{\mathbf{u}}) \cap \mathbf{ind}(\tilde{\mathbf{v}}) \neq \emptyset\} \rangle$ is created. The value of each of its elements is computed by:

$$t_i = (\widetilde{\mathbf{u}}(i) \otimes \widetilde{\mathbf{v}}(i)), \forall i \in (\mathbf{ind}(\widetilde{\mathbf{u}}) \cap \mathbf{ind}(\widetilde{\mathbf{v}}))$$

The intermediate vector $\tilde{\mathbf{z}}$ is created as follows, using what is called a *standard vector accumulate*:

• If accum = GrB_NULL, then $\widetilde{\mathbf{z}} = \widetilde{\mathbf{t}}$.

• If accum is a binary operator, then $\tilde{\mathbf{z}}$ is defined as

2592 $\widetilde{\mathbf{z}} = \langle \mathbf{D}_{out}(\mathsf{accum}), \mathbf{size}(\widetilde{\mathbf{w}}), \{(i, z_i) \ \forall \ i \in \mathbf{ind}(\widetilde{\mathbf{w}}) \cup \mathbf{ind}(\widetilde{\mathbf{t}}) \} \rangle.$

The values of the elements of $\tilde{\mathbf{z}}$ are computed based on the relationships between the sets of indices in $\tilde{\mathbf{w}}$ and $\tilde{\mathbf{t}}$.

where $\odot = \bigcirc(\mathsf{accum})$, and the difference operator refers to set difference.

Finally, the set of output values that make up vector $\tilde{\mathbf{z}}$ are written into the final result vector w, using what is called a *standard vector mask and replace*. This is carried out under control of the mask which acts as a "write mask".

• If desc[GrB_OUTP].GrB_REPLACE is set, then any values in w on input to this operation are deleted and the content of the new output vector, w, is defined as,

$$\mathbf{L}(\mathsf{w}) = \{(i, z_i) : i \in (\mathbf{ind}(\widetilde{\mathbf{z}}) \cap \mathbf{ind}(\widetilde{\mathbf{m}}))\}.$$

• If desc[GrB_OUTP].GrB_REPLACE is not set, the elements of \tilde{z} indicated by the mask are copied into the result vector, w, and elements of w that fall outside the set indicated by the mask are unchanged:

$$\mathbf{L}(\mathsf{w}) = \{(i, w_i) : i \in (\mathbf{ind}(\mathsf{w}) \cap \mathbf{ind}(\neg \widetilde{\mathbf{m}}))\} \cup \{(i, z_i) : i \in (\mathbf{ind}(\widetilde{\mathbf{z}}) \cap \mathbf{ind}(\widetilde{\mathbf{m}}))\}.$$

In GrB_BLOCKING mode, the method exits with return value GrB_SUCCESS and the new content of vector w is as defined above and fully computed. In GrB_NONBLOCKING mode, the method exits with return value GrB_SUCCESS and the new content of vector w is as defined above but may not be fully computed. However, it can be used in the next GraphBLAS method call in a sequence.

2615 4.3.4.2 eWiseMult: Matrix variant

Perform element-wise (general) multiplication on the intersection of elements of two matrices, producing a third matrix as result.

2618 C Syntax

2606

2619	GrB_Info GrB_eWiseMult(GrB_Matrix	С,
2620	const GrB_Matrix	Mask,
2621	const GrB_BinaryOp	accum,
2622	const GrB_Semiring	op,
2623	const GrB_Matrix	A,

2624		const	GrB_Matrix	В,
2625		const	GrB_Descriptor	desc);
2626				
2627	GrB_Info	GrB_eWiseMult(GrB_Ma	atrix	С,
2628		const	GrB_Matrix	Mask,
2629		const	GrB_BinaryOp	accum,
2630		const	GrB_Monoid	op,
2631		const	GrB_Matrix	Α,
2632		const	GrB_Matrix	Β,
2633		const	GrB_Descriptor	desc);
2634				
2635	GrB_Info	GrB_eWiseMult(GrB_Ma	atrix	С,
2636		const	GrB_Matrix	Mask,
2637		const	GrB_BinaryOp	accum,
2638		const	GrB_BinaryOp	op,
2639		const	GrB_Matrix	Α,
2640		const	GrB_Matrix	Β,
2641		const	GrB_Descriptor	desc);

- 2643C (INOUT) An existing GraphBLAS matrix. On input, the matrix provides values2644that may be accumulated with the result of the element-wise operation. On output,2645the matrix holds the results of the operation.
- Mask (IN) An optional "write" mask that controls which results from this operation are stored into the output matrix C. The mask dimensions must match those of the matrix C. If the GrB_STRUCTURE descriptor is *not* set for the mask, the domain of the Mask matrix must be of type **bool** or any of the predefined "built-in" types in Table 2.2. If the default mask is desired (i.e., a mask that is all **true** with the dimensions of C), GrB_NULL should be specified.
- 2652accum (IN) An optional binary operator used for accumulating entries into existing C2653entries. If assignment rather than accumulation is desired, GrB_NULL should be2654specified.
- 2655op (IN) The semiring, monoid, or binary operator used in the element-wise "product"2656operation. Depending on which type is passed, the following defines the binary2657operator, $F_b = \langle \mathbf{D}_{out}(\mathsf{op}), \mathbf{D}_{in_1}(\mathsf{op}), \mathbf{D}_{in_2}(\mathsf{op}), \otimes \rangle$, used:

2658	BinaryOp: $F_b = \langle \mathbf{D}_{out}(op), \mathbf{D}_{in_1}(op), \mathbf{D}_{in_2}(op), \bigodot(op) \rangle.$
2659	Monoid: $F_b = \langle \mathbf{D}(op), \mathbf{D}(op), \mathbf{O}(op) \rangle$; the identity element is ig-
2660	nored.
2661	Semiring: $F_b = \langle \mathbf{D}_{out}(op), \mathbf{D}_{in_1}(op), \mathbf{D}_{in_2}(op), \bigotimes(op) \rangle$; the additive monoid
2662	is ignored.

2663	A (IN) The GraphBLAS matrix holding the values for the left-hand matrix in the			
2664	operation.			
2665	B (IN) The GraphBLAS matrix holding the values for the right-hand matrix in the operation			
2000	oper			
2667	desc (IN) An optional operation descriptor. If a <i>default</i> descriptor is desired, GrB_NULL			
2668	shou	ld be specified	d. Non-default field/v	value pairs are listed as follows:
2669				
	Param	Field	Value	Description
	С	GrB_OUTP	GrB_REPLACE	Output matrix ${\sf C}$ is cleared (all elements
				removed) before the result is stored in it.
	Mask	GrB_MASK	GrB_STRUCTURE	The write mask is constructed from the
2670				structure (pattern of stored values) of the
				input Mask matrix. The stored values are
				not examined.
	Mask	GrB_MASK	GrB_COMP	Use the complement of Mask.
	А	GrB_INP0	GrB_TRAN	Use transpose of A for the operation.
	В	GrB_INP1	GrB_TRAN	Use transpose of B for the operation.

2671 Return Values

2672	GrB_SUCCESS	In blocking mode, the operation completed successfully. In non-
2673		blocking mode, this indicates that the compatibility tests on di-
2674		mensions and domains for the input arguments passed successfully.
2675		Either way, output matrix C is ready to be used in the next method
2676		of the sequence.
2677	GrB_PANIC	Unknown internal error.
2678	GrB_INVALID_OBJECT	This is returned in any execution mode whenever one of the opaque
2679		GraphBLAS objects (input or output) is in an invalid state caused
2680		by a previous execution error. Call GrB_error() to access any error
2681		messages generated by the implementation.
2682	GrB_OUT_OF_MEMORY	Not enough memory available for the operation.
2683	GrB_UNINITIALIZED_OBJECT	One or more of the GraphBLAS objects has not been initialized by
2684		a call to new (or Matrix_dup for matrix parameters).
2685	GrB_DIMENSION_MISMATCH	Mask and/or matrix dimensions are incompatible.
2686	GrB_DOMAIN_MISMATCH	The domains of the various matrices are incompatible with the
2687		corresponding domains of the binary operator (op) or accumulation
2688		operator, or the mask's domain is not compatible with bool (in the
2689		case where desc[GrB_MASK].GrB_STRUCTURE is not set).
		/

This variant of GrB_eWiseMult computes the element-wise "product" of two GraphBLAS matrices: $C = A \otimes B$, or, if an optional binary accumulation operator (\odot) is provided, $C = C \odot (A \otimes B)$. Logically, this operation occurs in three steps:

- Setup The internal matrices and mask used in the computation are formed and their domains
 and dimensions are tested for compatibility.
- 2696 **Compute** The indicated computations are carried out.
- ²⁶⁹⁷ **Output** The result is written into the output matrix, possibly under control of a mask.
- ²⁶⁹⁸ Up to four argument matrices are used in the GrB_eWiseMult operation:

2699 1. $C = \langle \mathbf{D}(C), \mathbf{nrows}(C), \mathbf{ncols}(C), \mathbf{L}(C) = \{(i, j, C_{ij})\} \rangle$

2700 2. $\mathsf{Mask} = \langle \mathbf{D}(\mathsf{Mask}), \mathbf{nrows}(\mathsf{Mask}), \mathbf{ncols}(\mathsf{Mask}), \mathbf{L}(\mathsf{Mask}) = \{(i, j, M_{ij})\} \rangle \text{ (optional)}$

2701 3. $A = \langle \mathbf{D}(A), \mathbf{nrows}(A), \mathbf{ncols}(A), \mathbf{L}(A) = \{(i, j, A_{ij})\} \rangle$

- 2702 4. $\mathsf{B} = \langle \mathbf{D}(\mathsf{B}), \mathbf{nrows}(\mathsf{B}), \mathbf{ncols}(\mathsf{B}), \mathbf{L}(\mathsf{B}) = \{(i, j, B_{ij})\} \rangle$
- The argument matrices, the "product" operator (**op**), and the accumulation operator (if provided) are tested for domain compatibility as follows:
- 1. If Mask is not GrB_NULL, and desc[GrB_MASK].GrB_STRUCTURE is not set, then D(Mask) must be from one of the pre-defined types of Table 2.2.
- 2707 2. $\mathbf{D}(\mathsf{A})$ must be compatible with $\mathbf{D}_{in_1}(\mathsf{op})$.
- 2708 3. $\mathbf{D}(\mathsf{B})$ must be compatible with $\mathbf{D}_{in_2}(\mathsf{op})$.
- 4. D(C) must be compatible with $D_{out}(op)$.
- 5. If accum is not GrB_NULL, then D(C) must be compatible with $D_{in_1}(accum)$ and $D_{out}(accum)$ of the accumulation operator and $D_{out}(op)$ of op must be compatible with $D_{in_2}(accum)$ of the accumulation operator.

Two domains are compatible with each other if values from one domain can be cast to values in the other domain as per the rules of the C language. In particular, domains from Table 2.2 are all compatible with each other. A domain from a user-defined type is only compatible with itself. If any compatibility rule above is violated, execution of GrB_eWiseMult ends and the domain mismatch error listed above is returned.

From the argument matrices, the internal matrices and mask used in the computation are formed $(\leftarrow \text{ denotes copy})$:

2720 1. Matrix $\widetilde{\mathbf{C}} \leftarrow \mathsf{C}$.
2722(a) If Mask = GrB_NULL, then $\widetilde{\mathbf{M}} = \langle \mathbf{nrows}(\mathsf{C}), \mathbf{ncols}(\mathsf{C}), \{(i, j), \forall i, j : 0 \le i < \mathbf{nrows}(\mathsf{C}), 0 \le j < \mathsf{ncols}(\mathsf{C})\} \rangle.$ 2723 $j < \mathsf{ncols}(\mathsf{C})\} \rangle.$ 2724(b) If Mask \neq GrB_NULL,2725i. If desc[GrB_MASK].GrB_STRUCTURE is set, then $\widetilde{\mathbf{M}} = \langle \mathbf{nrows}(\mathsf{Mask}), \mathbf{ncols}(\mathsf{Mask}), \{(i, j) : (i, j) \in \mathsf{ind}(\mathsf{Mask})\} \rangle,$ 2726(i. Otherwise, $\widetilde{\mathbf{M}} = \langle \mathbf{nrows}(\mathsf{Mask}), \mathbf{ncols}(\mathsf{Mask}), \{(i, j) : (i, j) \in \mathsf{ind}(\mathsf{Mask}), \mathsf{ncols}(\mathsf{Mask}), \{(i, j) = \mathsf{true}\} \rangle.$

(c) If desc[GrB_MASK].GrB_COMP is set, then $\widetilde{\mathbf{M}} \leftarrow \neg \widetilde{\mathbf{M}}$.

2730 3. Matrix $\widetilde{\mathbf{A}} \leftarrow \mathsf{desc}[\mathsf{GrB}_\mathsf{I}\mathsf{NP0}].\mathsf{GrB}_\mathsf{T}\mathsf{RAN} ? \mathsf{A}^T : \mathsf{A}.$

4. Matrix $\widetilde{\mathbf{B}} \leftarrow \mathsf{desc}[\mathsf{GrB}_\mathsf{I}\mathsf{NP1}].\mathsf{GrB}_\mathsf{T}\mathsf{RAN} ? \mathsf{B}^T : \mathsf{B}.$

The internal matrices and masks are checked for dimension compatibility. The following conditions must hold:

2734 1.
$$\operatorname{nrows}(\widetilde{\mathbf{C}}) = \operatorname{nrows}(\widetilde{\mathbf{M}}) = \operatorname{nrows}(\widetilde{\mathbf{A}}) = \operatorname{nrows}(\widetilde{\mathbf{C}}).$$

2735 2.
$$\operatorname{\mathbf{ncols}}(\widetilde{\mathbf{C}}) = \operatorname{\mathbf{ncols}}(\widetilde{\mathbf{M}}) = \operatorname{\mathbf{ncols}}(\widetilde{\mathbf{A}}) = \operatorname{\mathbf{ncols}}(\widetilde{\mathbf{C}}).$$

If any compatibility rule above is violated, execution of $GrB_eWiseMult$ ends and the dimension mismatch error listed above is returned.

From this point forward, in $GrB_NONBLOCKING$ mode, the method can optionally exit with $GrB_SUCCESS$ return code and defer any computation and/or execution error codes.

We are now ready to carry out the element-wise "product" and any additional associated operations. We describe this in terms of two intermediate matrices:

- $\widetilde{\mathbf{T}}$: The matrix holding the element-wise product of $\widetilde{\mathbf{A}}$ and $\widetilde{\mathbf{B}}$.
- $\widetilde{\mathbf{Z}}$: The matrix holding the result after application of the (optional) accumulation operator.

The intermediate matrix $\widetilde{\mathbf{T}} = \langle \mathbf{D}_{out}(\mathsf{op}), \mathbf{nrows}(\widetilde{\mathbf{A}}), \mathbf{ncols}(\widetilde{\mathbf{A}}), \{(i, j, T_{ij}) : \mathbf{ind}(\widetilde{\mathbf{A}}) \cap \mathbf{ind}(\widetilde{\mathbf{B}}) \neq \emptyset \} \rangle$ is created. The value of each of its elements is computed by

2746
$$T_{ij} = (\widetilde{\mathbf{A}}(i,j) \otimes \widetilde{\mathbf{B}}(i,j)), \forall (i,j) \in \mathbf{ind}(\widetilde{\mathbf{A}}) \cap \mathbf{ind}(\widetilde{\mathbf{B}})$$

2747 The intermediate matrix $\widetilde{\mathbf{Z}}$ is created as follows, using what is called a *standard matrix accumulate*:

- If accum = GrB_NULL, then $\widetilde{\mathbf{Z}} = \widetilde{\mathbf{T}}$.
- If accum is a binary operator, then $\widetilde{\mathbf{Z}}$ is defined as

2750

 $\widetilde{\mathbf{Z}} = \langle \mathbf{D}_{out}(\operatorname{accum}), \operatorname{\mathbf{nrows}}(\widetilde{\mathbf{C}}), \operatorname{\mathbf{ncols}}(\widetilde{\mathbf{C}}), \{(i, j, Z_{ij}) \forall (i, j) \in \operatorname{\mathbf{ind}}(\widetilde{\mathbf{C}}) \cup \operatorname{\mathbf{ind}}(\widetilde{\mathbf{T}})\} \rangle.$

The values of the elements of $\widetilde{\mathbf{Z}}$ are computed based on the relationships between the sets of indices in $\widetilde{\mathbf{C}}$ and $\widetilde{\mathbf{T}}$.

2753
$$Z_{ij} = \widetilde{\mathbf{C}}(i,j) \odot \widetilde{\mathbf{T}}(i,j), \text{ if } (i,j) \in (\mathbf{ind}(\widetilde{\mathbf{T}}) \cap \mathbf{ind}(\widetilde{\mathbf{C}})),$$

2754 2755

2756

$$Z_{ij} = \widetilde{\mathbf{C}}(i,j), \text{ if } (i,j) \in (\mathbf{ind}(\widetilde{\mathbf{C}}) - (\mathbf{ind}(\widetilde{\mathbf{T}}) \cap \mathbf{ind}(\widetilde{\mathbf{C}}))),$$

2757
$$Z_{ij} = \widetilde{\mathbf{T}}(i,j), \text{ if } (i,j) \in (\mathbf{ind}(\widetilde{\mathbf{T}}) - (\mathbf{ind}(\widetilde{\mathbf{T}}) \cap \mathbf{ind}(\widetilde{\mathbf{C}}))),$$

where
$$\odot = \bigcirc(\mathsf{accum})$$
, and the difference operator refers to set difference.

Finally, the set of output values that make up matrix $\tilde{\mathbf{Z}}$ are written into the final result matrix C, using what is called a *standard matrix mask and replace*. This is carried out under control of the mask which acts as a "write mask".

• If desc[GrB_OUTP].GrB_REPLACE is set, then any values in C on input to this operation are deleted and the content of the new output matrix, C, is defined as,

$$\mathbf{L}(\mathsf{C}) = \{(i, j, Z_{ij}) : (i, j) \in (\mathbf{ind}(\mathbf{Z}) \cap \mathbf{ind}(\mathbf{M}))\}.$$

• If desc[GrB_OUTP].GrB_REPLACE is not set, the elements of $\widetilde{\mathbf{Z}}$ indicated by the mask are copied into the result matrix, C, and elements of C that fall outside the set indicated by the mask are unchanged:

2768
$$\mathbf{L}(\mathsf{C}) = \{(i, j, C_{ij}) : (i, j) \in (\mathbf{ind}(\mathsf{C}) \cap \mathbf{ind}(\neg \widetilde{\mathbf{M}}))\} \cup \{(i, j, Z_{ij}) : (i, j) \in (\mathbf{ind}(\widetilde{\mathbf{Z}}) \cap \mathbf{ind}(\widetilde{\mathbf{M}}))\}.$$

In GrB_BLOCKING mode, the method exits with return value GrB_SUCCESS and the new content of matrix C is as defined above and fully computed. In GrB_NONBLOCKING mode, the method exits with return value GrB_SUCCESS and the new content of matrix C is as defined above but may not be fully computed. However, it can be used in the next GraphBLAS method call in a sequence.

2774 4.3.5 eWiseAdd: Element-wise addition

Note: The difference between eWiseAdd and eWiseMult is not about the element-wise operation but how the index sets are treated. eWiseAdd returns an object whose indices are the "union" of the indices of the inputs whereas eWiseMult returns an object whose indices are the "intersection" of the indices of the inputs. In both cases, the passed semiring, monoid, or operator operates on the set of values from the resulting index set.

2780 4.3.5.1 eWiseAdd: Vector variant

Perform element-wise (general) addition on the elements of two vectors, producing a third vector as result.

2783 C Syntax

2784	GrB_Info	GrB_eWiseAdd(GrB_Ve	ector	W,
2785		const	GrB_Vector	mask,
2786		const	GrB_BinaryOp	accum,
2787		const	GrB_Semiring	op,
2788		const	GrB_Vector	u,
2789		const	GrB_Vector	v,
2790		const	GrB_Descriptor	desc);
2791				
2792	GrB_Info	GrB_eWiseAdd(GrB_Ve	ector	W,
2793		const	GrB_Vector	mask,
2794		const	GrB_BinaryOp	accum,
2795		const	GrB_Monoid	op,
2796		const	GrB_Vector	u,
2797		const	GrB_Vector	v,
2798		const	GrB_Descriptor	desc);
2799				
2800	GrB_Info	GrB_eWiseAdd(GrB_Ve	ector	W,
2801		const	GrB_Vector	mask,
2802		const	GrB_BinaryOp	accum,
2803		const	GrB_BinaryOp	op,
2804		const	GrB_Vector	u,
2805		const	GrB_Vector	v,
2806		const	GrB_Descriptor	desc);

Parameters

2808	W	(INOUT) An existing GraphBLAS vector. On input, the vector provides values
2809		that may be accumulated with the result of the element-wise operation. On output,
2810		this vector holds the results of the operation.
2811	mask	(IN) An optional "write" mask that controls which results from this operation are
2812		stored into the output vector w. The mask dimensions must match those of the
2813		vector w. If the GrB_STRUCTURE descriptor is not set for the mask, the domain
2814		of the mask vector must be of type bool or any of the predefined "built-in" types
2815		in Table 2.2. If the default mask is desired (i.e., a mask that is all true with the
2816		dimensions of w), GrB_NULL should be specified.
2817	accum	$\left(IN\right)$ An optional binary operator used for accumulating entries into existing w
2818		entries. If assignment rather than accumulation is desired, GrB_NULL should be
2819		specified.
2820	ор	(IN) The semiring, monoid, or binary operator used in the element-wise "sum"
2821		operation. Depending on which type is passed, the following defines the binary
2822		operator, $F_b = \langle \mathbf{D}_{out}(op), \mathbf{D}_{in_1}(op), \mathbf{D}_{in_2}(op), \oplus \rangle$, used:

2823		BinaryOp: F	$\mathbf{D}_{b} = \langle \mathbf{D}_{out}(op), \mathbf{D}_{in_1}(\mathbf{op}) \rangle$	$(op), \mathbf{D}_{in_2}(op), \bigcirc (op) \rangle.$
2824		Monoid: F	$b_b = \langle \mathbf{D}(op), \mathbf{D}(op), \mathbf{D}(op) \rangle$	$D(op), \bigcirc(op)\rangle$; the identity element is ig-
2825		ne	ored.	
2826		Semiring: F	$\mathbf{b}_{b} = \langle \mathbf{D}_{out}(op), \mathbf{D}_{in_{1}} \rangle$	$(op), \mathbf{D}_{in_2}(op), \bigoplus (op) \rangle$; the multiplicative
2827		bi	inary op and additiv	e identity are ignored.
2828	u (IN) opera	The GraphB	LAS vector holding	the values for the left-hand vector in the
	. 1			
2830	v (IN)	The GraphBl	LAS vector holding	the values for the right-hand vector in the
2831	opera	ation.		
2832 C	lesc (IN)	An optional o	peration descriptor.	If a <i>default</i> descriptor is desired, GrB_NULL
2833	shou	ld be specified	l. Non-default field/	value pairs are listed as follows:
2834				
	Param	Field	Value	Description
	W	GrB_OUTP	GrB_REPLACE	Output vector w is cleared (all elements removed) before the result is stored in it.
2835	mask	GrB_MASK	GrB_STRUCTURE	The write mask is constructed from the structure (pattern of stored values) of the input mask vector. The stored values are not examined.
	mask	GrB_MASK	GrB_COMP	Use the complement of mask.

2836 Return Values

2837	GrB_SUCCESS	In blocking mode, the operation completed successfully. In non- blocking mode, this indicates that the compatibility tests on di
2838		blocking mode, this indicates that the compatibility tests on di-
2839		mensions and domains for the input arguments passed successfully.
2840		Either way, output vector w is ready to be used in the next method
2841		of the sequence.
2842	GrB_PANIC	Unknown internal error.
2843	GrB_INVALID_OBJECT	This is returned in any execution mode whenever one of the opaque
2844		GraphBLAS objects (input or output) is in an invalid state caused
2845		by a previous execution error. Call GrB error() to access any error
2846		messages generated by the implementation
2040		mossages generated by the implementation.
2847	GrB_OUT_OF_MEMORY	Not enough memory available for the operation.
2848	GrB UNINITIALIZED OBJECT	One or more of the GraphBLAS objects has not been initialized by
2040		a call to new (or due for vector parameters)
2849		a can to new (or dup for vector parameters).
2850	GrB_DIMENSION_MISMATCH	Mask or vector dimensions are incompatible.

2851	GrB_DOMAIN_MISMATCH	The domains of the various vectors are incompatible with the cor-
2852		responding domains of the binary operator (op) or accumulation
2853		operator, or the mask's domain is not compatible with bool (in the
2854		case where desc[GrB_MASK].GrB_STRUCTURE is not set).

2855 Description

This variant of GrB_eWiseAdd computes the element-wise "sum" of two GraphBLAS vectors: $w = u \oplus v$, or, if an optional binary accumulation operator (\odot) is provided, $w = w \odot (u \oplus v)$. Logically, this operation occurs in three steps:

- 2859 Setup The internal vectors and mask used in the computation are formed and their domains
 2860 and dimensions are tested for compatibility.
- 2861 **Compute** The indicated computations are carried out.
- 2862 **Output** The result is written into the output vector, possibly under control of a mask.
- ²⁸⁶³ Up to four argument vectors are used in the GrB_eWiseAdd operation:

2864 1.
$$w = \langle \mathbf{D}(w), \mathbf{size}(w), \mathbf{L}(w) = \{(i, w_i)\} \rangle$$

- 2865 2. mask = $\langle \mathbf{D}(\mathsf{mask}), \mathsf{size}(\mathsf{mask}), \mathbf{L}(\mathsf{mask}) = \{(i, m_i)\}\rangle$ (optional)
- 2866 3. $\mathbf{u} = \langle \mathbf{D}(\mathbf{u}), \mathbf{size}(\mathbf{u}), \mathbf{L}(\mathbf{u}) = \{(i, u_i)\} \rangle$
- 2867 4. $\mathbf{v} = \langle \mathbf{D}(\mathbf{v}), \mathbf{size}(\mathbf{v}), \mathbf{L}(\mathbf{v}) = \{(i, v_i)\} \rangle$
- The argument vectors, the "sum" operator (op), and the accumulation operator (if provided) are tested for domain compatibility as follows:
- 1. If mask is not GrB_NULL, and desc[GrB_MASK].GrB_STRUCTURE is not set, then D(mask) must be from one of the pre-defined types of Table 2.2.
- 2872 2. $\mathbf{D}(\mathbf{u})$ must be compatible with $\mathbf{D}_{in_1}(\mathsf{op})$.
- 2873 3. $\mathbf{D}(\mathbf{v})$ must be compatible with $\mathbf{D}_{in_2}(\mathsf{op})$.
- 2874 4. $\mathbf{D}(w)$ must be compatible with $\mathbf{D}_{out}(\mathsf{op})$.
- 2875 5. $\mathbf{D}(\mathbf{u})$ and $\mathbf{D}(\mathbf{v})$ must be compatible with $\mathbf{D}_{out}(\mathsf{op})$.
- 6. If accum is not GrB_NULL, then $\mathbf{D}(\mathbf{w})$ must be compatible with $\mathbf{D}_{in_1}(\operatorname{accum})$ and $\mathbf{D}_{out}(\operatorname{accum})$ of the accumulation operator and $\mathbf{D}_{out}(\operatorname{op})$ of op must be compatible with $\mathbf{D}_{in_2}(\operatorname{accum})$ of the accumulation operator.

Two domains are compatible with each other if values from one domain can be cast to values in the other domain as per the rules of the C language. In particular, domains from Table 2.2 are all compatible with each other. A domain from a user-defined type is only compatible with itself. If any compatibility rule above is violated, execution of GrB_eWiseMult ends and the domain mismatch error listed above is returned.

From the argument vectors, the internal vectors and mask used in the computation are formed (\leftarrow denotes copy):

2886 1. Vector $\widetilde{\mathbf{w}} \leftarrow \mathbf{w}$.

2887 2. One-dimensional mask, $\tilde{\mathbf{m}}$, is computed from argument mask as follows:

(a) If mask = GrB_NULL, then $\widetilde{\mathbf{m}} = \langle \mathbf{size}(\mathsf{w}), \{i, \forall i : 0 \le i < \mathbf{size}(\mathsf{w})\} \rangle$.

- (b) If mask \neq GrB_NULL,
- 2890 2891
 - i. If desc[GrB_MASK].GrB_STRUCTURE is set, then $\widetilde{\mathbf{m}} = \langle \mathbf{size}(\mathsf{mask}), \{i : i \in \mathbf{ind}(\mathsf{mask})\} \rangle$,

ii. Otherwise, $\widetilde{\mathbf{m}} = \langle \mathbf{size}(\mathsf{mask}), \{i : i \in \mathbf{ind}(\mathsf{mask}) \land (\mathsf{bool})\mathsf{mask}(i) = \mathsf{true} \} \rangle$.

- 2892 (c) If desc[GrB_MASK].GrB_COMP is set, then $\widetilde{\mathbf{m}} \leftarrow \neg \widetilde{\mathbf{m}}$.
- 2893 3. Vector $\widetilde{\mathbf{u}} \leftarrow \mathbf{u}$.
- 2894 4. Vector $\tilde{\mathbf{v}} \leftarrow \mathbf{v}$.

The internal vectors and mask are checked for dimension compatibility. The following conditions must hold:

2897 1.
$$\operatorname{size}(\widetilde{\mathbf{w}}) = \operatorname{size}(\widetilde{\mathbf{m}}) = \operatorname{size}(\widetilde{\mathbf{u}}) = \operatorname{size}(\widetilde{\mathbf{v}}).$$

If any compatibility rule above is violated, execution of GrB_eWiseMult ends and the dimension mismatch error listed above is returned.

From this point forward, in $GrB_NONBLOCKING$ mode, the method can optionally exit with $GrB_SUCCESS$ return code and defer any computation and/or execution error codes.

We are now ready to carry out the element-wise "sum" and any additional associated operations. We describe this in terms of two intermediate vectors:

- $\tilde{\mathbf{t}}$: The vector holding the element-wise "sum" of $\tilde{\mathbf{u}}$ and vector $\tilde{\mathbf{v}}$.
- $\tilde{\mathbf{z}}$: The vector holding the result after application of the (optional) accumulation operator.

The intermediate vector $\widetilde{\mathbf{t}} = \langle \mathbf{D}_{out}(\mathsf{op}), \mathbf{size}(\widetilde{\mathbf{u}}), \mathbf{L}(\widetilde{\mathbf{t}}) = \{(i, t_i) : \mathbf{ind}(\widetilde{\mathbf{u}}) \cap \mathbf{ind}(\widetilde{\mathbf{v}}) \neq \emptyset\} \rangle$ is created. The value of each of its elements is computed by:

2908 $t_i = (\widetilde{\mathbf{u}}(i) \oplus \widetilde{\mathbf{v}}(i)), \forall i \in (\mathbf{ind}(\widetilde{\mathbf{u}}) \cap \mathbf{ind}(\widetilde{\mathbf{v}}))$

2909 2910 $t_i = \widetilde{\mathbf{u}}(i), \forall i \in (\mathbf{ind}(\widetilde{\mathbf{u}}) - (\mathbf{ind}(\widetilde{\mathbf{v}}) \cap \mathbf{ind}(\widetilde{\mathbf{u}})))$

2911 2912	$t_i = \widetilde{\mathbf{v}}(i), \forall i \in (\mathbf{ind}(\widetilde{\mathbf{v}}) - (\mathbf{ind}(\widetilde{\mathbf{v}}) \cap \mathbf{ind}(\widetilde{\mathbf{u}})))$
2913	where the difference operator in the previous expressions refers to set difference.
2914	The intermediate vector $\tilde{\mathbf{z}}$ is created as follows, using what is called a <i>standard vector accumulate</i> :
2915	• If accum = GrB_NULL, then $\widetilde{\mathbf{z}} = \widetilde{\mathbf{t}}$.
2916	• If accum is a binary operator, then $\widetilde{\mathbf{z}}$ is defined as
2917	$\widetilde{\mathbf{z}} = \langle \mathbf{D}_{out}(accum), \mathbf{size}(\widetilde{\mathbf{w}}), \{(i, z_i) \ \forall \ i \in \mathbf{ind}(\widetilde{\mathbf{w}}) \cup \mathbf{ind}(\widetilde{\mathbf{t}}) \} \rangle.$
2918 2919 2920 2921	The values of the elements of $\tilde{\mathbf{z}}$ are computed based on the relationships between the sets of indices in $\tilde{\mathbf{w}}$ and $\tilde{\mathbf{t}}$. $z_i = \tilde{\mathbf{w}}(i) \odot \tilde{\mathbf{t}}(i)$, if $i \in (\mathbf{ind}(\tilde{\mathbf{t}}) \cap \mathbf{ind}(\tilde{\mathbf{w}}))$,
2922 2923 2924	$egin{aligned} &z_i = \widetilde{\mathbf{w}}(i), ext{ if } i \in (\mathbf{ind}(\widetilde{\mathbf{w}}) - (\mathbf{ind}(\widetilde{\mathbf{t}}) \cap \mathbf{ind}(\widetilde{\mathbf{w}}))), \ &z_i = \widetilde{\mathbf{t}}(i), ext{ if } i \in (\mathbf{ind}(\widetilde{\mathbf{t}}) - (\mathbf{ind}(\widetilde{\mathbf{t}}) \cap \mathbf{ind}(\widetilde{\mathbf{w}}))), \end{aligned}$
2925	where $\odot = \bigcirc(accum)$, and the difference operator refers to set difference.

Finally, the set of output values that make up vector $\tilde{\mathbf{z}}$ are written into the final result vector w, using what is called a *standard vector mask and replace*. This is carried out under control of the mask which acts as a "write mask".

• If desc[GrB_OUTP].GrB_REPLACE is set, then any values in w on input to this operation are deleted and the content of the new output vector, w, is defined as,

2931
$$\mathbf{L}(\mathsf{w}) = \{(i, z_i) : i \in (\mathbf{ind}(\widetilde{\mathbf{z}}) \cap \mathbf{ind}(\widetilde{\mathbf{m}}))\}.$$

• If desc[GrB_OUTP].GrB_REPLACE is not set, the elements of \tilde{z} indicated by the mask are copied into the result vector, w, and elements of w that fall outside the set indicated by the mask are unchanged:

 $\mathbf{L}(\mathsf{w}) = \{(i, w_i) : i \in (\mathbf{ind}(\mathsf{w}) \cap \mathbf{ind}(\neg \widetilde{\mathbf{m}}))\} \cup \{(i, z_i) : i \in (\mathbf{ind}(\widetilde{\mathbf{z}}) \cap \mathbf{ind}(\widetilde{\mathbf{m}}))\}.$

In GrB_BLOCKING mode, the method exits with return value GrB_SUCCESS and the new content of vector w is as defined above and fully computed. In GrB_NONBLOCKING mode, the method exits with return value GrB_SUCCESS and the new content of vector w is as defined above but may not be fully computed. However, it can be used in the next GraphBLAS method call in a sequence.

2940 4.3.5.2 eWiseAdd: Matrix variant

Perform element-wise (general) addition on the elements of two matrices, producing a third matrix as result.

2943 C Syntax

2944	GrB_Info	GrB_eWiseAdd(GrB_Ma	atrix	C,
2945		const	GrB_Matrix	Mask,
2946		const	GrB_BinaryOp	accum,
2947		const	GrB_Semiring	op,
2948		const	GrB_Matrix	Α,
2949		const	GrB_Matrix	В,
2950		const	GrB_Descriptor	desc);
2951				
2952	GrB_Info	GrB_eWiseAdd(GrB_Ma	atrix	C,
2953		const	GrB_Matrix	Mask,
2954		const	GrB_BinaryOp	accum,
2955		const	GrB_Monoid	op,
2956		const	GrB_Matrix	Α,
2957		const	GrB_Matrix	В,
2958		const	GrB_Descriptor	desc);
2959				
2960	GrB_Info	GrB_eWiseAdd(GrB_Ma	atrix	C,
2961		const	GrB_Matrix	Mask,
2962		const	GrB_BinaryOp	accum,
2963		const	GrB_BinaryOp	op,
2964		const	GrB_Matrix	A,
2965		const	GrB_Matrix	Β,
2966		const	GrB_Descriptor	desc);

Parameters

2968 2969 2970	С	(INOUT) An existing GraphBLAS matrix. On input, the matrix provides values that may be accumulated with the result of the element-wise operation. On output, the matrix holds the results of the operation.
2971	Mask	(IN) An optional "write" mask that controls which results from this operation are
2972		stored into the output matrix $C.$ The mask dimensions must match those of the
2973		matrix C. If the $GrB_STRUCTURE$ descriptor is not set for the mask, the domain
2974		of the $Mask$ matrix must be of type $bool$ or any of the predefined "built-in" types
2975		in Table 2.2. If the default mask is desired (i.e., a mask that is all true with the
2976		dimensions of C), GrB_NULL should be specified.
2977	accum	(IN) An optional binary operator used for accumulating entries into existing C
2978		entries. If assignment rather than accumulation is desired, GrB_NULL should be
2979		specified.
2980	ор	(IN) The semiring, monoid, or binary operator used in the element-wise "sum"
2981		operation. Depending on which type is passed, the following defines the binary
2982		operator, $F_b = \langle \mathbf{D}_{out}(op), \mathbf{D}_{in_1}(op), \mathbf{D}_{in_2}(op), \oplus \rangle$, used:

2983		BinaryOp: F	$\mathbf{T}_b = \langle \mathbf{D}_{out}(op), \mathbf{D}_{in_1}(\mathbf{op}) \rangle$	$op), \mathbf{D}_{in_2}(op), \bigodot(op) \rangle.$
2984	Monoid: $F_b = \langle \mathbf{D}(op), \mathbf{D}(op), \mathbf{D}(op) \rangle$; the identity element is ig-			
2985		n	ored.	
2986		Semiring: F	$\mathbf{f}_b = \langle \mathbf{D}_{out}(op), \mathbf{D}_{in_1} \rangle$	$(op), \mathbf{D}_{in_2}(op), \bigoplus (op) \rangle$; the multiplicative
2987		b	inary op and additiv	e identity are ignored.
2022	Δ (ΙΝΙ)	The GraphB	LAS matrix holding	the values for the left hand matrix in the
2988		ation	LAS manta notung	the values for the left-hand matrix in the
2989	oper	ation.		
2990	B (IN)	The GraphBl	LAS matrix holding	the values for the right-hand matrix in the
2991	oper	ation.		
2992	desc (IN)	An optional o	peration descriptor.	If a <i>default</i> descriptor is desired, GrB_NULL
2993	$_{\rm shou}$	ld be specified	d. Non-default field/	value pairs are listed as follows:
2994				
	Param	Field	Value	Description
	С	GrB_OUTP	GrB_REPLACE	Output matrix C is cleared (all elements
				removed) before the result is stored in it.
	Mask	GrB_MASK	GrB_STRUCTURE	The write mask is constructed from the
				structure (pattern of stored values) of the
2995				input Mask matrix. The stored values are
				not examined.
	Mask	GrB_MASK	GrB_COMP	Use the complement of Mask.
	А	GrB_INP0	GrB_TRAN	Use transpose of A for the operation.
	R	GrB INP1	GrB TRAN	Use transpose of B for the operation

$GrB_{-}INP1$ GrB_TRAN В

2996 Return Values

2997	GrB_SUCCESS	In blocking mode, the operation completed successfully. In non-
2998		blocking mode, this indicates that the compatibility tests on di-
2999		mensions and domains for the input arguments passed successfully.
3000		Either way, output matrix ${\sf C}$ is ready to be used in the next method
3001		of the sequence.
3002	GrB₋PANIC	Unknown internal error.
3003	GrB_INVALID_OBJECT	This is returned in any execution mode whenever one of the opaque
3004		GraphBLAS objects (input or output) is in an invalid state caused
3005		by a previous execution error. Call $GrB_error()$ to access any error
3006		messages generated by the implementation.
3007	GrB_OUT_OF_MEMORY	Not enough memory available for the operation.
3008	GrB_UNINITIALIZED_OBJECT	One or more of the GraphBLAS objects has not been initialized by
3009		a call to new (or Matrix_dup for matrix parameters).
3010	GrB_DIMENSION_MISMATCH	Mask and/or matrix dimensions are incompatible.

3011	GrB_DOMAIN_MISMATCH	The domains of the various matrices are incompatible with the
3012		corresponding domains of the binary operator (op) or accumulation
3013		operator, or the mask's domain is not compatible with $bool$ (in the
3014		case where desc[GrB_MASK].GrB_STRUCTURE is not set).

3015 Description

This variant of GrB_eWiseAdd computes the element-wise "sum" of two GraphBLAS matrices: $C = A \oplus B$, or, if an optional binary accumulation operator (\odot) is provided, $C = C \odot (A \oplus B)$. Logically, this operation occurs in three steps:

- 3019 Setup The internal matrices and mask used in the computation are formed and their domains
 3020 and dimensions are tested for compatibility.
- 3021 **Compute** The indicated computations are carried out.
- 3022 **Output** The result is written into the output matrix, possibly under control of a mask.
- ³⁰²³ Up to four argument matrices are used in the GrB_eWiseMult operation:

3024 1. $C = \langle \mathbf{D}(C), \mathbf{nrows}(C), \mathbf{ncols}(C), \mathbf{L}(C) = \{(i, j, C_{ij})\} \rangle$

3025 2. $Mask = \langle \mathbf{D}(Mask), \mathbf{nrows}(Mask), \mathbf{ncols}(Mask), \mathbf{L}(Mask) = \{(i, j, M_{ij})\} \rangle$ (optional)

3026 3. $A = \langle \mathbf{D}(A), \mathbf{nrows}(A), \mathbf{ncols}(A), \mathbf{L}(A) = \{(i, j, A_{ij})\} \rangle$

3027 4. $\mathsf{B} = \langle \mathbf{D}(\mathsf{B}), \mathbf{nrows}(\mathsf{B}), \mathbf{ncols}(\mathsf{B}), \mathbf{L}(\mathsf{B}) = \{(i, j, B_{ij})\} \rangle$

- The argument matrices, the "sum" operator (op), and the accumulation operator (if provided) are tested for domain compatibility as follows:
- If Mask is not GrB_NULL, and desc[GrB_MASK].GrB_STRUCTURE is not set, then D(Mask)
 must be from one of the pre-defined types of Table 2.2.
- 3032 2. $\mathbf{D}(\mathsf{A})$ must be compatible with $\mathbf{D}_{in_1}(\mathsf{op})$.
- 3033 3. $\mathbf{D}(\mathsf{B})$ must be compatible with $\mathbf{D}_{in_2}(\mathsf{op})$.
- 3034 4. $\mathbf{D}(\mathsf{C})$ must be compatible with $\mathbf{D}_{out}(\mathsf{op})$.
- 3035 5. D(A) and D(B) must be compatible with $D_{out}(op)$.
- 6. If accum is not GrB_NULL, then D(C) must be compatible with $D_{in_1}(accum)$ and $D_{out}(accum)$ of the accumulation operator and $D_{out}(op)$ of op must be compatible with $D_{in_2}(accum)$ of the accumulation operator.

Two domains are compatible with each other if values from one domain can be cast to values in the other domain as per the rules of the C language. In particular, domains from Table 2.2 are all compatible with each other. A domain from a user-defined type is only compatible with itself. If any compatibility rule above is violated, execution of GrB_eWiseMult ends and the domain mismatch error listed above is returned.

From the argument matrices, the internal matrices and mask used in the computation are formed $(\leftarrow \text{ denotes copy})$:

3046 1. Matrix $\widetilde{\mathbf{C}} \leftarrow \mathsf{C}$.

 $_{3047}$ 2. Two-dimensional mask, $\widetilde{\mathbf{M}}$, is computed from argument Mask as follows:

- (a) If Mask = GrB_NULL, then $\widetilde{\mathbf{M}} = \langle \mathbf{nrows}(\mathsf{C}), \mathbf{ncols}(\mathsf{C}), \{(i, j), \forall i, j : 0 \le i < \mathbf{nrows}(\mathsf{C}), 0 \le j < \mathbf{ncols}(\mathsf{C}) \} \rangle$.
- 3050 (b) If $Mask \neq GrB_NULL$,
- i. If desc[GrB_MASK].GrB_STRUCTURE is set, then $\mathbf{M} = \langle \mathbf{nrows}(\mathsf{Mask}), \mathbf{ncols}(\mathsf{Mask}), \{(i, j) : (i, j) \in \mathbf{ind}(\mathsf{Mask})\} \rangle$,
- ii. Otherwise, $\mathbf{M} = \langle \mathbf{nrows}(\mathsf{Mask}), \mathbf{ncols}(\mathsf{Mask}), \{(i, j) : (i, j) \in \mathbf{ind}(\mathsf{Mask}) \land (\mathsf{bool})\mathsf{Mask}(i, j) = \mathsf{true} \} \rangle$.
- 3055 (c) If desc[GrB_MASK].GrB_COMP is set, then $\widetilde{\mathbf{M}} \leftarrow \neg \widetilde{\mathbf{M}}$.
- 3056 3. Matrix $\widetilde{\mathbf{A}} \leftarrow \mathsf{desc}[\mathsf{GrB}_\mathsf{INP0}].\mathsf{GrB}_\mathsf{TRAN} ? \mathsf{A}^T : \mathsf{A}.$

3057 4. Matrix
$$\widetilde{\mathbf{B}} \leftarrow \mathsf{desc}[\mathsf{GrB}_{\mathsf{I}}\mathsf{INP1}].\mathsf{GrB}_{\mathsf{T}}\mathsf{TRAN} ? \mathsf{B}^T : \mathsf{B}.$$

The internal matrices and masks are checked for dimension compatibility. The following conditions must hold:

3060 1.
$$\operatorname{nrows}(\widetilde{\mathbf{C}}) = \operatorname{nrows}(\widetilde{\mathbf{M}}) = \operatorname{nrows}(\widetilde{\mathbf{A}}) = \operatorname{nrows}(\widetilde{\mathbf{C}}).$$

3061 2.
$$\operatorname{\mathbf{ncols}}(\widetilde{\mathbf{C}}) = \operatorname{\mathbf{ncols}}(\widetilde{\mathbf{M}}) = \operatorname{\mathbf{ncols}}(\widetilde{\mathbf{A}}) = \operatorname{\mathbf{ncols}}(\widetilde{\mathbf{C}}).$$

If any compatibility rule above is violated, execution of GrB_eWiseMult ends and the dimension mismatch error listed above is returned.

From this point forward, in $GrB_NONBLOCKING$ mode, the method can optionally exit with GrB_SUCCESS return code and defer any computation and/or execution error codes.

We are now ready to carry out the element-wise "sum" and any additional associated operations. We describe this in terms of two intermediate matrices:

- $\widetilde{\mathbf{T}}$: The matrix holding the element-wise sum of $\widetilde{\mathbf{A}}$ and $\widetilde{\mathbf{B}}$.
- $\tilde{\mathbf{Z}}$: The matrix holding the result after application of the (optional) accumulation operator.

The intermediate matrix $\widetilde{\mathbf{T}} = \langle \mathbf{D}_{out}(\mathsf{op}), \mathbf{nrows}(\widetilde{\mathbf{A}}), \mathbf{ncols}(\widetilde{\mathbf{A}}), \{(i, j, T_{ij}) : \mathbf{ind}(\widetilde{\mathbf{A}}) \cap \mathbf{ind}(\widetilde{\mathbf{B}}) \neq \emptyset \} \rangle$ is created. The value of each of its elements is computed by

- 3072 $T_{ij} = (\widetilde{\mathbf{A}}(i,j) \oplus \widetilde{\mathbf{B}}(i,j)), \forall (i,j) \in \mathbf{ind}(\widetilde{\mathbf{A}}) \cap \mathbf{ind}(\widetilde{\mathbf{B}})$
- 3073
- $T_{ij} = \widetilde{\mathbf{A}}(i,j), \forall (i,j) \in (\mathbf{ind}(\widetilde{\mathbf{A}}) (\mathbf{ind}(\widetilde{\mathbf{B}}) \cap \mathbf{ind}(\widetilde{\mathbf{A}})))$
- $T_{ij} = \widetilde{\mathbf{B}}(i,j), \forall (i,j) \in (\mathbf{ind}(\widetilde{\mathbf{B}}) (\mathbf{ind}(\widetilde{\mathbf{B}}) \cap \mathbf{ind}(\widetilde{\mathbf{A}})))$

³⁰⁷⁷ where the difference operator in the previous expressions refers to set difference.

3078 The intermediate matrix $\widetilde{\mathbf{Z}}$ is created as follows, using what is called a *standard matrix accumulate*:

• If accum = GrB_NULL, then
$$\widetilde{\mathbf{Z}} = \widetilde{\mathbf{T}}$$
.

• If accum is a binary operator, then $\widetilde{\mathbf{Z}}$ is defined as

3095

 $\widetilde{\mathbf{Z}} = \langle \mathbf{D}_{out}(\mathsf{accum}), \mathbf{nrows}(\widetilde{\mathbf{C}}), \mathbf{ncols}(\widetilde{\mathbf{C}}), \{(i, j, Z_{ij}) \forall (i, j) \in \mathbf{ind}(\widetilde{\mathbf{C}}) \cup \mathbf{ind}(\widetilde{\mathbf{T}}) \} \rangle.$

The values of the elements of $\tilde{\mathbf{Z}}$ are computed based on the relationships between the sets of indices in $\tilde{\mathbf{C}}$ and $\tilde{\mathbf{T}}$.

 $Z_{ij} = \widetilde{\mathbf{C}}(i,j) \odot \widetilde{\mathbf{T}}(i,j), \text{ if } (i,j) \in (\mathbf{ind}(\widetilde{\mathbf{T}}) \cap \mathbf{ind}(\widetilde{\mathbf{C}})),$ $Z_{ij} = \widetilde{\mathbf{C}}(i,j), \text{ if } (i,j) \in (\mathbf{ind}(\widetilde{\mathbf{C}}) - (\mathbf{ind}(\widetilde{\mathbf{T}}) \cap \mathbf{ind}(\widetilde{\mathbf{C}}))),$ $Z_{ij} = \widetilde{\mathbf{T}}(i,j), \text{ if } (i,j) \in (\mathbf{ind}(\widetilde{\mathbf{T}}) - (\mathbf{ind}(\widetilde{\mathbf{T}}) \cap \mathbf{ind}(\widetilde{\mathbf{C}}))),$ $Z_{ij} = \widetilde{\mathbf{T}}(i,j), \text{ if } (i,j) \in (\mathbf{ind}(\widetilde{\mathbf{T}}) - (\mathbf{ind}(\widetilde{\mathbf{T}}) \cap \mathbf{ind}(\widetilde{\mathbf{C}}))),$

where
$$\odot = \bigcirc(\mathsf{accum})$$
, and the difference operator refers to set difference.

Finally, the set of output values that make up matrix $\tilde{\mathbf{Z}}$ are written into the final result matrix C, using what is called a *standard matrix mask and replace*. This is carried out under control of the mask which acts as a "write mask".

• If desc[GrB_OUTP].GrB_REPLACE is set, then any values in C on input to this operation are deleted and the content of the new output matrix, C, is defined as,

$$\mathbf{L}(\mathsf{C}) = \{(i, j, Z_{ij}) : (i, j) \in (\mathbf{ind}(\widetilde{\mathbf{Z}}) \cap \mathbf{ind}(\widetilde{\mathbf{M}}))\}.$$

• If desc[GrB_OUTP].GrB_REPLACE is not set, the elements of $\widetilde{\mathbf{Z}}$ indicated by the mask are copied into the result matrix, C, and elements of C that fall outside the set indicated by the mask are unchanged:

3099
$$\mathbf{L}(\mathsf{C}) = \{(i, j, C_{ij}) : (i, j) \in (\mathbf{ind}(\mathsf{C}) \cap \mathbf{ind}(\neg \widetilde{\mathbf{M}}))\} \cup \{(i, j, Z_{ij}) : (i, j) \in (\mathbf{ind}(\widetilde{\mathbf{Z}}) \cap \mathbf{ind}(\widetilde{\mathbf{M}}))\}.$$

In GrB_BLOCKING mode, the method exits with return value GrB_SUCCESS and the new content of matrix C is as defined above and fully computed. In GrB_NONBLOCKING mode, the method exits with return value GrB_SUCCESS and the new content of matrix C is as defined above but may not be fully computed. However, it can be used in the next GraphBLAS method call in a sequence.

3105 4.3.6 extract: Selecting Sub-Graphs

3106 Extract a subset of a matrix or vector.

3107 4.3.6.1 extract: Standard vector variant

Extract a sub-vector from a larger vector as specified by a set of indices. The result is a vector whose size is equal to the number of indices.

3110 C Syntax

3111	GrB_Info GrB_extract(GrB_Vector	W,
3112	const GrB_Vector	mask,
3113	const GrB_BinaryOp	accum,
3114	const GrB_Vector	u,
3115	const GrB_Index	*indices,
3116	GrB_Index	nindices,
3117	const GrB_Descriptor	desc);

3118 Parameters

3119	W	(INOUT) An existing GraphBLAS vector. On input, the vector provides values
3120		that may be accumulated with the result of the extract operation. On output, this
3121		vector holds the results of the operation.
3122	mask	(IN) An optional "write" mask that controls which results from this operation are
3123		stored into the output vector w. The mask dimensions must match those of the
3124		vector w. If the GrB_STRUCTURE descriptor is not set for the mask, the domain
3125		of the mask vector must be of type bool or any of the predefined "built-in" types
3126		in Table 2.2. If the default mask is desired (i.e., a mask that is all true with the
3127		dimensions of w), GrB_NULL should be specified.
3128	accum	(IN) An optional binary operator used for accumulating entries into existing w
3129		entries. If assignment rather than accumulation is desired, GrB_NULL should be
3130		specified.
3131	u	(IN) The GraphBLAS vector from which the subset is extracted.
3132	indices	(IN) Pointer to the ordered set (array) of indices corresponding to the locations of
3133		elements from u that are extracted. If all elements of u are to be extracted in order
3134		from 0 to $nindices - 1$, then GrB_ALL should be specified. Regardless of execution
3135		mode and return value, this array may be manipulated by the caller after this
3136		operation returns without affecting any deferred computations for this operation.
3137	nindices	(IN) The number of values in indices array. Must be equal to $\mathbf{size}(w).$

	· · · · ·	-		
3139	shou	ld be specified	d. Non-default field/	value pairs are listed as follows:
3140				
	Param	Field	Value	Description
	W	GrB_OUTP	GrB_REPLACE	Output vector w is cleared (all elements
				removed) before the result is stored in it.
	mask	GrB_MASK	GrB_STRUCTURE	The write mask is constructed from the
3141				structure (pattern of stored values) of the
				input $mask$ vector. The stored values are
				not examined.
	mask	GrB_MASK	GrB_COMP	Use the complement of mask.

desc (IN) An optional operation descriptor. If a *default* descriptor is desired, GrB_NULL

3142 Return Values

3138

3143 3144 3145 3146	GrB_SUCCESS	In blocking mode, the operation completed successfully. In non- blocking mode, this indicates that the compatibility tests on di- mensions and domains for the input arguments passed successfully. Either way, output vector w is ready to be used in the next method
3147	GrB PANIC	of the sequence.
3140		
3149	GrB_INVALID_OBJECT	This is returned in any execution mode whenever one of the opaque GraphBLAS objects (input or output) is in an invalid state caused
3151		by a previous execution error. Call GrB_error() to access any error
3152		messages generated by the implementation.
3153	GrB_OUT_OF_MEMORY	Not enough memory available for operation.
3154 3155	GrB_UNINITIALIZED_OBJECT	One or more of the GraphBLAS objects has not been initialized by a call to new (or dup for vector parameters).
3156 3157	GrB_INDEX_OUT_OF_BOUNDS	A value in indices is greater than or equal to ${\bf size}(u).$ In non-blocking mode, this error can be deferred.
3158	GrB_DIMENSION_MISMATCH	$mask ~{\rm and}~w~{\rm dimensions}~{\rm are}~{\rm incompatible},~{\rm or}~nindices\neq {\bf size}(w).$
3159 3160 3161 3162	GrB_DOMAIN_MISMATCH	The domains of the various vectors are incompatible with each other or the corresponding domains of the accumulation operator, or the mask's domain is not compatible with bool (in the case where desc[GrB_MASK].GrB_STRUCTURE is not set).
3163	GrB_NULL_POINTER	Argument row_indices is a NULL pointer.

3164 Description

This variant of GrB_extract computes the result of extracting a subset of locations from a Graph-BLAS vector in a specific order: w = u(indices); or, if an optional binary accumulation operator 3167 (\odot) is provided, $w = w \odot u$ (indices). More explicitly:

$$egin{aligned} \mathsf{w}(i) &= \mathsf{u}(\mathsf{indices}[i]), \ \forall \ i: \ 0 \leq i < \mathsf{nindices}, \ \mathrm{or} \ \mathsf{w}(i) &= \mathsf{w}(i) \odot \mathsf{u}(\mathsf{indices}[i]), \ \forall \ i: \ 0 \leq i < \mathsf{nindices} \end{aligned}$$

³¹⁶⁹ Logically, this operation occurs in three steps:

3168

Setup The internal vectors and mask used in the computation are formed and their domains
 and dimensions are tested for compatibility.

3172 **Compute** The indicated computations are carried out.

3173 **Output** The result is written into the output vector, possibly under control of a mask.

³¹⁷⁴ Up to three argument vectors are used in this GrB_extract operation:

3175 1.
$$w = \langle \mathbf{D}(w), \mathbf{size}(w), \mathbf{L}(w) = \{(i, w_i)\} \rangle$$

3176 2. mask = $\langle \mathbf{D}(\mathsf{mask}), \mathsf{size}(\mathsf{mask}), \mathbf{L}(\mathsf{mask}) = \{(i, m_i)\}\rangle$ (optional)

3177 3.
$$\mathbf{u} = \langle \mathbf{D}(\mathbf{u}), \mathbf{size}(\mathbf{u}), \mathbf{L}(\mathbf{u}) = \{(i, u_i)\} \rangle$$

The argument vectors and the accumulation operator (if provided) are tested for domain compatibility as follows:

- 1. If mask is not GrB_NULL, and desc[GrB_MASK].GrB_STRUCTURE is not set, then D(mask) must be from one of the pre-defined types of Table 2.2.
- 3182 2. $\mathbf{D}(w)$ must be compatible with $\mathbf{D}(u)$.

3183 3. If accum is not GrB_NULL, then $\mathbf{D}(w)$ must be compatible with $\mathbf{D}_{in_1}(\operatorname{accum})$ and $\mathbf{D}_{out}(\operatorname{accum})$ 3184 of the accumulation operator and $\mathbf{D}(u)$ must be compatible with $\mathbf{D}_{in_2}(\operatorname{accum})$ of the accumulation operator.

Two domains are compatible with each other if values from one domain can be cast to values in the other domain as per the rules of the C language. In particular, domains from Table 2.2 are all compatible with each other. A domain from a user-defined type is only compatible with itself. If any compatibility rule above is violated, execution of GrB_extract ends and the domain mismatch error listed above is returned.

From the arguments, the internal vectors, mask, and index array used in the computation are formed (\leftarrow denotes copy):

- 3193 1. Vector $\widetilde{\mathbf{w}} \leftarrow \mathbf{w}$.
- 2. One-dimensional mask, $\widetilde{\mathbf{m}}$, is computed from argument mask as follows:

(a) If mask = GrB_NULL, then $\widetilde{\mathbf{m}} = \langle \operatorname{size}(\mathsf{w}), \{i, \forall i : 0 \le i < \operatorname{size}(\mathsf{w})\} \rangle$.

(b) If mask \neq GrB_NULL, i. If desc[GrB_MASK].GrB_STRUCTURE is set, then $\widetilde{\mathbf{m}} = \langle \mathbf{size}(\mathsf{mask}), \{i : i \in \mathbf{ind}(\mathsf{mask})\} \rangle$, ii. Otherwise, $\widetilde{\mathbf{m}} = \langle \mathbf{size}(\mathsf{mask}), \{i : i \in \mathbf{ind}(\mathsf{mask}) \land (\mathsf{bool})\mathsf{mask}(i) = \mathsf{true}\} \rangle$. (c) If desc[GrB_MASK].GrB_COMP is set, then $\widetilde{\mathbf{m}} \leftarrow \neg \widetilde{\mathbf{m}}$.

3200 3. Vector $\tilde{\mathbf{u}} \leftarrow \mathbf{u}$.

- 4. The internal index array, \tilde{I} , is computed from argument indices as follows:
- (a) If indices = GrB_ALL, then $\widetilde{I}[i] = i, \forall i : 0 \le i < \text{nindices}$.
- 3203 (b) Otherwise, $\widetilde{I}[i] = indices[i], \forall i : 0 \le i < nindices.$

The internal vectors and mask are checked for dimension compatibility. The following conditions must hold:

3206 1. $\operatorname{size}(\widetilde{\mathbf{w}}) = \operatorname{size}(\widetilde{\mathbf{m}})$

3207 2. nindices = $size(\widetilde{w})$.

If any compatibility rule above is violated, execution of GrB_extract ends and the dimension mismatch error listed above is returned.

From this point forward, in $GrB_NONBLOCKING$ mode, the method can optionally exit with $GrB_SUCCESS$ return code and defer any computation and/or execution error codes.

We are now ready to carry out the extract and any additional associated operations. We describe this in terms of two intermediate vectors:

• $\tilde{\mathbf{t}}$: The vector holding the extraction from $\tilde{\mathbf{u}}$ in their destination locations relative to $\tilde{\mathbf{w}}$.

• \tilde{z} : The vector holding the result after application of the (optional) accumulation operator.

3216 The intermediate vector, $\tilde{\mathbf{t}}$, is created as follows:

$$\widetilde{\mathbf{t}} = \langle \mathbf{D}(\mathsf{u}), \mathbf{size}(\widetilde{\mathbf{w}}), \{(i, \widetilde{\mathbf{u}}(\widetilde{\boldsymbol{I}}[i])) \forall i, 0 \le i < \mathsf{nindices} : \widetilde{\boldsymbol{I}}[i] \in \mathbf{ind}(\widetilde{\mathbf{u}})\} \rangle.$$

At this point, if any value in \tilde{I} is not in the valid range of indices for vector \tilde{u} , the execution of GrB_extract ends and the index-out-of-bounds error listed above is generated. In GrB_NONBLOCKING mode, the error can be deferred until a sequence-terminating GrB_wait() is called. Regardless, the result vector, w, is invalid from this point forward in the sequence.

3222 The intermediate vector $\tilde{\mathbf{z}}$ is created as follows, using what is called a *standard vector accumulate*:

- If accum = GrB_NULL, then $\widetilde{\mathbf{z}} = \widetilde{\mathbf{t}}$.
- If accum is a binary operator, then $\tilde{\mathbf{z}}$ is defined as

3225 $\widetilde{\mathbf{z}} = \langle \mathbf{D}_{out}(\mathsf{accum}), \mathbf{size}(\widetilde{\mathbf{w}}), \{(i, z_i) \ \forall \ i \in \mathbf{ind}(\widetilde{\mathbf{w}}) \cup \mathbf{ind}(\widetilde{\mathbf{t}}) \} \rangle.$

The values of the elements of $\tilde{\mathbf{z}}$ are computed based on the relationships between the sets of indices in $\tilde{\mathbf{w}}$ and $\tilde{\mathbf{t}}$.

 $z_{i} = \widetilde{\mathbf{w}}(i) \odot \widetilde{\mathbf{t}}(i), \text{ if } i \in (\mathbf{ind}(\widetilde{\mathbf{t}}) \cap \mathbf{ind}(\widetilde{\mathbf{w}})), \\ z_{i} = \widetilde{\mathbf{w}}(i), \text{ if } i \in (\mathbf{ind}(\widetilde{\mathbf{w}}) - (\mathbf{ind}(\widetilde{\mathbf{t}}) \cap \mathbf{ind}(\widetilde{\mathbf{w}}))), \\ z_{i} = \widetilde{\mathbf{w}}(i), \text{ if } i \in (\mathbf{ind}(\widetilde{\mathbf{w}}) - (\mathbf{ind}(\widetilde{\mathbf{t}}) \cap \mathbf{ind}(\widetilde{\mathbf{w}}))), \\ z_{i} = \widetilde{\mathbf{t}}(i), \text{ if } i \in (\mathbf{ind}(\widetilde{\mathbf{t}}) - (\mathbf{ind}(\widetilde{\mathbf{t}}) \cap \mathbf{ind}(\widetilde{\mathbf{w}}))), \\ z_{i} = \widetilde{\mathbf{t}}(i), \text{ if } i \in (\mathbf{ind}(\widetilde{\mathbf{t}}) - (\mathbf{ind}(\widetilde{\mathbf{t}}) \cap \mathbf{ind}(\widetilde{\mathbf{w}}))), \\ z_{i} = \widetilde{\mathbf{t}}(i), \text{ if } i \in (\mathbf{ind}(\widetilde{\mathbf{t}}) - (\mathbf{ind}(\widetilde{\mathbf{t}}) \cap \mathbf{ind}(\widetilde{\mathbf{w}}))), \\ z_{i} = \widetilde{\mathbf{t}}(i), \text{ if } i \in (\mathbf{ind}(\widetilde{\mathbf{t}}) - (\mathbf{ind}(\widetilde{\mathbf{t}}) \cap \mathbf{ind}(\widetilde{\mathbf{w}}))), \\ z_{i} = \widetilde{\mathbf{t}}(i), \text{ if } i \in (\mathbf{ind}(\widetilde{\mathbf{t}}) - (\mathbf{ind}(\widetilde{\mathbf{t}}) \cap \mathbf{ind}(\widetilde{\mathbf{w}}))), \\ z_{i} = \widetilde{\mathbf{t}}(i), \text{ if } i \in (\mathbf{ind}(\widetilde{\mathbf{t}}) - (\mathbf{ind}(\widetilde{\mathbf{t}}) \cap \mathbf{ind}(\widetilde{\mathbf{w}}))), \\ z_{i} = \widetilde{\mathbf{t}}(i), \text{ if } i \in (\mathbf{ind}(\widetilde{\mathbf{t}}) - (\mathbf{ind}(\widetilde{\mathbf{t}}) \cap \mathbf{ind}(\widetilde{\mathbf{w}}))), \\ z_{i} = \widetilde{\mathbf{t}}(i), \text{ if } i \in (\mathbf{ind}(\widetilde{\mathbf{t}}) - (\mathbf{ind}(\widetilde{\mathbf{t}}) \cap \mathbf{ind}(\widetilde{\mathbf{w}}))), \\ z_{i} = \widetilde{\mathbf{t}}(i), \text{ if } i \in (\mathbf{ind}(\widetilde{\mathbf{t}}) \cap \mathbf{ind}(\widetilde{\mathbf{w}})), \\ z_{i} = \widetilde{\mathbf{t}}(i), \text{ if } i \in (\mathbf{ind}(\widetilde{\mathbf{t}}) \cap \mathbf{ind}(\widetilde{\mathbf{w}})), \\ z_{i} = \widetilde{\mathbf{t}}(i), \text{ if } i \in (\mathbf{ind}(\widetilde{\mathbf{t}}) \cap \mathbf{ind}(\widetilde{\mathbf{w}})), \\ z_{i} = \widetilde{\mathbf{t}}(i), \text{ if } i \in (\mathbf{ind}(\widetilde{\mathbf{t}}) \cap \mathbf{ind}(\widetilde{\mathbf{w}})), \\ z_{i} = \widetilde{\mathbf{t}}(i), \text{ if } i \in (\mathbf{ind}(\widetilde{\mathbf{t}) \cap \mathbf{ind}(\widetilde{\mathbf{t}})), \\ z_{i} = \widetilde{\mathbf{t}}(i), \text{ if } i \in (\mathbf{ind}(\widetilde{\mathbf{t}) \cap \mathbf{ind}(\widetilde{\mathbf{t})}), \\ z_{i} = \widetilde{\mathbf{t}}(i), \text{ if } i \in (\mathbf{ind}(\widetilde{\mathbf{t}) \cap \mathbf{ind}(\widetilde{\mathbf{t})}), \\ z_{i} = \widetilde{\mathbf{t}}(i), \text{ if } i \in (\mathbf{ind}(\widetilde{\mathbf{t}) \cap \mathbf{ind}(\widetilde{\mathbf{t})}), \\ z_{i} = \widetilde{\mathbf{t}}(i), \text{ if } i \in (\mathbf{ind}(\widetilde{\mathbf{t}) \cap \mathbf{ind}(\widetilde{\mathbf{t})), \\ z_{i} = \widetilde{\mathbf{t}}(i), \\ z_{i} = \widetilde{\mathbf{t}(i), \\ z_{i} = \widetilde{\mathbf{t}}(i), \\ z_{i} = \widetilde{\mathbf{t}}(i), \\ z_{i} = \widetilde{\mathbf{t}(i), \\ z_{i} = \widetilde{\mathbf{t}}(i), \\ z_{i} = \widetilde{\mathbf{t}}(i), \\ z_{i} = \widetilde{\mathbf{t}(i), \\ z_{i} = \widetilde{\mathbf{t}(i), } \\ z_{i} = \widetilde{\mathbf{t}(i), \\ z_{i} = \widetilde{\mathbf{t}(i), } \\ z_{i} = \widetilde{\mathbf{t}(i), } \\ z_{i} = \widetilde{\mathbf{t}(i), \\ z_{i} = \widetilde{\mathbf{t}(i), } \\$

where $\odot = \bigcirc$ (accum), and the difference operator refers to set difference.

Finally, the set of output values that make up vector $\tilde{\mathbf{z}}$ are written into the final result vector w, using what is called a *standard vector mask and replace*. This is carried out under control of the mask which acts as a "write mask".

• If desc[GrB_OUTP].GrB_REPLACE is set, then any values in w on input to this operation are deleted and the content of the new output vector, w, is defined as,

$$\mathbf{L}(\mathsf{w}) = \{(i, z_i) : i \in (\mathbf{ind}(\widetilde{\mathbf{z}}) \cap \mathbf{ind}(\widetilde{\mathbf{m}}))\}.$$

• If desc[GrB_OUTP].GrB_REPLACE is not set, the elements of \tilde{z} indicated by the mask are copied into the result vector, w, and elements of w that fall outside the set indicated by the mask are unchanged:

32

 $\mathbf{L}(\mathsf{w}) = \{(i, w_i) : i \in (\mathbf{ind}(\mathsf{w}) \cap \mathbf{ind}(\neg \widetilde{\mathbf{m}}))\} \cup \{(i, z_i) : i \in (\mathbf{ind}(\widetilde{\mathbf{z}}) \cap \mathbf{ind}(\widetilde{\mathbf{m}}))\}.$

In GrB_BLOCKING mode, the method exits with return value GrB_SUCCESS and the new content of vector w is as defined above and fully computed. In GrB_NONBLOCKING mode, the method exits with return value GrB_SUCCESS and the new content of vector w is as defined above but may not be fully computed. However, it can be used in the next GraphBLAS method call in a sequence.

3248 4.3.6.2 extract: Standard matrix variant

Extract a sub-matrix from a larger matrix as specified by a set of row indices and a set of column indices. The result is a matrix whose size is equal to size of the sets of indices.

3251 C Syntax

3252	GrB_Info GrB_extract(GrB_Matrix	С,
3253	const GrB_Matrix	Mask,
3254	const GrB_BinaryOp	accum,
3255	const GrB_Matrix	Α,
3256	const GrB_Index	<pre>*row_indices,</pre>
3257	GrB_Index	nrows,
3258	const GrB_Index	*col_indices,
3259	GrB_Index	ncols,
3260	const GrB_Descripto	or desc);

3261 Parameters

3262 C (INOUT) An existing GraphBLAS matrix. On input, the matrix provides values that may be accumulated with the result of the extract operation. On output, the 3263 matrix holds the results of the operation. 3264 Mask (IN) An optional "write" mask that controls which results from this operation are 3265 stored into the output matrix C. The mask dimensions must match those of the 3266 matrix C. If the GrB_STRUCTURE descriptor is not set for the mask, the domain 3267 of the Mask matrix must be of type **bool** or any of the predefined "built-in" types 3268 in Table 2.2. If the default mask is desired (i.e., a mask that is all true with the 3269 dimensions of C), GrB_NULL should be specified. 3270 accum (IN) An optional binary operator used for accumulating entries into existing C 3271 entries. If assignment rather than accumulation is desired, GrB_NULL should be 3272 specified. 3273 A (IN) The GraphBLAS matrix from which the subset is extracted. 3274 row_indices (IN) Pointer to the ordered set (array) of indices corresponding to the rows of A 3275 from which elements are extracted. If elements in all rows of A are to be extracted 3276 in order, GrB_ALL should be specified. Regardless of execution mode and return 3277 value, this array may be manipulated by the caller after this operation returns 3278 without affecting any deferred computations for this operation. 3279 **nrows** (IN) The number of values in the row_indices array. Must be equal to $\mathbf{nrows}(C)$. 3280 col_indices (IN) Pointer to the ordered set (array) of indices corresponding to the columns 3281 of A from which elements are extracted. If elements in all columns of A are to 3282 be extracted in order, then GrB_ALL should be specified. Regardless of execution 3283 mode and return value, this array may be manipulated by the caller after this 3284 operation returns without affecting any deferred computations for this operation. 3285 ncols (IN) The number of values in the $col_indices$ array. Must be equal to ncols(C). 3286 desc (IN) An optional operation descriptor. If a *default* descriptor is desired, GrB_NULL 3287 should be specified. Non-default field/value pairs are listed as follows: 3288 3289 Param Field Value Description С GrB_OUTP GrB_REPLACE Output matrix C is cleared (all elements removed) before the result is stored in it. GrB_MASK GrB_STRUCTURE The write mask is constructed from the Mask structure (pattern of stored values) of the 3290 input Mask matrix. The stored values are not examined. GrB_COMP Mask GrB_MASK Use the complement of Mask. GrB_INP0 GrB_TRAN Use transpose of A for the operation. А

3292 3293 3294 3295 3296	GrB_SUCCESS	In blocking mode, the operation completed successfully. In non- blocking mode, this indicates that the compatibility tests on di- mensions and domains for the input arguments passed successfully. Either way, output matrix ${\sf C}$ is ready to be used in the next method of the sequence.
3297	GrB_PANIC	Unknown internal error.
3298 3299 3300 3301	GrB_INVALID_OBJECT	This is returned in any execution mode whenever one of the opaque GraphBLAS objects (input or output) is in an invalid state caused by a previous execution error. Call GrB_error() to access any error messages generated by the implementation.
3302	GrB_OUT_OF_MEMORY	Not enough memory available for the operation.
3303 3304	GrB_UNINITIALIZED_OBJECT	One or more of the GraphBLAS objects has not been initialized by a call to new (or Matrix_dup for matrix parameters).
3305 3306 3307	GrB_INDEX_OUT_OF_BOUNDS	A value in row_indices is greater than or equal to $\mathbf{nrows}(A)$, or a value in col_indices is greater than or equal to $\mathbf{ncols}(A)$. In non-blocking mode, this error can be deferred.
3308 3309	GrB_DIMENSION_MISMATCH	Mask and C dimensions are incompatible, $nrows \neq nrows(C),$ or $ncols \neq ncols(C).$
3310 3311 3312 3313	GrB_DOMAIN_MISMATCH	The domains of the various matrices are incompatible with each other or the corresponding domains of the accumulation operator, or the mask's domain is not compatible with bool (in the case where desc[GrB_MASK].GrB_STRUCTURE is not set).
3314 3315	GrB_NULL_POINTER	Either argument row_indices is a NULL pointer, argument col_indices is a NULL pointer, or both.

3316 Description

This variant of GrB_extract computes the result of extracting a subset of locations from specified rows and columns of a GraphBLAS matrix in a specific order: $C = A(row_indices, col_indices)$; or, if an optional binary accumulation operator (\odot) is provided, $C = C \odot A(row_indices, col_indices)$. More explicitly (not accounting for an optional transpose of A):

3321	C(i,j) =	A(row_indices[i], col_indices[j]) $\forall i, j : 0$	$0 \le i < $ nrows $, 0 \le j < $ ncols $, or$
	C(i,j) = C(i,j) :	$A(row_indices[i], col_indices[j]) \ \forall \ i, j \ : \ 0$	$\leq i < {\sf nrows}, 0 \leq j < {\sf ncols}$

3322 Logically, this operation occurs in three steps:

3323 Setup The internal matrices and mask used in the computation are formed and their domains
 and dimensions are tested for compatibility.

- 3325 **Compute** The indicated computations are carried out.
- 3326 **Output** The result is written into the output matrix, possibly under control of a mask.
- ³³²⁷ Up to three argument matrices are used in the GrB_extract operation:

3328 1.
$$C = \langle \mathbf{D}(C), \mathbf{nrows}(C), \mathbf{ncols}(C), \mathbf{L}(C) = \{(i, j, C_{ij})\} \rangle$$

3329 2. $\mathsf{Mask} = \langle \mathbf{D}(\mathsf{Mask}), \mathbf{nrows}(\mathsf{Mask}), \mathbf{ncols}(\mathsf{Mask}), \mathbf{L}(\mathsf{Mask}) = \{(i, j, M_{ij})\} \rangle \text{ (optional)}$

3330 3. $A = \langle \mathbf{D}(A), \mathbf{nrows}(A), \mathbf{ncols}(A), \mathbf{L}(A) = \{(i, j, A_{ij})\} \rangle$

The argument matrices and the accumulation operator (if provided) are tested for domain compatibility as follows:

- If Mask is not GrB_NULL, and desc[GrB_MASK].GrB_STRUCTURE is not set, then D(Mask)
 must be from one of the pre-defined types of Table 2.2.
- 3335 2. D(C) must be compatible with D(A).

3336 3. If accum is not GrB_NULL, then D(C) must be compatible with $D_{in_1}(accum)$ and $D_{out}(accum)$ 3337 of the accumulation operator and D(A) must be compatible with $D_{in_2}(accum)$ of the accumulation operator.

Two domains are compatible with each other if values from one domain can be cast to values in the other domain as per the rules of the C language. In particular, domains from Table 2.2 are all compatible with each other. A domain from a user-defined type is only compatible with itself. If any compatibility rule above is violated, execution of GrB_extract ends and the domain mismatch error listed above is returned.

- From the arguments, the internal matrices, mask, and index arrays used in the computation are formed (\leftarrow denotes copy):
- 3346 1. Matrix $\widetilde{\mathbf{C}} \leftarrow \mathsf{C}$.
- 2. Two-dimensional mask, M, is computed from argument Mask as follows:

3348(a) If Mask = GrB_NULL, then $\widetilde{\mathbf{M}} = \langle \mathbf{nrows}(C), \mathbf{ncols}(C), \{(i, j), \forall i, j : 0 \le i < \mathbf{nrows}(C), 0 \le j < \mathbf{ncols}(C)\}\rangle.$ 3349 $j < \mathbf{ncols}(C)\}\rangle.$ 3350(b) If Mask \ne GrB_NULL,3351i. If desc[GrB_MASK].GrB_STRUCTURE is set, then $\widetilde{\mathbf{M}} = \langle \mathbf{nrows}(\mathsf{Mask}), \mathbf{ncols}(\mathsf{Mask}), \{(i, j) : (i, j) \in \mathbf{ind}(\mathsf{Mask})\}\rangle,$ 3352ii. Otherwise, $\widetilde{\mathbf{M}} = \langle \mathbf{nrows}(\mathsf{Mask}), \mathbf{ncols}(\mathsf{Mask}), \mathbf{ncols}(\mathsf{Mask}), \mathbf{ncols}(\mathsf{Mask}), \mathbf{ncols}(\mathsf{Mask}),$

- $(i,j): (i,j) \in \mathbf{ind}(\mathsf{Mask}) \land (\mathsf{bool})\mathsf{Mask}(i,j) = \mathsf{true}\}\rangle.$
- 3355 (c) If desc[GrB_MASK].GrB_COMP is set, then $\widetilde{\mathbf{M}} \leftarrow \neg \widetilde{\mathbf{M}}$.

3356 3. Matrix $\widetilde{\mathbf{A}} \leftarrow \mathsf{desc}[\mathsf{GrB}_\mathsf{INP0}].\mathsf{GrB}_\mathsf{TRAN} ? \mathsf{A}^T : \mathsf{A}.$

4. The internal row index array, \widetilde{I} , is computed from argument row_indices as follows:

(a) If row_indices = GrB_ALL, then $\tilde{I}[i] = i, \forall i : 0 \le i < \text{nrows}.$

(b) Otherwise, $\widetilde{I}[i] = \text{row_indices}[i], \forall i : 0 \le i < \text{nrows}.$

5. The internal column index array, \widetilde{J} , is computed from argument col_indices as follows:

(a) If col_indices = GrB_ALL, then
$$J[j] = j, \forall j : 0 \le j < \text{ncols.}$$

3362 (b) Otherwise, $\widetilde{J}[j] = \text{col_indices}[j], \forall j : 0 \le j < \text{ncols.}$

The internal matrices and mask are checked for dimension compatibility. The following conditions must hold:

3365 1. $\operatorname{nrows}(\widetilde{\mathbf{C}}) = \operatorname{nrows}(\widetilde{\mathbf{M}}).$

3366 2. $\operatorname{\mathbf{ncols}}(\widetilde{\mathbf{C}}) = \operatorname{\mathbf{ncols}}(\widetilde{\mathbf{M}}).$

3367 3. $\mathbf{nrows}(\widetilde{\mathbf{C}}) = \mathsf{nrows}.$

3368 4.
$$ncols(C) = ncols.$$

If any compatibility rule above is violated, execution of GrB_extract ends and the dimension mismatch error listed above is returned.

³³⁷¹ From this point forward, in GrB_NONBLOCKING mode, the method can optionally exit with ³³⁷² GrB_SUCCESS return code and defer any computation and/or execution error codes.

We are now ready to carry out the extract and any additional associated operations. We describe this in terms of two intermediate matrices:

• $\widetilde{\mathbf{T}}$: The matrix holding the extraction from $\widetilde{\mathbf{A}}$.

• $\widetilde{\mathbf{Z}}$: The matrix holding the result after application of the (optional) accumulation operator.

3377 The intermediate matrix, $\widetilde{\mathbf{T}}$, is created as follows:

3378

 $\widetilde{\mathbf{T}}$

$$= \langle \mathbf{D}(\mathsf{A}), \mathbf{nrows}(\widetilde{\mathbf{C}}), \mathbf{ncols}(\widetilde{\mathbf{C}}), \\ \{(i, j, \widetilde{\mathbf{A}}(\widetilde{I}[i], \widetilde{J}[j])) \ \forall \ (i, j), \ 0 \le i < \mathsf{nrows}, \ 0 \le j < \mathsf{ncols} : (\widetilde{I}[i], \widetilde{J}[j]) \in \mathbf{ind}(\widetilde{\mathbf{A}}) \} \rangle.$$

At this point, if any value in the \tilde{I} array is not in the range $[0, \operatorname{nrows}(\widetilde{A}))$ or any value in the \tilde{J} array is not in the range $[0, \operatorname{ncols}(\widetilde{A}))$, the execution of GrB_extract ends and the index out-ofbounds error listed above is generated. In GrB_NONBLOCKING mode, the error can be deferred until a sequence-terminating GrB_wait() is called. Regardless, the result matrix C is invalid from this point forward in the sequence.

The intermediate matrix $\widetilde{\mathbf{Z}}$ is created as follows, using what is called a *standard matrix accumulate*:

• If accum =
$$GrB_NULL$$
, then $Z = T$.

• If accum is a binary operator, then $\widetilde{\mathbf{Z}}$ is defined as

$$\widetilde{\mathbf{Z}} = \langle \mathbf{D}_{out}(\mathsf{accum}), \mathbf{nrows}(\widetilde{\mathbf{C}}), \mathbf{ncols}(\widetilde{\mathbf{C}}), \{(i, j, Z_{ij}) \forall (i, j) \in \mathbf{ind}(\widetilde{\mathbf{C}}) \cup \mathbf{ind}(\widetilde{\mathbf{T}}) \} \rangle.$$

The values of the elements of $\widetilde{\mathbf{Z}}$ are computed based on the relationships between the sets of indices in $\widetilde{\mathbf{C}}$ and $\widetilde{\mathbf{T}}$.

$$Z_{ij} = \widetilde{\mathbf{C}}(i, j) \odot \widetilde{\mathbf{T}}(i, j), \text{ if } (i, j) \in (\mathbf{ind}(\widetilde{\mathbf{T}}) \cap \mathbf{ind}(\widetilde{\mathbf{C}})),$$

$$Z_{ij} = \widetilde{\mathbf{C}}(i, j), \text{ if } (i, j) \in (\mathbf{ind}(\widetilde{\mathbf{C}}) - (\mathbf{ind}(\widetilde{\mathbf{T}}) \cap \mathbf{ind}(\widetilde{\mathbf{C}}))),$$

$$Z_{ij} = \widetilde{\mathbf{T}}(i, j), \text{ if } (i, j) \in (\mathbf{ind}(\widetilde{\mathbf{T}}) - (\mathbf{ind}(\widetilde{\mathbf{T}}) \cap \mathbf{ind}(\widetilde{\mathbf{C}}))),$$

$$Z_{ij} = \widetilde{\mathbf{T}}(i, j), \text{ if } (i, j) \in (\mathbf{ind}(\widetilde{\mathbf{T}}) - (\mathbf{ind}(\widetilde{\mathbf{T}}) \cap \mathbf{ind}(\widetilde{\mathbf{C}}))),$$

where $\odot = \bigcirc(\mathsf{accum})$, and the difference operator refers to set difference.

Finally, the set of output values that make up matrix $\tilde{\mathbf{Z}}$ are written into the final result matrix C, using what is called a *standard matrix mask and replace*. This is carried out under control of the mask which acts as a "write mask".

• If desc[GrB_OUTP].GrB_REPLACE is set, then any values in C on input to this operation are deleted and the content of the new output matrix, C, is defined as,

$$\mathbf{L}(\mathsf{C}) = \{(i, j, Z_{ij}) : (i, j) \in (\mathbf{ind}(\mathbf{Z}) \cap \mathbf{ind}(\mathbf{M}))\}.$$

• If desc[GrB_OUTP].GrB_REPLACE is not set, the elements of $\tilde{\mathbf{Z}}$ indicated by the mask are copied into the result matrix, C, and elements of C that fall outside the set indicated by the mask are unchanged:

3401

$$\mathbf{L}(\mathsf{C}) = \{(i, j, C_{ij}) : (i, j) \in (\mathbf{ind}(\mathsf{C}) \cap \mathbf{ind}(\neg \mathbf{M}))\} \cup \{(i, j, Z_{ij}) : (i, j) \in (\mathbf{ind}(\mathbf{Z}) \cap \mathbf{ind}(\mathbf{M}))\}.$$

In GrB_BLOCKING mode, the method exits with return value GrB_SUCCESS and the new content of matrix C is as defined above and fully computed. In GrB_NONBLOCKING mode, the method exits with return value GrB_SUCCESS and the new content of matrix C is as defined above but may not be fully computed. However, it can be used in the next GraphBLAS method call in a sequence.

3411 4.3.6.3 extract: Column (and row) variant

Extract from one column of a matrix into a vector. Note that with the transpose descriptor for the
source matrix, elements of an arbitrary row of the matrix can be extracted with this function as
well.

3415 C Syntax

3416	GrB_Info GrB_extract(GrB_Vector	W,
3417		const GrB_Vector	mask,
3418		const GrB_BinaryOp	accum,
3419		const GrB_Matrix	Α,
3420		const GrB_Index	<pre>*row_indices,</pre>
3421		GrB_Index	nrows,
3422		GrB_Index	col_index,
3423		const GrB_Descriptor	desc);

Parameters

3425	w	(INOUT) An existing GraphBLAS vector. On input, the vector provides values
3426		that may be accumulated with the result of the extract operation. On output, this
3427		vector holds the results of the operation.
3428	mask	(IN) An optional "write" mask that controls which results from this operation are
3429		stored into the output vector w. The mask dimensions must match those of the
3430		vector w. If the GrB_STRUCTURE descriptor is <i>not</i> set for the mask, the domain
3431		of the mask vector must be of type bool or any of the predefined "built-in" types
3432		in Table 2.2. If the default mask is desired (i.e., a mask that is all true with the
3433		dimensions of w), GrB_NULL should be specified.
	2001	(IN) An optional binary operator used for accumulating optrics into existing w
3434	accum	(IN) An optional binary operator used for accumulating entries into existing w
3435		specified
3430		specified.
3437	А	(IN) The GraphBLAS matrix from which the column subset is extracted.
3438	row_indices	(IN) Pointer to the ordered set (array) of indices corresponding to the locations
3439		within the specified column of A from which elements are extracted. If elements in
3440		all rows of A are to be extracted in order, GrB_ALL should be specified. Regardless
3441		of execution mode and return value, this array may be manipulated by the caller
3442		after this operation returns without affecting any deferred computations for this
3443		operation.
3444	nrows	(IN) The number of indices in the $row_indices$ array. Must be equal to $\mathbf{size}(w).$
3445	col index	(IN) The index of the column of A from which to extract values. It must be in the
3446		range [0, ncols (A)).
3447	desc	(IN) An optional operation descriptor. If a <i>default</i> descriptor is desired, GrB_NULL
3448		should be specified. Non-default field/value pairs are listed as follows:
3449		

	Param	Field	Value	Description
	W	GrB_OUTP	GrB_REPLACE	Output vector w is cleared (all elements
				removed) before the result is stored in it.
	mask	GrB_MASK	GrB_STRUCTURE	The write mask is constructed from the
3450				structure (pattern of stored values) of the
				input mask vector. The stored values are
				not examined.
	mask	GrB_MASK	GrB_COMP	Use the complement of mask.
	А	GrB_INP0	GrB_TRAN	Use transpose of A for the operation.

3451 Return Values

3452 3453 3454 3455 3456	GrB_SUCCESS	In blocking mode, the operation completed successfully. In non- blocking mode, this indicates that the compatibility tests on di- mensions and domains for the input arguments passed successfully. Either way, output vector w is ready to be used in the next method of the sequence.
3457	GrB_PANIC	Unknown internal error.
3458 3459 3460 3461	GrB_INVALID_OBJECT	This is returned in any execution mode whenever one of the opaque GraphBLAS objects (input or output) is in an invalid state caused by a previous execution error. Call GrB_error() to access any error messages generated by the implementation.
3462	GrB_OUT_OF_MEMORY	Not enough memory available for operation.
3463 3464	GrB_UNINITIALIZED_OBJECT	One or more of the GraphBLAS objects has not been initialized by a call to new (or dup for vector or matrix parameters).
3465	GrB_INVALID_INDEX	${\sf col_index} \ {\rm is \ outside \ the \ allowable \ range \ (i.e., \ greater \ than \ {\bf ncols}(A)).$
3466 3467	GrB_INDEX_OUT_OF_BOUNDS	A value in $row_indices$ is greater than or equal to $nrows(A)$. In non-blocking mode, this error can be deferred.
3468	GrB_DIMENSION_MISMATCH	mask and w dimensions are incompatible, or $nrows \neq \mathbf{size}(w).$
3469 3470 3471 3472	GrB_DOMAIN_MISMATCH	The domains of the vector or matrix are incompatible with each other or the corresponding domains of the accumulation operator, or the mask's domain is not compatible with bool (in the case where desc[GrB_MASK].GrB_STRUCTURE is not set).
3473	GrB_NULL_POINTER	Argument row_indices is a NULL pointer.

3474 Description

This variant of $GrB_extract$ computes the result of extracting a subset of locations (in a specific order) from a specified column of a GraphBLAS matrix: $w = A(:, col_index)(row_indices)$; or, if an

optional binary accumulation operator (\odot) is provided, $w = w \odot A(:, col_index)(row_indices)$. More explicitly:

 $w(i) = A(row_indices[i], col_index) \forall i: 0 \le i < nrows, or$ $w(i) = w(i) \odot A(row_indices[i], col_index) \forall i: 0 \le i < nrows$

3480 Logically, this operation occurs in three steps:

Setup The internal matrices, vectors, and mask used in the computation are formed and their
 domains and dimensions are tested for compatibility.

3483 **Compute** The indicated computations are carried out.

3484 **Output** The result is written into the output vector, possibly under control of a mask.

³⁴⁸⁵ Up to three argument vectors and matrices are used in this GrB_extract operation:

3486 1. $w = \langle \mathbf{D}(w), \mathbf{size}(w), \mathbf{L}(w) = \{(i, w_i)\} \rangle$

3487 2. mask = $\langle \mathbf{D}(\mathsf{mask}), \mathsf{size}(\mathsf{mask}), \mathbf{L}(\mathsf{mask}) = \{(i, m_i)\}\rangle$ (optional)

3488 3. $A = \langle \mathbf{D}(\mathsf{A}), \mathbf{nrows}(\mathsf{A}), \mathbf{ncols}(\mathsf{A}), \mathbf{L}(\mathsf{A}) = \{(i, j, A_{ij})\} \rangle$

The argument vectors, matrix and the accumulation operator (if provided) are tested for domain compatibility as follows:

- If mask is not GrB_NULL, and desc[GrB_MASK].GrB_STRUCTURE is not set, then D(mask)
 must be from one of the pre-defined types of Table 2.2.
- 3493 2. $\mathbf{D}(w)$ must be compatible with $\mathbf{D}(A)$.

3494 3. If accum is not GrB_NULL, then $\mathbf{D}(w)$ must be compatible with $\mathbf{D}_{in_1}(\operatorname{accum})$ and $\mathbf{D}_{out}(\operatorname{accum})$ 3495 of the accumulation operator and $\mathbf{D}(\mathsf{A})$ must be compatible with $\mathbf{D}_{in_2}(\operatorname{accum})$ of the accu-3496 mulation operator.

Two domains are compatible with each other if values from one domain can be cast to values in the other domain as per the rules of the C language. In particular, domains from Table 2.2 are all compatible with each other. A domain from a user-defined type is only compatible with itself. If any compatibility rule above is violated, execution of GrB_extract ends and the domain mismatch error listed above is returned.

From the arguments, the internal vector, matrix, mask, and index array used in the computation are formed (\leftarrow denotes copy):

3504 1. Vector $\widetilde{\mathbf{w}} \leftarrow \mathbf{w}$.

2. One-dimensional mask, $\widetilde{\mathbf{m}}$, is computed from argument mask as follows:

(a) If mask = GrB_NULL, then $\widetilde{\mathbf{m}} = \langle \operatorname{size}(\mathsf{w}), \{i, \forall i : 0 \le i < \operatorname{size}(\mathsf{w})\} \rangle$.

 $_{3507}$ (b) If mask \neq GrB_NULL,

3509

- i. If desc[GrB_MASK].GrB_STRUCTURE is set, then $\widetilde{\mathbf{m}} = \langle \operatorname{size}(\operatorname{mask}), \{i : i \in \operatorname{ind}(\operatorname{mask})\} \rangle$,
 - ii. Otherwise, $\widetilde{\mathbf{m}} = \langle \mathbf{size}(\mathsf{mask}), \{i : i \in \mathbf{ind}(\mathsf{mask}) \land (\mathsf{bool})\mathsf{mask}(i) = \mathsf{true} \} \rangle$.
- 3510 (c) If desc[GrB_MASK].GrB_COMP is set, then $\widetilde{m} \leftarrow \neg \widetilde{m}$.
- 3511 3. Matrix $\widetilde{\mathbf{A}} \leftarrow \mathsf{desc}[\mathsf{GrB}_{\mathsf{I}}\mathsf{INP0}].\mathsf{GrB}_{\mathsf{T}}\mathsf{TRAN} ? \mathsf{A}^T : \mathsf{A}.$
- 4. The internal row index array, \tilde{I} , is computed from argument row_indices as follows:
- (a) If indices = GrB_ALL, then $\widetilde{I}[i] = i, \forall i : 0 \le i <$ nrows.
- (b) Otherwise, $\widetilde{I}[i] = indices[i], \forall i : 0 \le i < nrows.$

The internal vector, mask, and index array are checked for dimension compatibility. The following conditions must hold:

3517 1. $\operatorname{size}(\widetilde{\mathbf{w}}) = \operatorname{size}(\widetilde{\mathbf{m}})$

3518 2. $size(\widetilde{\mathbf{w}}) = nrows.$

If any compatibility rule above is violated, execution of GrB_extract ends and the dimension mismatch error listed above is returned.

³⁵²¹ The col_index parameter is checked for a valid value. The following condition must hold:

 $_{3522}$ 1. 0 \leq col_index < ncols(A)

If the rule above is violated, execution of GrB_extract ends and the invalid index error listed above is returned.

From this point forward, in $GrB_NONBLOCKING$ mode, the method can optionally exit with GrB_SUCCESS return code and defer any computation and/or execution error codes.

We are now ready to carry out the extract and any additional associated operations. We describe this in terms of two intermediate vectors:

• $\tilde{\mathbf{t}}$: The vector holding the extraction from a column of $\widetilde{\mathbf{A}}$.

• \tilde{z} : The vector holding the result after application of the (optional) accumulation operator.

³⁵³¹ The intermediate vector, $\tilde{\mathbf{t}}$, is created as follows:

$$\widetilde{\mathbf{t}} = \langle \mathbf{D}(\mathsf{A}), \mathsf{nrows}, \{(i, \widetilde{\mathbf{A}}(\widetilde{\boldsymbol{I}}[i], \mathsf{col_index})) \ \forall \ i, 0 \leq i < \mathsf{nrows} : (\widetilde{\boldsymbol{I}}[i], \mathsf{col_index}) \in \mathbf{ind}(\widetilde{\mathbf{A}})\} \rangle.$$

At this point, if any value in \tilde{I} is not in the range $[0, \operatorname{nrows}(\tilde{A}))$, the execution of GrB_extract ends and the index-out-of-bounds error listed above is generated. In GrB_NONBLOCKING mode, the error can be deferred until a sequence-terminating GrB_wait() is called. Regardless, the result vector, w, is invalid from this point forward in the sequence.

The intermediate vector $\tilde{\mathbf{z}}$ is created as follows, using what is called a *standard vector accumulate*:

• If accum = GrB_NULL, then $\widetilde{\mathbf{z}} = \widetilde{\mathbf{t}}$.

3540

• If accum is a binary operator, then $\tilde{\mathbf{z}}$ is defined as

$$\widetilde{\mathbf{z}} = \langle \mathbf{D}_{out}(\mathsf{accum}), \mathbf{size}(\widetilde{\mathbf{w}}), \{(i, z_i) \; \forall \; i \in \mathbf{ind}(\widetilde{\mathbf{w}}) \cup \mathbf{ind}(\widetilde{\mathbf{t}}) \} \rangle.$$

The values of the elements of $\tilde{\mathbf{z}}$ are computed based on the relationships between the sets of indices in $\tilde{\mathbf{w}}$ and $\tilde{\mathbf{t}}$.

$$\begin{aligned} z_i &= \widetilde{\mathbf{w}}(i) \odot \widetilde{\mathbf{t}}(i), \text{ if } i \in (\mathbf{ind}(\widetilde{\mathbf{t}}) \cap \mathbf{ind}(\widetilde{\mathbf{w}})), \\ z_i &= \widetilde{\mathbf{w}}(i), \text{ if } i \in (\mathbf{ind}(\widetilde{\mathbf{w}}) - (\mathbf{ind}(\widetilde{\mathbf{t}}) \cap \mathbf{ind}(\widetilde{\mathbf{w}}))), \\ z_i &= \widetilde{\mathbf{t}}(i), \text{ if } i \in (\mathbf{ind}(\widetilde{\mathbf{t}}) - (\mathbf{ind}(\widetilde{\mathbf{t}}) \cap \mathbf{ind}(\widetilde{\mathbf{w}}))), \\ z_i &= \widetilde{\mathbf{t}}(i), \text{ if } i \in (\mathbf{ind}(\widetilde{\mathbf{t}}) - (\mathbf{ind}(\widetilde{\mathbf{t}}) \cap \mathbf{ind}(\widetilde{\mathbf{w}}))), \end{aligned}$$

where $\odot = \bigcirc(\mathsf{accum})$, and the difference operator refers to set difference.

Finally, the set of output values that make up vector $\tilde{\mathbf{z}}$ are written into the final result vector w, using what is called a *standard vector mask and replace*. This is carried out under control of the mask which acts as a "write mask".

• If desc[GrB_OUTP].GrB_REPLACE is set, then any values in w on input to this operation are deleted and the content of the new output vector, w, is defined as,

$$\mathbf{L}(\mathsf{w}) = \{(i, z_i) : i \in (\mathbf{ind}(\widetilde{\mathbf{z}}) \cap \mathbf{ind}(\widetilde{\mathbf{m}}))\}.$$

• If desc[GrB_OUTP].GrB_REPLACE is not set, the elements of \tilde{z} indicated by the mask are copied into the result vector, w, and elements of w that fall outside the set indicated by the mask are unchanged:

 \mathbf{L}

3558

$$\mathbf{L}(\mathsf{w}) = \{(i, w_i) : i \in (\mathbf{ind}(\mathsf{w}) \cap \mathbf{ind}(\neg \widetilde{\mathbf{m}}))\} \cup \{(i, z_i) : i \in (\mathbf{ind}(\widetilde{\mathbf{z}}) \cap \mathbf{ind}(\widetilde{\mathbf{m}}))\}.$$

In GrB_BLOCKING mode, the method exits with return value GrB_SUCCESS and the new content of vector w is as defined above and fully computed. In GrB_NONBLOCKING mode, the method exits with return value GrB_SUCCESS and the new content of vector w is as defined above but may not be fully computed. However, it can be used in the next GraphBLAS method call in a sequence.

3563 4.3.7 assign: Modifying Sub-Graphs

³⁵⁶⁴ Assign the contents of a subset of a matrix or vector.

3565 4.3.7.1 assign: Standard vector variant

Assign values from one GraphBLAS vector to a subset of a vector as specified by a set of indices. The size of the input vector is the same size as the index array provided.

3568 C Syntax

3569	GrB_Info GrB_assign	(GrB_Ve	ector	W,
3570		const	GrB_Vector	mask,
3571		const	GrB_BinaryOp	accum,
3572		const	GrB_Vector	u,
3573		const	GrB_Index	*indices,
3574		GrB_I	ndex	nindices,
3575		const	$GrB_Descriptor$	desc);

3576 Parameters

3577	W	(INOUT) An existing GraphBLAS vector. On input, the vector provides values
3578		that may be accumulated with the result of the assign operation. On output, this
3579		vector holds the results of the operation.
3580	mask	(IN) An optional "write" mask that controls which results from this operation are
3581		stored into the output vector w. The mask dimensions must match those of the
3582		vector w If the GrB_STRUCTURE descriptor is <i>not</i> set for the mask, the domain
3583		of the mask vector must be of type bool or any of the predefined "built-in" types
3584		in Table 2.2. If the default mask is desired (i.e., a mask that is all true with the
3585		dimensions of w), GrB_NULL should be specified.
2506	accum	(IN) An optional binary operator used for accumulating entries into existing w
3580	accum	entries. If assignment rather than accumulation is desired GrB NIII should be
3500		specified
3588		specified.
3589	u	(IN) The GraphBLAS vector whose contents are assigned to a subset of $w.$
3590	indices	(IN) Pointer to the ordered set (array) of indices corresponding to the locations in
3591		w that are to be assigned. If all elements of w are to be assigned in order from 0
3592		to nindices -1 , then GrB_ALL should be specified. Regardless of execution mode
3593		and return value, this array may be manipulated by the caller after this operation
3594		returns without affecting any deferred computations for this operation. If this
3595		array contains duplicate values, it implies in assignment of more than one value to
3596		the same location which leads to undefined results.
3597	nindices	(IN) The number of values in indices array. Must be equal to $\mathbf{size}(u).$
3598	desc	(IN) An optional operation descriptor. If a <i>default</i> descriptor is desired. GrB NULL
3599		should be specified. Non-default field/value pairs are listed as follows:
3600		

	Param	Field	Value	Description
3601	W	GrB_OUTP	GrB_REPLACE	Output vector w is cleared (all elements
				removed) before the result is stored in it.
	mask	GrB_MASK	GrB_STRUCTURE	The write mask is constructed from the
				structure (pattern of stored values) of the
				input mask vector. The stored values are
				not examined.
	mask	GrB_MASK	GrB_COMP	Use the complement of mask.

3602 Return Values

3603 3604 3605 3606 3607	GrB_SUCCESS	In blocking mode, the operation completed successfully. In non- blocking mode, this indicates that the compatibility tests on di- mensions and domains for the input arguments passed successfully. Either way, output vector w is ready to be used in the next method of the sequence.
3608	GrB_PANIC	Unknown internal error.
3609 3610 3611 3612	GrB_INVALID_OBJECT	This is returned in any execution mode whenever one of the opaque GraphBLAS objects (input or output) is in an invalid state caused by a previous execution error. Call GrB_error() to access any error messages generated by the implementation.
3613	GrB_OUT_OF_MEMORY	Not enough memory available for operation.
3614 3615	GrB_UNINITIALIZED_OBJECT	One or more of the GraphBLAS objects has not been initialized by a call to new (or dup for vector parameters).
3616 3617	GrB_INDEX_OUT_OF_BOUNDS	A value in indices is greater than or equal to ${\bf size}(w).$ In non-blocking mode, this can be reported as an execution error.
3618	GrB_DIMENSION_MISMATCH	mask and w dimensions are incompatible, or $nindices \neq \mathbf{size}(u).$
3619 3620 3621 3622	GrB_DOMAIN_MISMATCH	The domains of the various vectors are incompatible with each other or the corresponding domains of the accumulation operator, or the mask's domain is not compatible with bool (in the case where desc[GrB_MASK].GrB_STRUCTURE is not set).
3623	GrB_NULL_POINTER	Argument indices is a NULL pointer.

3624 Description

3628

This variant of GrB_assign computes the result of assigning elements from a source GraphBLAS vector to a destination GraphBLAS vector in a specific order: w(indices) = u; or, if an optional binary accumulation operator (\odot) is provided, $w(indices) = w(indices) \odot u$. More explicitly:

$$\begin{split} \mathsf{w}(\mathsf{indices}[i]) &= \mathsf{u}(i), \ \forall \ i \ : \ 0 \leq i < \mathsf{nindices}, \ \text{ or} \\ \mathsf{w}(\mathsf{indices}[i]) &= \mathsf{w}(\mathsf{indices}[i]) \odot \mathsf{u}(i), \ \forall \ i \ : \ 0 \leq i < \mathsf{nindices}. \end{split}$$

³⁶²⁹ Logically, this operation occurs in three steps:

- 3630 Setup The internal vectors and mask used in the computation are formed and their domains
 and dimensions are tested for compatibility.
- 3632 **Compute** The indicated computations are carried out.
- 3633 **Output** The result is written into the output vector, possibly under control of a mask.

³⁶³⁴ Up to three argument vectors are used in the GrB_assign operation:

3635 1.
$$\mathbf{w} = \langle \mathbf{D}(\mathbf{w}), \mathbf{size}(\mathbf{w}), \mathbf{L}(\mathbf{w}) = \{(i, w_i)\} \rangle$$

3636 2. mask = $\langle \mathbf{D}(\mathsf{mask}), \mathsf{size}(\mathsf{mask}), \mathbf{L}(\mathsf{mask}) = \{(i, m_i)\} \rangle$ (optional)

3637 3. $u = \langle \mathbf{D}(u), \mathbf{size}(u), \mathbf{L}(u) = \{(i, u_i)\} \rangle$

The argument vectors and the accumulation operator (if provided) are tested for domain compatibility as follows:

- 1. If mask is not GrB_NULL, and desc[GrB_MASK].GrB_STRUCTURE is not set, then D(mask) must be from one of the pre-defined types of Table 2.2.
- 3642 2. $\mathbf{D}(w)$ must be compatible with $\mathbf{D}(u)$.

3643 3. If accum is not GrB_NULL, then $\mathbf{D}(w)$ must be compatible with $\mathbf{D}_{in_1}(\operatorname{accum})$ and $\mathbf{D}_{out}(\operatorname{accum})$ 3644 of the accumulation operator and $\mathbf{D}(u)$ must be compatible with $\mathbf{D}_{in_2}(\operatorname{accum})$ of the accu-3645 mulation operator.

Two domains are compatible with each other if values from one domain can be cast to values in the other domain as per the rules of the C language. In particular, domains from Table 2.2 are all compatible with each other. A domain from a user-defined type is only compatible with itself. If any compatibility rule above is violated, execution of GrB_assign ends and the domain mismatch error listed above is returned.

From the arguments, the internal vectors, mask and index array used in the computation are formed $(\leftarrow \text{ denotes copy})$:

3653 1. Vector $\widetilde{\mathbf{w}} \leftarrow \mathbf{w}$.

3658

2. One-dimensional mask, $\widetilde{\mathbf{m}}$, is computed from argument mask as follows:

(a) If mask = GrB_NULL, then $\widetilde{\mathbf{m}} = \langle \mathbf{size}(\mathsf{w}), \{i, \forall i : 0 \le i < \mathbf{size}(\mathsf{w})\} \rangle$.

- $_{3656}$ (b) If mask \neq GrB_NULL,
- i. If desc[GrB_MASK].GrB_STRUCTURE is set, then $\widetilde{\mathbf{m}} = \langle \mathbf{size}(\mathsf{mask}), \{i : i \in \mathbf{ind}(\mathsf{mask})\} \rangle$,
 - ii. Otherwise, $\widetilde{\mathbf{m}} = \langle \mathbf{size}(\mathsf{mask}), \{i : i \in \mathbf{ind}(\mathsf{mask}) \land (\mathsf{bool})\mathsf{mask}(i) = \mathsf{true} \} \rangle$.
- (c) If desc[GrB_MASK].GrB_COMP is set, then $\widetilde{\mathbf{m}} \leftarrow \neg \widetilde{\mathbf{m}}$.

3. Vector $\widetilde{\mathbf{u}} \leftarrow \mathbf{u}$. 3660

4. The internal index array, \widetilde{I} , is computed from argument indices as follows: 3661

(a) If indices = GrB_ALL, then $\widetilde{I}[i] = i, \forall i : 0 \le i \le n$ indices. 3662

(b) Otherwise, $\widetilde{I}[i] = indices[i], \forall i : 0 \le i < nindices.$ 3663

The internal vector and mask are checked for dimension compatibility. The following conditions 3664 must hold: 3665

1. $\operatorname{size}(\widetilde{\mathbf{w}}) = \operatorname{size}(\widetilde{\mathbf{m}})$ 3666

2. nindices = $size(\tilde{u})$. 3667

If any compatibility rule above is violated, execution of GrB_assign ends and the dimension mismatch 3668 error listed above is returned. 3669

From this point forward, in GrB_NONBLOCKING mode, the method can optionally exit with 3670 GrB_SUCCESS return code and defer any computation and/or execution error codes. 3671

We are now ready to carry out the assign and any additional associated operations. We describe 3672 this in terms of two intermediate vectors: 3673

- $\tilde{\mathbf{t}}$: The vector holding the elements from $\tilde{\mathbf{u}}$ in their destination locations relative to $\tilde{\mathbf{w}}$. 3674
- $\tilde{\mathbf{z}}$: The vector holding the result after application of the (optional) accumulation operator. 3675

The intermediate vector, $\mathbf{\tilde{t}}$, is created as follows: 3676

3677

3

$$\widetilde{\mathbf{t}} = \langle \mathbf{D}(\mathsf{u}), \mathbf{size}(\widetilde{\mathbf{w}}), \{ (\widetilde{\boldsymbol{I}}[i], \widetilde{\mathbf{u}}(i)) \forall i, 0 \leq i < \mathsf{nindices} : i \in \mathbf{ind}(\widetilde{\mathbf{u}}) \} \rangle.$$

At this point, if any value of $\widetilde{I}[i]$ is outside the valid range of indices for vector $\widetilde{\mathbf{w}}$, computation 3678 ends and the method returns the index-out-of-bounds error listed above. In GrB_NONBLOCKING 3679 mode, the error can be deferred until a sequence-terminating GrB_wait() is called. Regardless, the 3680 result vector, w, is invalid from this point forward in the sequence. 3681

- The intermediate vector $\tilde{\mathbf{z}}$ is created as follows: 3682
- If $accum = GrB_NULL$, then \tilde{z} is defined as 3683

684
$$\widetilde{\mathbf{z}} = \langle \mathbf{D}
angle$$

$$\widetilde{\mathbf{z}} = \langle \mathbf{D}(\mathsf{w}), \mathbf{size}(\widetilde{\mathbf{w}}), \{(i, z_i), \forall i \in (\mathbf{ind}(\widetilde{\mathbf{w}}) - (\{\widetilde{\boldsymbol{I}}[k], \forall k\} \cap \mathbf{ind}(\widetilde{\mathbf{w}}))) \cup \mathbf{ind}(\widetilde{\mathbf{t}})\} \rangle.$$

- ~ > > >

The above expression defines the structure of vector $\tilde{\mathbf{z}}$ as follows: We start with the structure 3685 of $\widetilde{\mathbf{w}}$ (ind($\widetilde{\mathbf{w}}$)) and remove from it all the indices of $\widetilde{\mathbf{w}}$ that are in the set of indices being 3686 assigned $({I[k], \forall k} \cap \operatorname{ind}(\widetilde{\mathbf{w}}))$. Finally, we add the structure of t (ind(t)). 3687

The values of the elements of $\tilde{\mathbf{z}}$ are computed based on the relationships between the sets of 3688 indices in $\widetilde{\mathbf{w}}$ and \mathbf{t} . 3689

- $z_i = \widetilde{\mathbf{w}}(i), \text{ if } i \in (\mathbf{ind}(\widetilde{\mathbf{w}}) (\{\widetilde{\mathbf{I}}[k], \forall k\} \cap \mathbf{ind}(\widetilde{\mathbf{w}}))),$ 3690
- 3691 $z_i = \widetilde{\mathbf{t}}(i), \text{ if } i \in \mathbf{ind}(\widetilde{\mathbf{t}}),$ 3692

where the difference operator refers to set difference. 3693

• If accum is a binary operator, then \tilde{z} is defined as

3695

 $\langle \mathbf{D}_{out}(\mathsf{accum}), \mathbf{size}(\widetilde{\mathbf{w}}), \{(i, z_i) \ \forall \ i \in \mathbf{ind}(\widetilde{\mathbf{w}}) \cup \mathbf{ind}(\widetilde{\mathbf{t}})\} \rangle.$

The values of the elements of $\tilde{\mathbf{z}}$ are computed based on the relationships between the sets of indices in $\tilde{\mathbf{w}}$ and $\tilde{\mathbf{t}}$.

$$\begin{array}{ll} \begin{array}{ll} {}_{3698} \\ {}_{3699} \\ {}_{3700} \\ {}_{3701} \\ {}_{3702} \end{array} & z_i = \widetilde{\mathbf{w}}(i) \odot \mathbf{t}(i), \text{ if } i \in (\mathbf{ind}(\mathbf{t}) \cap \mathbf{ind}(\widetilde{\mathbf{w}})), \\ z_i = \widetilde{\mathbf{w}}(i), \text{ if } i \in (\mathbf{ind}(\widetilde{\mathbf{w}}) - (\mathbf{ind}(\widetilde{\mathbf{t}}) \cap \mathbf{ind}(\widetilde{\mathbf{w}}))), \\ z_i = \widetilde{\mathbf{t}}(i), \text{ if } i \in (\mathbf{ind}(\widetilde{\mathbf{t}}) - (\mathbf{ind}(\widetilde{\mathbf{t}}) \cap \mathbf{ind}(\widetilde{\mathbf{w}}))), \end{array}$$

where $\odot = \bigcirc(\mathsf{accum})$, and the difference operator refers to set difference.

Finally, the set of output values that make up vector $\tilde{\mathbf{z}}$ are written into the final result vector w, using what is called a *standard vector mask and replace*. This is carried out under control of the mask which acts as a "write mask".

• If desc[GrB_OUTP].GrB_REPLACE is set, then any values in w on input to this operation are deleted and the content of the new output vector, w, is defined as,

3709

$$\mathbf{L}(\mathsf{w}) = \{(i, z_i) : i \in (\mathbf{ind}(\widetilde{\mathbf{z}}) \cap \mathbf{ind}(\widetilde{\mathbf{m}}))\}.$$

• If desc[GrB_OUTP].GrB_REPLACE is not set, the elements of \tilde{z} indicated by the mask are copied into the result vector, w, and elements of w that fall outside the set indicated by the mask are unchanged:

 $\mathbf{L}(\mathsf{w}) = \{(i, w_i) : i \in (\mathbf{ind}(\mathsf{w}) \cap \mathbf{ind}(\neg \widetilde{\mathbf{m}}))\} \cup \{(i, z_i) : i \in (\mathbf{ind}(\widetilde{\mathbf{z}}) \cap \mathbf{ind}(\widetilde{\mathbf{m}}))\}.$

In GrB_BLOCKING mode, the method exits with return value GrB_SUCCESS and the new content of vector w is as defined above and fully computed. In GrB_NONBLOCKING mode, the method exits with return value GrB_SUCCESS and the new content of vector w is as defined above but may not be fully computed. However, it can be used in the next GraphBLAS method call in a sequence.

3718 4.3.7.2 assign: Standard matrix variant

Assign values from one GraphBLAS matrix to a subset of a matrix as specified by a set of indices. The dimensions of the input matrix are the same size as the row and column index arrays provided.

3721 C Syntax

3722	GrB_Info GrB_assign(GrB	_Matrix	С,
3723	con	st GrB_Matrix	Mask,
3724	con	st GrB_BinaryOp	accum,
3725	con	st GrB_Matrix	Α,
3726	con	st GrB_Index	*row_indices,
3727	GrB	_Index	nrows,
3728	con	st GrB_Index	*col_indices,
3729	GrB	_Index	ncols,
3730	con	st GrB_Descriptor	desc);

3731 Parameters

3732 3733 3734	C	(INOUT) An existing GraphBLAS matrix. On input, the matrix provides values that may be accumulated with the result of the assign operation. On output, the matrix holds the results of the operation.
3735 3736	Mask	(IN) An optional "write" mask that controls which results from this operation are stored into the output matrix $C.$ The mask dimensions must match those of the
3737		matrix C. If the $GrB_STRUCTURE$ descriptor is <i>not</i> set for the mask, the domain
3738		of the Mask matrix must be of type bool or any of the predefined "built-in" types
3739		in Table 2.2. If the default mask is desired (i.e., a mask that is all true with the
3740		dimensions of C), GrB_NULL should be specified.
3741	accum	(IN) An optional binary operator used for accumulating entries into existing C
3742		entries. If assignment rather than accumulation is desired, GrB_NULL should be
3743		specified.
3744	А	(IN) The GraphBLAS matrix whose contents are assigned to a subset of $C.$
3745	row_indices	(IN) Pointer to the ordered set $(array)$ of indices corresponding to the rows of C
3746		that are assigned. If all rows of C are to be assigned in order from 0 to $nrows - 1$,
3747		then GrB_ALL can be specified. Regardless of execution mode and return value,
3748		this array may be manipulated by the caller after this operation returns without
3749		affecting any deferred computations for this operation. If this array contains du-
3750		plicate values, it implies assignment of more than one value to the same location
3751		which leads to undefined results.
3752	nrows	(IN) The number of values in the row_indices array. Must be equal to $\mathbf{nrows}(A)$ if
3753		A is not transposed, or equal to $\mathbf{ncols}(A)$ if A is transposed.
3754	col₋indices	(IN) Pointer to the ordered set (array) of indices corresponding to the columns
3755		of C that are assigned. If all columns of C are to be assigned in order from 0 to
3756		$ncols - 1$, then GrB_ALL should be specified. Regardless of execution mode and
3757		return value, this array may be manipulated by the caller after this operation
3758		returns without affecting any deferred computations for this operation. If this
3759		array contains duplicate values, it implies assignment of more than one value to
3760		the same location which leads to undefined results.
3761	ncols	(IN) The number of values in col_indices array. Must be equal to $\mathbf{ncols}(A)$ if A is
3762		not transposed, or equal to $\mathbf{nrows}(A)$ if A is transposed.
3763	desc	(IN) An optional operation descriptor. If a <i>default</i> descriptor is desired, GrB_NULL
3764		should be specified. Non-default field/value pairs are listed as follows:
3765		

	Param	Field	Value	Description
-	С	GrB_OUTP	GrB_REPLACE	Output matrix C is cleared (all elements
				removed) before the result is stored in it.
	Mask	GrB_MASK	GrB_STRUCTURE	The write mask is constructed from the
3766				structure (pattern of stored values) of the
				input $Mask$ matrix. The stored values are
				not examined.
	Mask	GrB_MASK	GrB_COMP	Use the complement of Mask.
	А	GrB_INP0	GrB_TRAN	Use transpose of A for the operation.

3767 Return Values

3768 3769 3770 3771 3772	GrB_SUCCESS	In blocking mode, the operation completed successfully. In non- blocking mode, this indicates that the compatibility tests on di- mensions and domains for the input arguments passed successfully. Either way, output matrix C is ready to be used in the next method of the sequence.
3773	GrB_PANIC	Unknown internal error.
3774 3775 3776 3777	GrB_INVALID_OBJECT	This is returned in any execution mode whenever one of the opaque GraphBLAS objects (input or output) is in an invalid state caused by a previous execution error. Call GrB_error() to access any error messages generated by the implementation.
3778	GrB_OUT_OF_MEMORY	Not enough memory available for the operation.
3779 3780	GrB_UNINITIALIZED_OBJECT	One or more of the GraphBLAS objects has not been initialized by a call to new (or Matrix_dup for matrix parameters).
3781 3782 3783	GrB_INDEX_OUT_OF_BOUNDS	A value in row_indices is greater than or equal to $\mathbf{nrows}(C)$, or a value in col_indices is greater than or equal to $\mathbf{ncols}(C)$. In non-blocking mode, this can be reported as an execution error.
3784 3785	GrB_DIMENSION_MISMATCH	$\label{eq:mass} \begin{array}{l} Mask \mbox{ and } C \mbox{ dimensions are incompatible, } nrows \neq nrows(A), \mbox{ or } ncols \neq ncols(A). \end{array}$
3786 3787 3788 3789	GrB_DOMAIN_MISMATCH	The domains of the various matrices are incompatible with each other or the corresponding domains of the accumulation operator, or the mask's domain is not compatible with bool (in the case where desc[GrB_MASK].GrB_STRUCTURE is not set).
3790 3791	GrB_NULL_POINTER	Either argument row_indices is a NULL pointer, argument col_indices is a NULL pointer, or both.

3792 **Description**

This variant of GrB_assign computes the result of assigning the contents of A to a subset of rows and columns in C in a specified order: $C(row_indices, col_indices) = A$; or, if an optional binary accumulation operator (\odot) is provided, $C(row_indices, col_indices) = C(row_indices, col_indices) <math>\odot A$. More explicitly (not accounting for an optional transpose of A):

$$C(\text{row_indices}[i], \text{col_indices}[j]) = A(i, j), \forall i, j : 0 \le i < \text{nrows}, 0 \le j < \text{ncols}, \text{ord} \\C(\text{row_indices}[i], \text{col_indices}[j]) = C(\text{row_indices}[i], \text{col_indices}[j]) \odot A(i, j), \\\forall (i, j) : 0 \le i < \text{nrows}, 0 \le j < \text{ncols}$$

³⁷⁹⁸ Logically, this operation occurs in three steps:

- Setup The internal matrices and mask used in the computation are formed and their domains and dimensions are tested for compatibility.
- 3801 Compute The indicated computations are carried out.

3802 Output The result is written into the output matrix, possibly under control of a mask.

³⁸⁰³ Up to three argument matrices are used in the GrB_assign operation:

3804 1. $C = \langle \mathbf{D}(C), \mathbf{nrows}(C), \mathbf{ncols}(C), \mathbf{L}(C) = \{(i, j, C_{ij})\} \rangle$

3805 2. $\mathsf{Mask} = \langle \mathbf{D}(\mathsf{Mask}), \mathbf{nrows}(\mathsf{Mask}), \mathbf{ncols}(\mathsf{Mask}), \mathbf{L}(\mathsf{Mask}) = \{(i, j, M_{ij})\} \rangle \text{ (optional)}$

3806 3. $A = \langle \mathbf{D}(A), \mathbf{nrows}(A), \mathbf{ncols}(A), \mathbf{L}(A) = \{(i, j, A_{ij})\} \rangle$

The argument matrices and the accumulation operator (if provided) are tested for domain compatibility as follows:

- If Mask is not GrB_NULL, and desc[GrB_MASK].GrB_STRUCTURE is not set, then D(Mask) must be from one of the pre-defined types of Table 2.2.
- 3811 2. D(C) must be compatible with D(A).

3812 3. If accum is not GrB_NULL, then D(C) must be compatible with $D_{in_1}(accum)$ and $D_{out}(accum)$ 3813 of the accumulation operator and D(A) must be compatible with $D_{in_2}(accum)$ of the accu-3814 mulation operator.

Two domains are compatible with each other if values from one domain can be cast to values in the other domain as per the rules of the C language. In particular, domains from Table 2.2 are all compatible with each other. A domain from a user-defined type is only compatible with itself. If any compatibility rule above is violated, execution of GrB_assign ends and the domain mismatch error listed above is returned.

From the arguments, the internal matrices, mask, and index arrays used in the computation are formed (\leftarrow denotes copy): 3822 1. Matrix $\widetilde{\mathbf{C}} \leftarrow \mathsf{C}$.

3827

3828

3829

3830

- 3823 2. Two-dimensional mask M is computed from argument Mask as follows:
- (a) If Mask = GrB_NULL, then $\widetilde{\mathbf{M}} = \langle \mathbf{nrows}(\mathsf{C}), \mathbf{ncols}(\mathsf{C}), \{(i, j), \forall i, j : 0 \le i < \mathbf{nrows}(\mathsf{C}), 0 \le j < \mathbf{ncols}(\mathsf{C}) \} \rangle$.
- $(b) If Mask \neq GrB_NULL,$
 - i. If desc[GrB_MASK].GrB_STRUCTURE is set, then $\widetilde{\mathbf{M}} = \langle \mathbf{nrows}(\mathsf{Mask}), \mathbf{ncols}(\mathsf{Mask}), \{(i, j) : (i, j) \in \mathbf{ind}(\mathsf{Mask})\} \rangle$,
 - ii. Otherwise, $\widetilde{\mathbf{M}} = \langle \mathbf{nrows}(\mathsf{Mask}), \mathbf{ncols}(\mathsf{Mask}), \\ \{(i, j) : (i, j) \in \mathbf{ind}(\mathsf{Mask}) \land (\mathsf{bool})\mathsf{Mask}(i, j) = \mathsf{true} \} \rangle.$
- $(c) If desc[GrB_MASK].GrB_COMP is set, then \widetilde{\mathbf{M}} \leftarrow \neg \widetilde{\mathbf{M}}.$
- 3832 3. Matrix $\widetilde{\mathbf{A}} \leftarrow \mathsf{desc}[\mathsf{GrB}_\mathsf{I}\mathsf{NP0}].\mathsf{GrB}_\mathsf{T}\mathsf{RAN} ? \mathsf{A}^T : \mathsf{A}.$
- 4. The internal row index array, \tilde{I} , is computed from argument row_indices as follows:
- (a) If row_indices = GrB_ALL, then $\widetilde{I}[i] = i, \forall i : 0 \le i <$ nrows.
- 3835 (b) Otherwise, $\widetilde{I}[i] = \mathsf{row_indices}[i], \forall i : 0 \le i < \mathsf{nrows}.$
- 5. The internal column index array, \tilde{J} , is computed from argument col_indices as follows:
- (a) If col_indices = GrB_ALL, then $\widetilde{J}[j] = j, \forall j : 0 \le j < \text{ncols.}$
- 3838 (b) Otherwise, $\widetilde{J}[j] = \text{col_indices}[j], \forall j: 0 \le j < \text{ncols.}$

The internal matrices and mask are checked for dimension compatibility. The following conditions must hold:

- 3841 1. $\operatorname{nrows}(\widetilde{\mathbf{C}}) = \operatorname{nrows}(\widetilde{\mathbf{M}}).$
- 3842 2. $\operatorname{\mathbf{ncols}}(\widetilde{\mathbf{C}}) = \operatorname{\mathbf{ncols}}(\widetilde{\mathbf{M}}).$
- 3843 3. $nrows(\widetilde{\mathbf{A}}) = nrows.$
- 3844 4. $\operatorname{\mathbf{ncols}}(\widetilde{\mathbf{A}}) = \operatorname{\mathbf{ncols}}$.

If any compatibility rule above is violated, execution of GrB_assign ends and the dimension mismatch error listed above is returned.

³⁸⁴⁷ From this point forward, in GrB_NONBLOCKING mode, the method can optionally exit with ³⁸⁴⁸ GrB_SUCCESS return code and defer any computation and/or execution error codes.

We are now ready to carry out the assign and any additional associated operations. We describe this in terms of two intermediate vectors:

- $\widetilde{\mathbf{T}}$: The matrix holding the contents from $\widetilde{\mathbf{A}}$ in their destination locations relative to $\widetilde{\mathbf{C}}$.
- $\widetilde{\mathbf{Z}}$: The matrix holding the result after application of the (optional) accumulation operator.
3853 The intermediate matrix, $\widetilde{\mathbf{T}}$, is created as follows:

3854

$$\begin{split} \widetilde{\mathbf{T}} &= \langle \mathbf{D}(\mathsf{A}), \mathbf{nrows}(\widetilde{\mathbf{C}}), \mathbf{ncols}(\widetilde{\mathbf{C}}), \\ &\{ (\widetilde{\boldsymbol{I}}[i], \widetilde{\boldsymbol{J}}[j], \widetilde{\mathbf{A}}(i, j)) \; \forall \; (i, j), \; 0 \leq i < \mathsf{nrows}, \; 0 \leq j < \mathsf{ncols} : (i, j) \in \mathbf{ind}(\widetilde{\mathbf{A}}) \} \rangle. \end{split}$$

At this point, if any value in the \tilde{I} array is not in the range $[0, \operatorname{nrows}(\tilde{C}))$ or any value in the array is not in the range $[0, \operatorname{ncols}(\tilde{C}))$, the execution of GrB_assign ends and the index out-ofbounds error listed above is generated. In GrB_NONBLOCKING mode, the error can be deferred until a sequence-terminating GrB_wait() is called. Regardless, the result matrix C is invalid from this point forward in the sequence.

3860 The intermediate matrix $\widetilde{\mathbf{Z}}$ is created as follows:

• If accum = GrB_NULL, then $\widetilde{\mathbf{Z}}$ is defined as

$$\widetilde{\mathbf{Z}} = \langle \mathbf{D}(\mathsf{C}), \mathbf{nrows}(\widetilde{\mathbf{C}}), \mathbf{ncols}(\widetilde{\mathbf{C}}), \\ \{(i, j, Z_{ij}) \forall (i, j) \in (\mathbf{ind}(\widetilde{\mathbf{C}}) - (\{(\widetilde{\boldsymbol{I}}[k], \widetilde{\boldsymbol{J}}[l]), \forall k, l\} \cap \mathbf{ind}(\widetilde{\mathbf{C}}))) \cup \mathbf{ind}(\widetilde{\mathbf{T}})\} \rangle$$

The above expression defines the structure of matrix $\widetilde{\mathbf{Z}}$ as follows: We start with the structure of $\widetilde{\mathbf{C}}$ ($\mathbf{ind}(\widetilde{\mathbf{C}})$) and remove from it all the indices of $\widetilde{\mathbf{C}}$ that are in the set of indices being assigned ({($\widetilde{\mathbf{I}}[k], \widetilde{\mathbf{J}}[l]$), $\forall k, l$ } \cap $\mathbf{ind}(\widetilde{\mathbf{C}})$). Finally, we add the structure of $\widetilde{\mathbf{T}}$ ($\mathbf{ind}(\widetilde{\mathbf{T}})$).

The values of the elements of $\widetilde{\mathbf{Z}}$ are computed based on the relationships between the sets of indices in $\widetilde{\mathbf{C}}$ and $\widetilde{\mathbf{T}}$.

$$Z_{ij} = \widetilde{\mathbf{C}}(i,j), \text{ if } (i,j) \in (\mathbf{ind}(\widetilde{\mathbf{C}}) - (\{(\widetilde{\boldsymbol{I}}[k], \widetilde{\boldsymbol{J}}[l]), \forall k, l\} \cap \mathbf{ind}(\widetilde{\mathbf{C}}))),$$

 $Z_{ij} = \widetilde{\mathbf{T}}(i, j), \text{ if } (i, j) \in \mathbf{ind}(\widetilde{\mathbf{T}}),$

3869 3870

3871

3

³⁸⁷² where the difference operator refers to set difference.

• If accum is a binary operator, then $\widetilde{\mathbf{Z}}$ is defined as

$$\langle \mathbf{D}_{out}(\mathsf{accum}), \mathbf{nrows}(\widetilde{\mathbf{C}}), \mathbf{ncols}(\widetilde{\mathbf{C}}), \{(i, j, Z_{ij}) \forall (i, j) \in \mathbf{ind}(\widetilde{\mathbf{C}}) \cup \mathbf{ind}(\widetilde{\mathbf{T}})\} \rangle.$$

The values of the elements of $\widetilde{\mathbf{Z}}$ are computed based on the relationships between the sets of indices in $\widetilde{\mathbf{C}}$ and $\widetilde{\mathbf{T}}$.

- 3877 $Z_{ij} = \widetilde{\mathbf{C}}(i,j) \odot \widetilde{\mathbf{T}}(i,j), \text{ if } (i,j) \in (\mathbf{ind}(\widetilde{\mathbf{T}}) \cap \mathbf{ind}(\widetilde{\mathbf{C}})),$
- $Z_{ij} = \widetilde{\mathbf{C}}(i,j), \text{ if } (i,j) \in (\mathbf{ind}(\widetilde{\mathbf{C}}) (\mathbf{ind}(\widetilde{\mathbf{T}}) \cap \mathbf{ind}(\widetilde{\mathbf{C}}))),$

$$Z_{ij} = \widetilde{\mathbf{T}}(i,j), \text{ if } (i,j) \in (\mathbf{ind}(\widetilde{\mathbf{T}}) - (\mathbf{ind}(\widetilde{\mathbf{T}}) \cap \mathbf{ind}(\widetilde{\mathbf{C}})))$$

where
$$\odot = \bigcirc(\mathsf{accum})$$
, and the difference operator refers to set difference.

Finally, the set of output values that make up matrix \mathbf{Z} are written into the final result matrix C, using what is called a *standard matrix mask and replace*. This is carried out under control of the mask which acts as a "write mask". • If desc[GrB_OUTP].GrB_REPLACE is set, then any values in C on input to this operation are deleted and the content of the new output matrix, C, is defined as,

 $\mathbf{L}(\mathsf{C}) = \{(i, j, Z_{ij}) : (i, j) \in (\mathbf{ind}(\widetilde{\mathbf{Z}}) \cap \mathbf{ind}(\widetilde{\mathbf{M}}))\}.$

• If desc[GrB_OUTP].GrB_REPLACE is not set, the elements of \mathbf{Z} indicated by the mask are copied into the result matrix, C, and elements of C that fall outside the set indicated by the mask are unchanged:

3892

3888

 $\mathbf{L}(\mathsf{C}) = \{(i, j, C_{ij}) : (i, j) \in (\mathbf{ind}(\mathsf{C}) \cap \mathbf{ind}(\neg \widetilde{\mathbf{M}}))\} \cup \{(i, j, Z_{ij}) : (i, j) \in (\mathbf{ind}(\widetilde{\mathbf{Z}}) \cap \mathbf{ind}(\widetilde{\mathbf{M}}))\}.$

In GrB_BLOCKING mode, the method exits with return value GrB_SUCCESS and the new content of matrix C is as defined above and fully computed. In GrB_NONBLOCKING mode, the method exits with return value GrB_SUCCESS and the new content of matrix C is as defined above but may not be fully computed. However, it can be used in the next GraphBLAS method call in a sequence.

3898 4.3.7.3 assign: Column variant

Assign the contents a vector to a subset of elements in one column of a matrix. Note that since the output cannot be transposed, a different variant of assign is provided to assign to a row of a matrix.

3902 C Syntax

3903	GrB_Info GrB_assign(GrB_Ma	atrix	С,
3904	const	GrB_Vector	mask,
3905	const	GrB_BinaryOp	accum,
3906	const	GrB_Vector	u,
3907	const	GrB_Index	<pre>*row_indices,</pre>
3908	GrB_II	ndex	nrows,
3909	GrB_I	ndex	col_index,
3910	const	GrB_Descriptor	desc);

3911 Parameters

3912	C	(INOUT) An existing GraphBLAS matrix. On input, the matrix provides values
3913		that may be accumulated with the result of the assign operation. On output, this
3914		matrix holds the results of the operation.
3915	mask	(IN) An optional "write" mask that controls which results from this operation are
3916		stored into the specified column of the output matrix $C.$ The mask dimensions
3917		must match those of a single column of the matrix $C.$ If the $GrB_STRUCTURE$
3918		descriptor is not set for the mask, the domain of the Mask matrix must be of type

3919 3920 3921		bool is de GrB ₋	or any of the sired (i.e., a NULL should	e predefined "built-ir mask that is all tru be specified.	n" types in Table 2.2. If the default mask e with the dimensions of a column of C),
3922 3923 3924	accum	(IN) entrie speci	An optional es. If assignm fied.	binary operator use nent rather than acc	d for accumulating entries into existing C umulation is desired, $GrB_{-}NULL$ should be
3925 3926	u	(IN) ' of C.	The GraphBL	AS vector whose con	atents are assigned to (a subset of) a column
3927 3928 3929 3930 3931 3932 3933 3933	row_indices	(IN) the s in C be sp mani ferred impli unde	Pointer to the pecified colum are to be assi- pecified. Rega pulated by the d computation es in assignm fined results.	e ordered set $(array)$ nn of C that are to igned in order from i ardless of execution ne caller after this o ns for this operation ent of more than one	of indices corresponding to the locations in be assigned. If all elements of the column index 0 to $nrows - 1$, then GrB_ALL should mode and return value, this array may be peration returns without affecting any de- . If this array contains duplicate values, it e value to the same location which leads to
3935	nrows	(IN)	The number of	of values in row_indic	es array. Must be equal to $\mathbf{size}(u)$.
3936	$col_{-}index$	(IN)	The index of	the column in C to a	assign. Must be in the range $[0, \mathbf{ncols}(C))$.
3937 3938 3939	desc	(IN) shoul	An optional og ld be specified	peration descriptor. l. Non-default field/ [.]	If a <i>default</i> descriptor is desired, GrB_NULL value pairs are listed as follows:
	Pa	ram	Field	Value	Description
	C		GrB_OUTP	GrB_REPLACE	Output column in C is cleared (all ele- ments removed) before result is stored in it.
3940	ma	isk	GrB₋MASK	GrB_STRUCTURE	The write mask is constructed from the structure (pattern of stored values) of the input mask vector. The stored values are not examined.
	ma	isk	GrB₋MASK	GrB_COMP	Use the complement of mask.

3941 Return Values

3942	GrB_SUCCESS In blocking mode, the operation completed successfully. In non-
3943	blocking mode, this indicates that the compatibility tests on di-
3944	mensions and domains for the input arguments passed successfully.
3945	Either way, output matrix C is ready to be used in the next method
3946	of the sequence.
3947	GrB_PANIC Unknown internal error.

3948 3949 3950 3951	GrB_INVALID_OBJECT	This is returned in any execution mode whenever one of the opaque GraphBLAS objects (input or output) is in an invalid state caused by a previous execution error. Call $GrB_error()$ to access any error messages generated by the implementation.
3952	GrB_OUT_OF_MEMORY	Not enough memory available for operation.
3953 3954	GrB_UNINITIALIZED_OBJECT	One or more of the GraphBLAS objects has not been initialized by a call to new (or dup for vector or matrix parameters).
3955	GrB_INVALID_INDEX	${\sf col_index} \ {\rm is \ outside \ the \ allowable \ range \ (i.e., \ greater \ than \ {\sf ncols}(C)).$
3956 3957	GrB_INDEX_OUT_OF_BOUNDS	A value in $row_indices$ is greater than or equal to $nrows(C)$. In non-blocking mode, this can be reported as an execution error.
3958 3959	GrB_DIMENSION_MISMATCH	$mask$ size and number of rows in C are not the same, or $nrows\neq {\bf size}(u).$
3960 3961 3962 3963	GrB_DOMAIN_MISMATCH	The domains of the matrix and vector are incompatible with each other or the corresponding domains of the accumulation operator, or the mask's domain is not compatible with bool (in the case where desc[GrB_MASK].GrB_STRUCTURE is not set).
3964	GrB_NULL_POINTER	Argument row_indices is a NULL pointer.

3965 Description

This variant of GrB_assign computes the result of assigning a subset of locations in a column of a GraphBLAS matrix (in a specific order) from the contents of a GraphBLAS vector:

 $\begin{array}{ll} {}_{3968} & C(:,col_index) = u; \, {\rm or}, \, {\rm if} \, {\rm an} \, {\rm optional} \, {\rm binary} \, {\rm accumulation} \, {\rm operator} \, (\odot) \, {\rm is} \, {\rm provided}, \, C(:,col_index) = \\ {}_{3969} & C(:,col_index) \odot u. \, {\rm Taking} \, {\rm order} \, {\rm of} \, row_indices \, {\rm into} \, {\rm account}, \, {\rm it} \, {\rm is} \, {\rm more} \, {\rm explicitly} \, {\rm written} \, {\rm as:} \end{array}$

³⁹⁷⁰
$$C(\text{row_indices}[i], \text{col_index}) = u(i), \forall i : 0 \le i < \text{nrows, or}$$

 $C(\text{row_indices}[i], \text{col_index}) = C(\text{row_indices}[i], \text{col_index}) \odot u(i), \forall i : 0 \le i < \text{nrows.}$

³⁹⁷¹ Logically, this operation occurs in three steps:

- 3972 Setup The internal matrices, vectors and mask used in the computation are formed and their
 3973 domains and dimensions are tested for compatibility.
- 3974 **Compute** The indicated computations are carried out.

³⁹⁷⁵ **Output** The result is written into the output matrix, possibly under control of a mask.

 $_{3976}$ Up to three argument vectors and matrices are used in this GrB_assign operation:

3977 1.
$$C = \langle \mathbf{D}(C), \mathbf{nrows}(C), \mathbf{ncols}(C), \mathbf{L}(C) = \{(i, j, C_{ij})\} \rangle$$

3978 2. mask = $\langle \mathbf{D}(\mathsf{mask}), \mathbf{size}(\mathsf{mask}), \mathbf{L}(\mathsf{mask}) = \{(i, m_i)\} \rangle$ (optional)

3979 3. $\mathbf{u} = \langle \mathbf{D}(\mathbf{u}), \mathbf{size}(\mathbf{u}), \mathbf{L}(\mathbf{u}) = \{(i, u_i)\} \rangle$

The argument vectors, matrix, and the accumulation operator (if provided) are tested for domain compatibility as follows:

- If mask is not GrB_NULL, and desc[GrB_MASK].GrB_STRUCTURE is not set, then D(mask)
 must be from one of the pre-defined types of Table 2.2.
- 3984 2. D(C) must be compatible with D(u).

3985 3. If accum is not GrB_NULL, then D(C) must be compatible with $D_{in_1}(accum)$ and $D_{out}(accum)$ of the accumulation operator and D(u) must be compatible with $D_{in_2}(accum)$ of the accumulation operator.

Two domains are compatible with each other if values from one domain can be cast to values in the other domain as per the rules of the C language. In particular, domains from Table 2.2 are all compatible with each other. A domain from a user-defined type is only compatible with itself. If any compatibility rule above is violated, execution of GrB_assign ends and the domain mismatch error listed above is returned.

³⁹⁹³ The col_index parameter is checked for a valid value. The following condition must hold:

$$_{3994}$$
 1. 0 \leq col_index $<$ ncols(C)

³⁹⁹⁵ If the rule above is violated, execution of GrB_{assign} ends and the invalid index error listed above ³⁹⁹⁶ is returned.

From the arguments, the internal vectors, mask, and index array used in the computation are formed (\leftarrow denotes copy):

³⁹⁹⁹ 1. The vector, $\tilde{\mathbf{c}}$, is extracted from a column of C as follows:

 $\widetilde{\mathbf{c}} = \langle \mathbf{D}(\mathsf{C}), \mathbf{nrows}(\mathsf{C}), \{(i, C_{ij}) \ \forall \ i : 0 \le i < \mathbf{nrows}(\mathsf{C}), j = \mathsf{col_index}, (i, j) \in \mathbf{ind}(\mathsf{C}) \} \rangle$

4001 2. One-dimensional mask, $\widetilde{\mathbf{m}}$, is computed from argument mask as follows:

(a) If mask = GrB_NULL, then
$$\widetilde{\mathbf{m}} = \langle \mathbf{nrows}(\mathsf{C}), \{i, \forall i : 0 \le i < \mathbf{nrows}(\mathsf{C})\} \rangle$$
.

- 4003 (b) If mask \neq GrB_NULL,
- 4004 4005
- i. If desc[GrB_MASK].GrB_STRUCTURE is set, then $\widetilde{\mathbf{m}} = \langle \mathbf{size}(\mathsf{mask}), \{i : i \in \mathbf{ind}(\mathsf{mask})\} \rangle$,
- ii. Otherwise, $\widetilde{\mathbf{m}} = \langle \mathbf{size}(\mathsf{mask}), \{i : i \in \mathbf{ind}(\mathsf{mask}) \land (\mathsf{bool})\mathsf{mask}(i) = \mathsf{true}\} \rangle$.
- 4006 (c) If desc[GrB_MASK].GrB_COMP is set, then $\widetilde{\mathbf{m}} \leftarrow \neg \widetilde{\mathbf{m}}$.
- 4007 3. Vector $\widetilde{\mathbf{u}} \leftarrow \mathbf{u}$.

4008 4. The internal row index array, \widetilde{I} , is computed from argument row_indices as follows:

(a) If row_indices = GrB_ALL, then $\widetilde{I}[i] = i, \forall i : 0 \le i < \text{nrows}.$

4010 (b) Otherwise, $\widetilde{I}[i] = \mathsf{row_indices}[i], \forall i : 0 \le i < \mathsf{nrows}.$

⁴⁰¹¹ The internal vectors, matrices, and masks are checked for dimension compatibility. The following⁴⁰¹² conditions must hold:

4013 1. $\operatorname{size}(\widetilde{\mathbf{c}}) = \operatorname{size}(\widetilde{\mathbf{m}})$

4014 2. nrows = $size(\widetilde{u})$.

If any compatibility rule above is violated, execution of GrB_assign ends and the dimension mismatch error listed above is returned.

⁴⁰¹⁷ From this point forward, in GrB_NONBLOCKING mode, the method can optionally exit with ⁴⁰¹⁸ GrB_SUCCESS return code and defer any computation and/or execution error codes.

We are now ready to carry out the assign and any additional associated operations. We describe this in terms of two intermediate vectors:

• $\tilde{\mathbf{t}}$: The vector holding the elements from $\tilde{\mathbf{u}}$ in their destination locations relative to $\tilde{\mathbf{c}}$.

• $\tilde{\mathbf{z}}$: The vector holding the result after application of the (optional) accumulation operator.

4023 The intermediate vector, $\tilde{\mathbf{t}}$, is created as follows:

4024
$$\widetilde{\mathbf{t}} = \langle \mathbf{D}(\mathbf{u}), \mathbf{size}(\widetilde{\mathbf{c}}), \{ (\widetilde{\boldsymbol{I}}[i], \widetilde{\mathbf{u}}(i)) \ \forall \ i, \ 0 \le i < \mathsf{nrows} : i \in \mathbf{ind}(\widetilde{\mathbf{u}}) \} \rangle$$

At this point, if any value of $\tilde{I}[i]$ is outside the valid range of indices for vector \tilde{c} , computation ends and the method returns the index out-of-bounds error listed above. In GrB_NONBLOCKING mode, the error can be deferred until a sequence-terminating GrB_wait() is called. Regardless, the result matrix, C, is invalid from this point forward in the sequence.

4029 The intermediate vector $\widetilde{\mathbf{z}}$ is created as follows:

• If accum = GrB_NULL, then $\tilde{\mathbf{z}}$ is defined as

$$\widetilde{\mathbf{z}} = \langle \mathbf{D}(\mathsf{C}), \mathbf{size}(\widetilde{\mathbf{c}}), \{(i, z_i), \forall i \in (\mathbf{ind}(\widetilde{\mathbf{c}}) - (\{\widetilde{\boldsymbol{I}}[k], \forall k\} \cap \mathbf{ind}(\widetilde{\mathbf{c}}))) \cup \mathbf{ind}(\widetilde{\mathbf{t}})\} \rangle.$$

The above expression defines the structure of vector $\tilde{\mathbf{z}}$ as follows: We start with the structure of $\tilde{\mathbf{c}}$ ($\mathbf{ind}(\tilde{\mathbf{c}})$) and remove from it all the indices of $\tilde{\mathbf{c}}$ that are in the set of indices being assigned ({ $\tilde{I}[k], \forall k$ } \cap $\mathbf{ind}(\tilde{\mathbf{c}})$). Finally, we add the structure of $\tilde{\mathbf{t}}$ ($\mathbf{ind}(\tilde{\mathbf{t}})$).

The values of the elements of $\tilde{\mathbf{z}}$ are computed based on the relationships between the sets of indices in $\tilde{\mathbf{c}}$ and $\tilde{\mathbf{t}}$.

- 4037 $z_i = \widetilde{\mathbf{c}}(i), \text{ if } i \in (\mathbf{ind}(\widetilde{\mathbf{c}}) (\{\widetilde{I}[k], \forall k\} \cap \mathbf{ind}(\widetilde{\mathbf{c}}))),$
- 4038 4039 $z_i = \widetilde{\mathbf{t}}(i), ext{ if } i \in \mathbf{ind}(\widetilde{\mathbf{t}}),$

4040 where the difference operator refers to set difference.

• If accum is a binary operator, then $\tilde{\mathbf{z}}$ is defined as

4042 $\langle \mathbf{D}_{out}(\mathsf{accum}), \mathbf{size}(\widetilde{\mathbf{c}}), \{(i, z_i) \forall i \in \mathbf{ind}(\widetilde{\mathbf{c}}) \cup \mathbf{ind}(\widetilde{\mathbf{t}})\} \rangle.$

The values of the elements of $\tilde{\mathbf{z}}$ are computed based on the relationships between the sets of indices in $\tilde{\mathbf{w}}$ and $\tilde{\mathbf{t}}$.

4045	$z_i = \widetilde{\mathbf{c}}(i) \odot \widetilde{\mathbf{t}}(i), \text{ if } i \in (\mathbf{ind}(\widetilde{\mathbf{t}}) \cap \mathbf{ind}(\widetilde{\mathbf{c}})),$
4046	~
4047	$z_i = \widetilde{\mathbf{c}}(i), \text{ if } i \in (\mathbf{ind}(\widetilde{\mathbf{c}}) - (\mathbf{ind}(\widetilde{\mathbf{t}}) \cap \mathbf{ind}(\widetilde{\mathbf{c}}))),$
4048	~ ~ ~ ~
4049	$z_i = \mathbf{t}(i), \text{ if } i \in (\mathbf{ind}(\mathbf{t}) - (\mathbf{ind}(\mathbf{t}) \cap \mathbf{ind}(\widetilde{\mathbf{c}}))),$

where $\odot = \bigcirc(\mathsf{accum})$, and the difference operator refers to set difference.

Finally, the set of output values that make up the \tilde{z} vector are written into the column of the final result matrix, $C(:, col_index)$. This is carried out under control of the mask which acts as a "write mask".

• If desc[GrB_OUTP].GrB_REPLACE is set, then any values in C(:, col_index) on input to this operation are deleted and the new contents of the column is given by:

4056 $\mathbf{L}(\mathsf{C}) = \{(i, j, C_{ij}) : j \neq \mathsf{col_index}\} \cup \{(i, \mathsf{col_index}, z_i) : i \in (\mathbf{ind}(\widetilde{\mathbf{z}}) \cap \mathbf{ind}(\widetilde{\mathbf{m}}))\}.$

• If desc[GrB_OUTP].GrB_REPLACE is not set, the elements of \tilde{z} indicated by the mask are copied into the column of the final result matrix, C(:, col_index), and elements of this column that fall outside the set indicated by the mask are unchanged:

4060	$\mathbf{L}(C)$	=	$\{(i,j,C_{ij}): j \neq col_index\} \cup$
4061			$\{(i,col_index,\widetilde{\mathbf{c}}(i)):i\in(\mathbf{ind}(\widetilde{\mathbf{c}})\cap\mathbf{ind}(\neg\widetilde{\mathbf{m}}))\}\cup$
4062			$\{(i, col_index, z_i) : i \in (\mathbf{ind}(\widetilde{\mathbf{z}}) \cap \mathbf{ind}(\widetilde{\mathbf{m}}))\}.$

In GrB_BLOCKING mode, the method exits with return value GrB_SUCCESS and the new content of vector w is as defined above and fully computed. In GrB_NONBLOCKING mode, the method exits with return value GrB_SUCCESS and the new content of vector w is as defined above but may not be fully computed; however, it can be used in the next GraphBLAS method call in a sequence.

4067 4.3.7.4 assign: Row variant

Assign the contents a vector to a subset of elements in one row of a matrix. Note that since the output cannot be transposed, a different variant of assign is provided to assign to a column of a matrix.

4071 C Syntax

4072	GrB_Info GrB_assign(GrB_Matrix	С,
4073		const GrB_Vector	mask,
4074		const GrB_BinaryOp	accum,
4075		const GrB_Vector	u,
4076	(GrB_Index	row_index,
4077		const GrB_Index	*col_indices,
4078	(GrB_Index	ncols,
4079		const GrB_Descriptor	desc);

4080 Parameters

4081 4082 4083	C	(INOUT) An existing GraphBLAS Matrix. On input, the matrix provides values that may be accumulated with the result of the assign operation. On output, this matrix holds the results of the operation.
4084 4085 4086 4087 4088 4089 4090	mask	(IN) An optional "write" mask that controls which results from this operation are stored into the specified row of the output matrix C. The mask dimensions must match those of a single row of the matrix C. If the GrB_STRUCTURE descriptor is <i>not</i> set for the mask, the domain of the Mask matrix must be of type bool or any of the predefined "built-in" types in Table 2.2. If the default mask is desired (i.e., a mask that is all true with the dimensions of a row of C), GrB_NULL should be specified.
4091 4092 4093	accum	(IN) An optional binary operator used for accumulating entries into existing C entries. If assignment rather than accumulation is desired, GrB_NULL should be specified.
4094 4095	u	(IN) The GraphBLAS vector whose contents are assigned to (a subset of) a row of $C.$
4096	row_index	(IN) The index of the row in C to assign. Must be in the range $[0, \mathbf{nrows}(C))$.
4097 4098 4099 4100 4101 4102 4103	col_indices	(IN) Pointer to the ordered set (array) of indices corresponding to the locations in the specified row of C that are to be assigned. If all elements of the row in C are to be assigned in order from index 0 to $ncols - 1$, then GrB_ALL should be specified. Regardless of execution mode and return value, this array may be manipulated by the caller after this operation returns without affecting any deferred computations for this operation. If this array contains duplicate values, it implies in assignment of more than one value to the same location which leads to undefined results.
4104	ncols	(IN) The number of values in $col_indices$ array. Must be equal to $\mathbf{size}(u).$
4105 4106 4107	desc	(IN) An optional operation descriptor. If a default descriptor is desired, GrB_NULL should be specified. Non-default field/value pairs are listed as follows:

	Param	Field	Value	Description
-	С	GrB_OUTP	GrB_REPLACE	Output row in ${\sf C}$ is cleared (all elements
				removed) before result is stored in it.
4108	mask	GrB_MASK	GrB_STRUCTURE	The write mask is constructed from the
				structure (pattern of stored values) of the
				input mask vector. The stored values are
				not examined.
	mask	GrB_MASK	GrB_COMP	Use the complement of mask.

4109 Return Values

	blocking mode, the operation completed successfully. In hole blocking mode, this indicates that the compatibility tests on di- mensions and domains for the input arguments passed successfully. Either way, output matrix C is ready to be used in the next method of the sequence.
GrB_PANIC	Unknown internal error.
GrB_INVALID_OBJECT	This is returned in any execution mode whenever one of the opaque GraphBLAS objects (input or output) is in an invalid state caused by a previous execution error. Call GrB_error() to access any error messages generated by the implementation.
GrB_OUT_OF_MEMORY	Not enough memory available for operation.
GrB_UNINITIALIZED_OBJECT	One or more of the GraphBLAS objects has not been initialized by a call to new (or dup for vector or matrix parameters).
GrB_INVALID_INDEX	$row_index \ \mathrm{is \ outside \ the \ allowable \ range \ } (\mathrm{i.e., \ greater \ than \ } \mathbf{nrows}(C)).$
GrB_INDEX_OUT_OF_BOUNDS	A value in $col_indices$ is greater than or equal to $ncols(C)$. In non- blocking mode, this can be reported as an execution error.
GrB_DIMENSION_MISMATCH	mask size and number of columns in C are not the same, or $ncols \neq \mathbf{size}(u).$
GrB_DOMAIN_MISMATCH	The domains of the matrix and vector are incompatible with each other or the corresponding domains of the accumulation operator, or the mask's domain is not compatible with bool (in the case where desc[GrB_MASK].GrB_STRUCTURE is not set).
GrB_NULL_POINTER	Argument $col_indices$ is a NULL pointer.
	GrB_PANIC GrB_INVALID_OBJECT GrB_OUT_OF_MEMORY GrB_UNINITIALIZED_OBJECT GrB_INVALID_INDEX GrB_INDEX_OUT_OF_BOUNDS GrB_DIMENSION_MISMATCH GrB_DOMAIN_MISMATCH

4133 **Description**

⁴¹³⁴ This variant of GrB_assign computes the result of assigning a subset of locations in a row of a ⁴¹³⁵ GraphBLAS matrix (in a specific order) from the contents of a GraphBLAS vector: $C(row_index,:) = u; or, if an optional binary accumulation operator (<math>\odot$) is provided, $C(row_index,:) = U; or, if an optional binary accumulation operator (<math>\odot$) is provided, $C(row_index,:) = C(row_index,:) \odot u$. Taking order of col_indices into account it is more explicitly written as:

- ⁴¹³⁸ $C(row_index, col_indices[j]) = u(j), \forall j : 0 \le j < ncols, or$ $C(row_index, col_indices[j]) = C(row_index, col_indices[j]) \odot u(j), \forall j : 0 \le j < ncols$
- ⁴¹³⁹ Logically, this operation occurs in three steps:

Setup The internal matrices, vectors and mask used in the computation are formed and their
 domains and dimensions are tested for compatibility.

- 4142 **Compute** The indicated computations are carried out.
- 4143 **Output** The result is written into the output matrix, possibly under control of a mask.
- ⁴¹⁴⁴ Up to three argument vectors and matrices are used in this GrB_assign operation:

4145 1.
$$\mathsf{C} = \langle \mathbf{D}(\mathsf{C}), \mathbf{nrows}(\mathsf{C}), \mathbf{ncols}(\mathsf{C}), \mathbf{L}(\mathsf{C}) = \{(i, j, C_{ij})\} \rangle$$

- 4146 2. mask = $\langle \mathbf{D}(\mathsf{mask}), \mathbf{size}(\mathsf{mask}), \mathbf{L}(\mathsf{mask}) = \{(i, m_i)\} \rangle$ (optional)
- 4147 3. $\mathbf{u} = \langle \mathbf{D}(\mathbf{u}), \mathbf{size}(\mathbf{u}), \mathbf{L}(\mathbf{u}) = \{(i, u_i)\} \rangle$
- ⁴¹⁴⁸ The argument vectors, matrix, and the accumulation operator (if provided) are tested for domain ⁴¹⁴⁹ compatibility as follows:
- 1. If mask is not GrB_NULL, and desc[GrB_MASK].GrB_STRUCTURE is not set, then D(mask) must be from one of the pre-defined types of Table 2.2.
- 4152 2. D(C) must be compatible with D(u).

3. If accum is not GrB_NULL, then D(C) must be compatible with $D_{in_1}(accum)$ and $D_{out}(accum)$ of the accumulation operator and D(u) must be compatible with $D_{in_2}(accum)$ of the accumulation operator.

Two domains are compatible with each other if values from one domain can be cast to values in the other domain as per the rules of the C language. In particular, domains from Table 2.2 are all compatible with each other. A domain from a user-defined type is only compatible with itself. If any compatibility rule above is violated, execution of GrB_assign ends and the domain mismatch error listed above is returned.

- ⁴¹⁶¹ The row_index parameter is checked for a valid value. The following condition must hold:
- 4162 1. $0 \leq \text{row_index} < \mathbf{nrows}(\mathsf{C})$
- If the rule above is violated, execution of GrB_{assign} ends and the invalid index error listed above is returned.
- From the arguments, the internal vectors, mask, and index array used in the computation are formed (\leftarrow denotes copy):

4167 1. The vector, $\tilde{\mathbf{c}}$, is extracted from a row of **C** as follows:

4168

 $\widetilde{\mathbf{c}} = \langle \mathbf{D}(\mathsf{C}), \mathbf{ncols}(\mathsf{C}), \{(j, C_{ij}) \ \forall \ j: 0 \le j < \mathbf{ncols}(\mathsf{C}), i = \mathsf{row_index}, (i, j) \in \mathbf{ind}(\mathsf{C}) \} \rangle$

ii. Otherwise, $\widetilde{\mathbf{m}} = \langle \mathbf{size}(\mathsf{mask}), \{i : i \in \mathbf{ind}(\mathsf{mask}) \land (\mathsf{bool})\mathsf{mask}(i) = \mathsf{true} \} \rangle$.

i. If desc[GrB_MASK].GrB_STRUCTURE is set, then $\widetilde{\mathbf{m}} = \langle \mathbf{size}(\mathsf{mask}), \{i : i \in \mathbf{ind}(\mathsf{mask})\} \rangle$,

4169 2. One-dimensional mask, $\widetilde{\mathbf{m}}$, is computed from argument mask as follows:

(a) If mask = GrB_NULL, then $\widetilde{\mathbf{m}} = \langle \mathbf{ncols}(\mathsf{C}), \{i, \forall i : 0 \le i < \mathbf{ncols}(\mathsf{C})\} \rangle$.

- 4171 (b) If mask \neq GrB_NULL,
- 4172
- 4173

4174 (c) If desc[GrB_MASK].GrB_COMP is set, then $\widetilde{\mathbf{m}} \leftarrow \neg \widetilde{\mathbf{m}}$.

4175 3. Vector $\widetilde{\mathbf{u}} \leftarrow \mathbf{u}$.

4176 4. The internal column index array, \tilde{J} , is computed from argument col_indices as follows:

(a) If col_indices = GrB_ALL, then $\widetilde{J}[j] = j, \forall j : 0 \le j < \text{ncols.}$

(b) Otherwise, $\widetilde{J}[j] = \text{col_indices}[j], \forall j : 0 \le j < \text{ncols.}$

⁴¹⁷⁹ The internal vectors, matrices, and masks are checked for dimension compatibility. The following ⁴¹⁸⁰ conditions must hold:

4181 1. $\operatorname{size}(\widetilde{\mathbf{c}}) = \operatorname{size}(\widetilde{\mathbf{m}})$

4182 2.
$$ncols = size(\widetilde{\mathbf{u}}).$$

If any compatibility rule above is violated, execution of GrB_assign ends and the dimension mismatch error listed above is returned.

 $_{4185}$ From this point forward, in GrB_NONBLOCKING mode, the method can optionally exit with $_{4186}$ GrB_SUCCESS return code and defer any computation and/or execution error codes.

⁴¹⁸⁷ We are now ready to carry out the assign and any additional associated operations. We describe ⁴¹⁸⁸ this in terms of two intermediate vectors:

• $\tilde{\mathbf{t}}$: The vector holding the elements from $\tilde{\mathbf{u}}$ in their destination locations relative to $\tilde{\mathbf{c}}$.

• $\tilde{\mathbf{z}}$: The vector holding the result after application of the (optional) accumulation operator.

4191 The intermediate vector, $\tilde{\mathbf{t}}$, is created as follows:

4192
$$\widetilde{\mathbf{t}} = \langle \mathbf{D}(\mathbf{u}), \mathbf{size}(\widetilde{\mathbf{c}}), \{ (\widetilde{\boldsymbol{J}}[j], \widetilde{\mathbf{u}}(j)) \ \forall \ j, \ 0 \le j < \mathsf{ncols} : j \in \mathbf{ind}(\widetilde{\mathbf{u}}) \} \rangle.$$

⁴¹⁹³ At this point, if any value of $\tilde{J}[j]$ is outside the valid range of indices for vector \tilde{c} , computation ⁴¹⁹⁴ ends and the method returns the index out-of-bounds error listed above. In GrB_NONBLOCKING ⁴¹⁹⁵ mode, the error can be deferred until a sequence-terminating GrB_wait() is called. Regardless, the ⁴¹⁹⁶ result matrix, C, is invalid from this point forward in the sequence.

4197 The intermediate vector $\widetilde{\mathbf{z}}$ is created as follows:

• If accum = GrB_NULL, then $\tilde{\mathbf{z}}$ is defined as 4198

$$\widetilde{\mathbf{z}} = \langle \mathbf{D}(\mathsf{C}), \mathbf{size}(\widetilde{\mathbf{c}}), \{(i, z_i), \forall i \in (\mathbf{ind}(\widetilde{\mathbf{c}}) - (\{\widetilde{\boldsymbol{I}}[k], \forall k\} \cap \mathbf{ind}(\widetilde{\mathbf{c}}))) \cup \mathbf{ind}(\widetilde{\mathbf{t}})\} \rangle.$$

The above expression defines the structure of vector $\tilde{\mathbf{z}}$ as follows: We start with the structure 4200 of $\widetilde{\mathbf{c}}$ (ind($\widetilde{\mathbf{c}}$)) and remove from it all the indices of $\widetilde{\mathbf{c}}$ that are in the set of indices being 4201 assigned $(\{I[k], \forall k\} \cap ind(\widetilde{\mathbf{c}}))$. Finally, we add the structure of \mathbf{t} (ind(\mathbf{t})). 4202

The values of the elements of $\tilde{\mathbf{z}}$ are computed based on the relationships between the sets of 4203 indices in $\tilde{\mathbf{c}}$ and $\tilde{\mathbf{t}}$. 4204

$$z_{i} = \widetilde{\mathbf{c}}(i), \text{ if } i \in (\mathbf{ind}(\widetilde{\mathbf{c}}) - (\{\widetilde{\boldsymbol{I}}[k], \forall k\} \cap \mathbf{ind}(\widetilde{\mathbf{c}}))),$$

$$z_{i} = \widetilde{\mathbf{t}}(i), \text{ if } i \in \mathbf{ind}(\widetilde{\mathbf{t}}),$$

where the difference operator refers to set difference. 4208

• If accum is a binary operator, then $\tilde{\mathbf{z}}$ is defined as 4209

$$\langle \mathbf{D}_{out}(\mathsf{accum}), \mathbf{size}(\widetilde{\mathbf{c}}), \{(j, z_j) \ \forall \ j \in \mathbf{ind}(\widetilde{\mathbf{c}}) \cup \mathbf{ind}(\widetilde{\mathbf{t}}) \} \rangle$$

The values of the elements of $\tilde{\mathbf{z}}$ are computed based on the relationships between the sets of 4211 indices in $\widetilde{\mathbf{w}}$ and \mathbf{t} . 4212

 $z_j = \widetilde{\mathbf{c}}(j) \odot \widetilde{\mathbf{t}}(j), \text{ if } j \in (\mathbf{ind}(\widetilde{\mathbf{t}}) \cap \mathbf{ind}(\widetilde{\mathbf{c}})),$ 4213 4214 $z_j = \widetilde{\mathbf{c}}(j), \text{ if } j \in (\mathbf{ind}(\widetilde{\mathbf{c}}) - (\mathbf{ind}(\widetilde{\mathbf{t}}) \cap \mathbf{ind}(\widetilde{\mathbf{c}}))),$ 4215 4216 $z_j = \widetilde{\mathbf{t}}(j), \text{ if } j \in (\mathbf{ind}(\widetilde{\mathbf{t}}) - (\mathbf{ind}(\widetilde{\mathbf{t}}) \cap \mathbf{ind}(\widetilde{\mathbf{c}}))),$ 4217

where $\odot = \bigcirc (\mathsf{accum})$, and the difference operator refers to set difference. 4218

Finally, the set of output values that make up the \tilde{z} vector are written into the column of the final 4219 result matrix, $C(row_index,:)$. This is carried out under control of the mask which acts as a "write 4220 mask". 4221

• If desc[GrB_OUTP].GrB_REPLACE is set, then any values in C(row_index,:) on input to this 4222 operation are deleted and the new contents of the column is given by: 4223

4224

4199

4210

 $\mathbf{L}(\mathsf{C}) = \{(i, j, C_{ij}) : i \neq \mathsf{row_index}\} \cup \{(\mathsf{row_index}, j, z_j) : j \in (\mathbf{ind}(\widetilde{\mathbf{z}}) \cap \mathbf{ind}(\widetilde{\mathbf{m}}))\}.$

• If desc[GrB_OUTP].GrB_REPLACE is not set, the elements of \tilde{z} indicated by the mask are 4225 copied into the column of the final result matrix, $C(row_index, :)$, and elements of this column 4226 that fall outside the set indicated by the mask are unchanged: 4227

422

422 423

$$\mathbf{L}(\mathsf{C}) = \{(i, j, C_{ij}) : i \neq \mathsf{row_index}\} \cup \\ \{(\mathsf{row_index}, j, \widetilde{\mathbf{c}}(j)) : j \in (\mathbf{ind}(\widetilde{\mathbf{c}}) \cap \mathbf{ind}(\neg \widetilde{\mathbf{m}}))\} \cup \\ \{(\mathsf{row_index}, j, z_j) : j \in (\mathbf{ind}(\widetilde{\mathbf{z}}) \cap \mathbf{ind}(\widetilde{\mathbf{m}}))\}.$$

In GrB_BLOCKING mode, the method exits with return value GrB_SUCCESS and the new content 4231 of vector w is as defined above and fully computed. In GrB_NONBLOCKING mode, the method 4232 exits with return value GrB_SUCCESS and the new content of vector w is as defined above but may 4233 not be fully computed; however, it can be used in the next GraphBLAS method call in a sequence. 4234

4235 4.3.7.5 assign: Constant vector variant

Assign the same value to a specified subset of vector elements. With the use of GrB_ALL , the entire destination vector can be filled with the constant.

4238 C Syntax

4239	GrB_Info GrB_assign	(GrB_Vector	W,
4240		const GrB_Vector	mask,
4241		const GrB_BinaryOp	accum,
4242		<type></type>	val,
4243		const GrB_Index	*indices,
4244		GrB_Index	nindices,
4245		const GrB_Descriptor	desc);

4246 Parameters

4247	W	(INOUT) An existing GraphBLAS vector. On input, the vector provides values
4248		that may be accumulated with the result of the assign operation. On output, this
4249		vector holds the results of the operation.
4250	mask	(IN) An optional "write" mask that controls which results from this operation are
4251		stored into the output vector w. The mask dimensions must match those of the
4252		vector w. If the $GrB_{-}STRUCTURE$ descriptor is not set for the mask, the domain
4253		of the mask vector must be of type bool or any of the predefined "built-in" types
4254		in Table 2.2. If the default mask is desired (i.e., a mask that is all true with the
4255		dimensions of w), GrB_NULL should be specified.
4256	accum	(IN) An optional binary operator used for accumulating entries into existing w
4257		entries. If assignment rather than accumulation is desired, GrB_NULL should be
4258		specified.
4258 4259	val	specified. (IN) Scalar value to assign to (a subset of) w.
4258 4259 4260	val	specified.(IN) Scalar value to assign to (a subset of) w.(IN) Pointer to the ordered set (array) of indices corresponding to the locations in
4258 4259 4260 4261	val indices	specified.(IN) Scalar value to assign to (a subset of) w.(IN) Pointer to the ordered set (array) of indices corresponding to the locations in w that are to be assigned. If all elements of w are to be assigned in order from 0
4258 4259 4260 4261 4262	val indices	 specified. (IN) Scalar value to assign to (a subset of) w. (IN) Pointer to the ordered set (array) of indices corresponding to the locations in w that are to be assigned. If all elements of w are to be assigned in order from 0 to nindices - 1, then GrB_ALL should be specified. Regardless of execution mode
4258 4259 4260 4261 4262 4263	val indices	 specified. (IN) Scalar value to assign to (a subset of) w. (IN) Pointer to the ordered set (array) of indices corresponding to the locations in w that are to be assigned. If all elements of w are to be assigned in order from 0 to nindices – 1, then GrB_ALL should be specified. Regardless of execution mode and return value, this array may be manipulated by the caller after this operation
4258 4259 4260 4261 4262 4263 4263 4264	val indices	 specified. (IN) Scalar value to assign to (a subset of) w. (IN) Pointer to the ordered set (array) of indices corresponding to the locations in w that are to be assigned. If all elements of w are to be assigned in order from 0 to nindices - 1, then GrB_ALL should be specified. Regardless of execution mode and return value, this array may be manipulated by the caller after this operation returns without affecting any deferred computations for this operation. In this
4258 4259 4260 4261 4262 4263 4263 4264 4265	val indices	 specified. (IN) Scalar value to assign to (a subset of) w. (IN) Pointer to the ordered set (array) of indices corresponding to the locations in w that are to be assigned. If all elements of w are to be assigned in order from 0 to nindices - 1, then GrB_ALL should be specified. Regardless of execution mode and return value, this array may be manipulated by the caller after this operation returns without affecting any deferred computations for this operation. In this variant, the specific order of the values in the array has no effect on the result.
4258 4259 4260 4261 4262 4263 4264 4265 4266	val indices	specified. (IN) Scalar value to assign to (a subset of) w. (IN) Pointer to the ordered set (array) of indices corresponding to the locations in w that are to be assigned. If all elements of w are to be assigned in order from 0 to nindices -1 , then GrB_ALL should be specified. Regardless of execution mode and return value, this array may be manipulated by the caller after this operation returns without affecting any deferred computations for this operation. In this variant, the specific order of the values in the array has no effect on the result. Unlike other variants, if there are duplicated values in this array the result is still
4258 4259 4260 4261 4262 4263 4264 4265 4266 4267	val indices	specified. (IN) Scalar value to assign to (a subset of) w. (IN) Pointer to the ordered set (array) of indices corresponding to the locations in w that are to be assigned. If all elements of w are to be assigned in order from 0 to nindices -1 , then GrB_ALL should be specified. Regardless of execution mode and return value, this array may be manipulated by the caller after this operation returns without affecting any deferred computations for this operation. In this variant, the specific order of the values in the array has no effect on the result. Unlike other variants, if there are duplicated values in this array the result is still defined.
4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268	val indices nindices	 specified. (IN) Scalar value to assign to (a subset of) w. (IN) Pointer to the ordered set (array) of indices corresponding to the locations in w that are to be assigned. If all elements of w are to be assigned in order from 0 to nindices – 1, then GrB_ALL should be specified. Regardless of execution mode and return value, this array may be manipulated by the caller after this operation returns without affecting any deferred computations for this operation. In this variant, the specific order of the values in the array has no effect on the result. Unlike other variants, if there are duplicated values in this array the result is still defined. (IN) The number of values in indices array. Must be in the range: [0, size(w)]. If

should be specified. Non-default field/value pairs are listed as follows: 4271 4272 Field Value Param Description GrB_OUTP GrB_REPLACE Output vector w is cleared (all elements w removed) before the result is stored in it. mask GrB_MASK GrB_STRUCTURE The write mask is constructed from the 4273 structure (pattern of stored values) of the input mask vector. The stored values are not examined. mask GrB_MASK GrB_COMP Use the complement of mask.

desc (IN) An optional operation descriptor. If a default descriptor is desired, GrB_NULL

4274 Return Values

4270

4275 4276 4277 4278 4279	GrB_SUCCESS	In blocking mode, the operation completed successfully. In non- blocking mode, this indicates that the compatibility tests on di- mensions and domains for the input arguments passed successfully. Either way, output vector w is ready to be used in the next method of the sequence.
4280	GrB_PANIC	Unknown internal error.
4281 4282 4283 4284	GrB_INVALID_OBJECT	This is returned in any execution mode whenever one of the opaque GraphBLAS objects (input or output) is in an invalid state caused by a previous execution error. Call GrB_error() to access any error messages generated by the implementation.
4285	GrB_OUT_OF_MEMORY	Not enough memory available for operation.
4286 4287	GrB_UNINITIALIZED_OBJECT	One or more of the GraphBLAS objects has not been initialized by a call to new (or dup for vector parameters).
4288 4289	GrB_INDEX_OUT_OF_BOUNDS	A value in indices is greater than or equal to ${\bf size}(w).$ In non-blocking mode, this can be reported as an execution error.
4290 4291	GrB_DIMENSION_MISMATCH	$mask$ and w dimensions are incompatible, or $nindices$ is not less than $\mathbf{size}(w).$
4292 4293 4294 4295	GrB_DOMAIN_MISMATCH	The domains of the vector and scalar are incompatible with each other or the corresponding domains of the accumulation operator, or the mask's domain is not compatible with bool (in the case where desc[GrB_MASK].GrB_STRUCTURE is not set).
4296	GrB_NULL_POINTER	Argument indices is a NULL pointer.

4297 Description

This variant of GrB_assign computes the result of assigning a constant scalar value to locations in a destination GraphBLAS vector: w(indices) = val; or, if an optional binary accumulation operator (\odot) is provided, $w(indices) = w(indices) \odot val$. More explicitly:

- w(indices[i]) = val, $\forall i : 0 \le i < \text{nindices}, \text{ or}$ w(indices[i]) = w(indices[i]) \odot val, $\forall i : 0 \le i < \text{nindices}.$
- 4302 Logically, this operation occurs in three steps:
- 4303 Setup The internal vectors and mask used in the computation are formed and their domains
 4304 and dimensions are tested for compatibility.
- 4305 **Compute** The indicated computations are carried out.
- 4306 **Output** The result is written into the output vector, possibly under control of a mask.
- ⁴³⁰⁷ Up to two argument vectors are used in the GrB_assign operation:

4308 1.
$$w = \langle \mathbf{D}(w), \mathbf{size}(w), \mathbf{L}(w) = \{(i, w_i)\} \rangle$$

4309 2. mask = $\langle \mathbf{D}(\mathsf{mask}), \mathsf{size}(\mathsf{mask}), \mathbf{L}(\mathsf{mask}) = \{(i, m_i)\} \rangle$ (optional)

The argument scalar, vectors, and the accumulation operator (if provided) are tested for domain compatibility as follows:

- If mask is not GrB_NULL, and desc[GrB_MASK].GrB_STRUCTURE is not set, then D(mask)
 must be from one of the pre-defined types of Table 2.2.
- 4314 2. $\mathbf{D}(w)$ must be compatible with $\mathbf{D}(val)$.

3. If accum is not GrB_NULL, then $\mathbf{D}(w)$ must be compatible with $\mathbf{D}_{in_1}(\operatorname{accum})$ and $\mathbf{D}_{out}(\operatorname{accum})$ of the accumulation operator and $\mathbf{D}(\operatorname{val})$ must be compatible with $\mathbf{D}_{in_2}(\operatorname{accum})$ of the accumulation operator.

Two domains are compatible with each other if values from one domain can be cast to values in the other domain as per the rules of the C language. In particular, domains from Table 2.2 are all compatible with each other. A domain from a user-defined type is only compatible with itself. If any compatibility rule above is violated, execution of GrB_assign ends and the domain mismatch error listed above is returned.

- From the arguments, the internal vectors, mask and index array used in the computation are formed (\leftarrow denotes copy):
- 4325 1. Vector $\widetilde{\mathbf{w}} \leftarrow \mathbf{w}$.
- 4326 2. One-dimensional mask, $\widetilde{\mathbf{m}}$, is computed from argument mask as follows:

(a) If mask = GrB_NULL, then $\widetilde{\mathbf{m}} = \langle \mathbf{size}(\mathsf{w}), \{i, \forall i : 0 \le i < \mathbf{size}(\mathsf{w})\} \rangle$.

- 4328 (b) If mask \neq GrB_NULL,
- i. If desc[GrB_MASK].GrB_STRUCTURE is set, then $\widetilde{\mathbf{m}} = \langle \mathbf{size}(\mathsf{mask}), \{i : i \in \mathbf{ind}(\mathsf{mask})\} \rangle$,
- 4330 ii. Otherwise, $\widetilde{\mathbf{m}} = \langle \mathbf{size}(\mathsf{mask}), \{i : i \in \mathbf{ind}(\mathsf{mask}) \land (\mathsf{bool})\mathsf{mask}(i) = \mathsf{true} \} \rangle$.
- 4331 (c) If desc[GrB_MASK].GrB_COMP is set, then $\widetilde{\mathbf{m}} \leftarrow \neg \widetilde{\mathbf{m}}$.
- 4332 3. The internal index array, \tilde{I} , is computed from argument indices as follows:

(a) If indices = GrB_ALL, then
$$I[i] = i, \forall i : 0 \le i < \text{nindices}$$
.

4334 (b) Otherwise, $\widetilde{I}[i] = indices[i], \forall i : 0 \le i < nindices.$

⁴³³⁵ The internal vector and mask are checked for dimension compatibility. The following conditions⁴³³⁶ must hold:

4337 1. $\operatorname{size}(\widetilde{\mathbf{w}}) = \operatorname{size}(\widetilde{\mathbf{m}})$

4338 2. $0 \leq \text{nindices} \leq \operatorname{size}(\widetilde{\mathbf{w}}).$

If any compatibility rule above is violated, execution of GrB_assign ends and the dimension mismatch
 error listed above is returned.

 $_{4341}$ From this point forward, in GrB_NONBLOCKING mode, the method can optionally exit with $_{4342}$ GrB_SUCCESS return code and defer any computation and/or execution error codes.

⁴³⁴³ We are now ready to carry out the assign and any additional associated operations. We describe ⁴³⁴⁴ this in terms of two intermediate vectors:

• $\tilde{\mathbf{t}}$: The vector holding the copies of the scalar val in their destination locations relative to $\tilde{\mathbf{w}}$.

• \tilde{z} : The vector holding the result after application of the (optional) accumulation operator.

4347 The intermediate vector, $\tilde{\mathbf{t}}$, is created as follows:

$$\widetilde{\mathbf{t}} = \langle \mathbf{D}(\mathsf{val}), \mathbf{size}(\widetilde{\mathbf{w}}), \{ (\widetilde{\boldsymbol{I}}[i], \mathsf{val}) \ \forall \ i, \ 0 \leq i < \mathsf{nindices} \} \rangle.$$

If \tilde{I} is empty, this operation results in an empty vector, \tilde{t} . Otherwise, if any value in the \tilde{I} array is not in the range $[0, \text{size}(\tilde{w}))$, the execution of GrB_assign ends and the index out-of-bounds error listed above is generated. In GrB_NONBLOCKING mode, the error can be deferred until a sequence-terminating GrB_wait() is called. Regardless, the result vector, w, is invalid from this point forward in the sequence.

4354 The intermediate vector $\widetilde{\mathbf{z}}$ is created as follows:

• If accum = GrB_NULL, then \widetilde{z} is defined as

4356

 $\widetilde{\mathbf{z}} = \langle \mathbf{D}(\mathsf{w}), \mathbf{size}(\widetilde{\mathbf{w}}), \{(i, z_i), \forall i \in (\mathbf{ind}(\widetilde{\mathbf{w}}) - (\{\widetilde{\boldsymbol{I}}[k], \forall k\} \cap \mathbf{ind}(\widetilde{\mathbf{w}}))) \cup \mathbf{ind}(\widetilde{\mathbf{t}})\} \rangle.$

The above expression defines the structure of vector $\tilde{\mathbf{z}}$ as follows: We start with the structure 4357 of $\widetilde{\mathbf{w}}$ (ind($\widetilde{\mathbf{w}}$)) and remove from it all the indices of $\widetilde{\mathbf{w}}$ that are in the set of indices being 4358 assigned $(\{I[k], \forall k\} \cap \operatorname{ind}(\widetilde{\mathbf{w}}))$. Finally, we add the structure of $\widetilde{\mathbf{t}}$ ($\operatorname{ind}(\widetilde{\mathbf{t}})$). 4359 The values of the elements of \tilde{z} are computed based on the relationships between the sets of 4360 indices in $\widetilde{\mathbf{w}}$ and \mathbf{t} . 4361 $z_i = \widetilde{\mathbf{w}}(i), \text{ if } i \in (\mathbf{ind}(\widetilde{\mathbf{w}}) - (\{\widetilde{\mathbf{I}}[k], \forall k\} \cap \mathbf{ind}(\widetilde{\mathbf{w}}))),$ 4362 4363 $z_i = \widetilde{\mathbf{t}}(i), \text{ if } i \in \mathbf{ind}(\widetilde{\mathbf{t}}),$ 4364 where the difference operator refers to set difference. We note that in this case of assigning 4365 a constant, $\{I[k], \forall k\}$ and ind(t) are identical. 4366 • If accum is a binary operator, then $\tilde{\mathbf{z}}$ is defined as 4367 $\langle \mathbf{D}_{out}(\mathsf{accum}), \mathbf{size}(\widetilde{\mathbf{w}}), \{(i, z_i) \ \forall \ i \in \mathbf{ind}(\widetilde{\mathbf{w}}) \cup \mathbf{ind}(\widetilde{\mathbf{t}})\} \rangle.$ 4368 The values of the elements of \tilde{z} are computed based on the relationships between the sets of 4369 indices in $\widetilde{\mathbf{w}}$ and \mathbf{t} . 4370 $z_i = \widetilde{\mathbf{w}}(i) \odot \widetilde{\mathbf{t}}(i)$, if $i \in (\mathbf{ind}(\widetilde{\mathbf{t}}) \cap \mathbf{ind}(\widetilde{\mathbf{w}}))$. 4371

4376 where
$$\odot = \bigcirc(\mathsf{accum})$$
, and the difference operator refers to set difference.

Finally, the set of output values that make up vector $\tilde{\mathbf{z}}$ are written into the final result vector w, using what is called a *standard vector mask and replace*. This is carried out under control of the mask which acts as a "write mask".

• If desc[GrB_OUTP].GrB_REPLACE is set, then any values in w on input to this operation are deleted and the content of the new output vector, w, is defined as,

4382
$$\mathbf{L}(\mathsf{w}) = \{(i, z_i) : i \in (\mathbf{ind}(\widetilde{\mathbf{z}}) \cap \mathbf{ind}(\widetilde{\mathbf{m}}))\}.$$

• If desc[GrB_OUTP].GrB_REPLACE is not set, the elements of \tilde{z} indicated by the mask are copied into the result vector, w, and elements of w that fall outside the set indicated by the mask are unchanged:

4386

$$\mathbf{L}(\mathsf{w}) = \{(i, w_i) : i \in (\mathbf{ind}(\mathsf{w}) \cap \mathbf{ind}(\neg \widetilde{\mathbf{m}}))\} \cup \{(i, z_i) : i \in (\mathbf{ind}(\widetilde{\mathbf{z}}) \cap \mathbf{ind}(\widetilde{\mathbf{m}}))\}.$$

In GrB_BLOCKING mode, the method exits with return value GrB_SUCCESS and the new content of vector w is as defined above and fully computed. In GrB_NONBLOCKING mode, the method exits with return value GrB_SUCCESS and the new content of vector w is as defined above but may not be fully computed. However, it can be used in the next GraphBLAS method call in a sequence.

4391 4.3.7.6 assign: Constant matrix variant

Assign the same value to a specified subset of matrix elements. With the use of GrB_ALL , the entire destination matrix can be filled with the constant.

4394 C Syntax

4395	GrB_Info GrB_assign(C	GrB_Matrix	С,
4396	c	const GrB_Matrix	Mask,
4397	c	const GrB_BinaryOp	accum,
4398	<	<type></type>	val,
4399	c	const GrB_Index	<pre>*row_indices,</pre>
4400	C	GrB_Index	nrows,
4401	c	const GrB_Index	*col_indices,
4402	C	GrB_Index	ncols,
4403	c	const GrB_Descriptor	desc);

4404 Parameters

4405	C	(INOUT) An existing GraphBLAS matrix. On input, the matrix provides values
4406		that may be accumulated with the result of the assign operation. On output, the
4407		matrix holds the results of the operation.
4408	Mask	(IN) An optional "write" mask that controls which results from this operation are
4409		stored into the output matrix C. The mask dimensions must match those of the
4410		matrix C. If the GrB_STRUCTURE descriptor is not set for the mask, the domain
4411		of the Mask matrix must be of type bool or any of the predefined "built-in" types
4412		in Table 2.2. If the default mask is desired (i.e., a mask that is all true with the
4413		dimensions of C), GrB_NULL should be specified.
4414	accum	(IN) An optional binary operator used for accumulating entries into existing C
4415		entries. If assignment rather than accumulation is desired, $GrB_{-}NULL$ should be
4416		specified.
4417	val	(IN) Scalar value to assign to (a subset of) $C.$
4418	row_indices	(IN) Pointer to the ordered set (array) of indices corresponding to the rows of C
4419		that are assigned. If all rows of C are to be assigned in order from 0 to $nrows - 1$,
4420		then GrB_ALL can be specified. Regardless of execution mode and return value,
4421		this array may be manipulated by the caller after this operation returns without
4422		affecting any deferred computations for this operation. Unlike other variants, if
4423		there are duplicated values in this array the result is still defined.
4424	nrows	(IN) The number of values in row_indices array. Must be in the range: $[0, \mathbf{nrows}(C)]$
4425		If nrows is zero, the operation becomes a NO-OP.

4426	$col_indices$ (IN)	Pointer to the	e ordered set (array)	of indices corresponding to the columns of C
4427	that	are assigned.	If all columns of C as	te to be assigned in order from 0 to $ncols-1$,
4428	ther	h GrB_ALL sho	uld be specified. Reg	ardless of execution mode and return value,
4429	this	array may be	manipulated by the	caller after this operation returns without
4430	affee	cting any defe	rred computations for	or this operation. Unlike other variants, if
4431	ther	e are duplicat	ed values in this arra	ay the result is still defined.
4432	ncols (IN)	The number of	of values in col_indice	s array. Must be in the range: $[0, \mathbf{ncols}(C)]$.
4433	li no	cols is zero, th	e operation becomes	a NO-OP.
4434	$desc\ (IN)$	An optional o	operation descriptor.	If a default descriptor is desired, GrB_NULL
4435	shou	uld be specifie	d. Non-default field/	value pairs are listed as follows:
4436				
	Param	Field	Value	Description
	С	GrB_OUTP	GrB_REPLACE	Output matrix C is cleared (all elements removed) before the result is stored in it.
4437	Mask	GrB_MASK	GrB_STRUCTURE	The write mask is constructed from the
				structure (pattern of stored values) of the
				nput Mask matrix. The stored values are not examined
	Mask	GrB_MASK	GrB_COMP	Use the complement of Mask.

4438 Return Values

4439	GrB_SUCCESS	In blocking mode, the operation completed successfully. In non-
4440		blocking mode, this indicates that the compatibility tests on di-
4441		mensions and domains for the input arguments passed successfully.
4442		Either way, output matrix ${\sf C}$ is ready to be used in the next method
4443		of the sequence.
4444	GrB_PANIC	Unknown internal error.
4445	GrB_INVALID_OBJECT	This is returned in any execution mode whenever one of the opaque
4446		GraphBLAS objects (input or output) is in an invalid state caused
4447		by a previous execution error. Call $GrB_error()$ to access any error
4448		messages generated by the implementation.
4449	GrB_OUT_OF_MEMORY	Not enough memory available for the operation.
4450	GrB_UNINITIALIZED_OBJECT	One or more of the GraphBLAS objects has not been initialized by
4451		a call to new (or dup for vector parameters).
4452	GrB_INDEX_OUT_OF_BOUNDS	A value in row_indices is greater than or equal to $\mathbf{nrows}(C)$, or a
4453		value in $col_indices$ is greater than or equal to $ncols(C)$. In non-
4454		blocking mode, this can be reported as an execution error.
4455	GrB_DIMENSION_MISMATCH	Mask and C dimensions are incompatible, $nrows$ is not less than
4456		nrows(C), or ncols is not less than $ncols(C)$.

4457	GrB_DOMAIN_MISMATCH	The domains of the matrix and scalar are incompatible with each
4458		other or the corresponding domains of the accumulation operator,
4459		or the mask's domain is not compatible with $bool$ (in the case where
4460		desc[GrB_MASK].GrB_STRUCTURE is not set).
4461	GrB_NULL_POINTER	Either argument row_indices is a NULL pointer, argument col_indices
4462		is a NULL pointer, or both.

4463 **Description**

This variant of GrB_assign computes the result of assigning a constant scalar value to locations in a destination GraphBLAS matrix: $C(row_indices, col_indices) = val$; or, if an optional binary accumulation operator (\odot) is provided, $C(row_indices, col_indices) = w(row_indices, col_indices) \odot val$. More explicitly:

 $\mathsf{C}(\mathsf{row_indices}[i], \mathsf{col_indices}[j]) = \mathsf{val}, \text{ or}$ $\mathsf{C}(\mathsf{row_indices}[i], \mathsf{col_indices}[j]) = \mathsf{C}(\mathsf{row_indices}[i], \mathsf{col_indices}[j]) \odot \mathsf{val}$ $\forall (i, j) : 0 \le i < \mathsf{nrows}, 0 \le j < \mathsf{ncols}$

4469 Logically, this operation occurs in three steps:

- 4470 Setup The internal vectors and mask used in the computation are formed and their domains 4471 and dimensions are tested for compatibility.
- 4472 Compute The indicated computations are carried out.
- 4473 Output The result is written into the output matrix, possibly under control of a mask.

⁴⁴⁷⁴ Up to two argument matrices are used in the GrB_{assign} operation:

4475 1. $\mathsf{C} = \langle \mathbf{D}(\mathsf{C}), \mathbf{nrows}(\mathsf{C}), \mathbf{ncols}(\mathsf{C}), \mathbf{L}(\mathsf{C}) = \{(i, j, C_{ij})\} \rangle$

4476 2. $Mask = \langle \mathbf{D}(Mask), \mathbf{nrows}(Mask), \mathbf{ncols}(Mask), \mathbf{L}(Mask) = \{(i, j, M_{ij})\} \rangle \text{ (optional)}$

⁴⁴⁷⁷ The argument scalar, matrices, and the accumulation operator (if provided) are tested for domain⁴⁴⁷⁸ compatibility as follows:

- If Mask is not GrB_NULL, and desc[GrB_MASK].GrB_STRUCTURE is not set, then D(Mask) must be from one of the pre-defined types of Table 2.2.
- 4481 2. D(C) must be compatible with D(val).

3. If accum is not GrB_NULL, then D(C) must be compatible with $D_{in_1}(accum)$ and $D_{out}(accum)$ of the accumulation operator and D(val) must be compatible with $D_{in_2}(accum)$ of the accumulation operator. Two domains are compatible with each other if values from one domain can be cast to values in the other domain as per the rules of the C language. In particular, domains from Table 2.2 are all compatible with each other. A domain from a user-defined type is only compatible with itself. If any compatibility rule above is violated, execution of GrB_assign ends and the domain mismatch error listed above is returned.

From the arguments, the internal matrices, index arrays, and mask used in the computation are formed (\leftarrow denotes copy):

4492 1. Matrix $\widetilde{\mathbf{C}} \leftarrow \mathsf{C}$.

4497

4498

4499

4500

4493 2. Two-dimensional mask $\widetilde{\mathbf{M}}$ is computed from argument Mask as follows:

- (a) If Mask = GrB_NULL, then $\mathbf{M} = \langle \mathbf{nrows}(\mathsf{C}), \mathbf{ncols}(\mathsf{C}), \{(i, j), \forall i, j : 0 \le i < \mathbf{nrows}(\mathsf{C}), 0 \le j < \mathbf{ncols}(\mathsf{C}) \} \rangle$.
- $(b) If Mask \neq GrB_NULL,$
 - i. If desc[GrB_MASK].GrB_STRUCTURE is set, then $\widetilde{\mathbf{M}} = \langle \mathbf{nrows}(\mathsf{Mask}), \mathbf{ncols}(\mathsf{Mask}), \{(i, j) : (i, j) \in \mathbf{ind}(\mathsf{Mask}) \} \rangle$,
 - ii. Otherwise, $\mathbf{M} = \langle \mathbf{nrows}(\mathsf{Mask}), \mathbf{ncols}(\mathsf{Mask}), \{(i, j) : (i, j) \in \mathbf{ind}(\mathsf{Mask}) \land (\mathsf{bool})\mathsf{Mask}(i, j) = \mathsf{true} \} \rangle$.
- 4501 (c) If desc[GrB_MASK].GrB_COMP is set, then $\widetilde{\mathbf{M}} \leftarrow \neg \widetilde{\mathbf{M}}$.
- 4502 3. The internal row index array, \tilde{I} , is computed from argument row_indices as follows:
- (a) If row_indices = GrB_ALL, then $\widetilde{I}[i] = i, \forall i : 0 \le i < \text{nrows}.$
- (b) Otherwise, $\widetilde{I}[i] = \text{row_indices}[i], \forall i : 0 \le i < \text{nrows}.$

4505 4. The internal column index array, \widetilde{J} , is computed from argument col_indices as follows:

(a) If col_indices = GrB_ALL, then $\widetilde{J}[j] = j, \forall j : 0 \le j < \text{ncols.}$

4507 (b) Otherwise, $\widetilde{J}[j] = \text{col_indices}[j], \forall j : 0 \le j < \text{ncols.}$

⁴⁵⁰⁸ The internal matrix and mask are checked for dimension compatibility. The following conditions ⁴⁵⁰⁹ must hold:

- 4510 1. $\operatorname{nrows}(\widetilde{\mathbf{C}}) = \operatorname{nrows}(\widetilde{\mathbf{M}}).$
- 4511 2. $\mathbf{ncols}(\widetilde{\mathbf{C}}) = \mathbf{ncols}(\widetilde{\mathbf{M}}).$
- 4512 3. $0 \leq \operatorname{nrows} \leq \operatorname{nrows}(\widetilde{\mathbf{C}}).$
- 4513 4. $0 \leq \operatorname{ncols} \leq \operatorname{ncols}(\tilde{\mathbf{C}}).$

⁴⁵¹⁴ If any compatibility rule above is violated, execution of GrB_assign ends and the dimension mismatch ⁴⁵¹⁵ error listed above is returned.

 $_{4516}$ From this point forward, in GrB_NONBLOCKING mode, the method can optionally exit with $_{4517}$ GrB_SUCCESS return code and defer any computation and/or execution error codes.

We are now ready to carry out the assign and any additional associated operations. We describe 4518 this in terms of two intermediate vectors: 4519

• $\widetilde{\mathbf{T}}$: The matrix holding the copies of the scalar val in their destination locations relative to 4520 Ĉ. 4521

• $\widetilde{\mathbf{Z}}$: The matrix holding the result after application of the (optional) accumulation operator. 4522

The intermediate matrix, $\widetilde{\mathbf{T}}$, is created as follows: 4523

4524

$$\begin{split} \mathbf{T} &= \langle \mathbf{D}(\mathsf{val}), \mathbf{nrows}(\mathbf{C}), \mathbf{ncols}(\mathbf{C}), \\ &\{ (\widetilde{\boldsymbol{I}}[i], \widetilde{\boldsymbol{J}}[j], \mathsf{val}) \; \forall \; (i, j), \; 0 \leq i < \mathsf{nrows}, \; 0 \leq j < \mathsf{ncols} \} \rangle. \end{split}$$

If either \widetilde{I} or \widetilde{J} is empty, this operation results in an empty matrix, \widetilde{T} . Otherwise, if any value 4525 in the \widetilde{I} array is not in the range $[0, \operatorname{nrows}(\widetilde{C}))$ or any value in the \widetilde{J} array is not in the range 4526 $[0, \operatorname{ncols}(\tilde{\mathbf{C}})),$ the execution of $\mathsf{GrB}_{\mathsf{assign}}$ ends and the index out-of-bounds error listed above is 4527 generated. In GrB_NONBLOCKING mode, the error can be deferred until a sequence-terminating 4528 GrB_wait() is called. Regardless, the result matrix C is invalid from this point forward in the 4529 sequence. 4530

The intermediate matrix $\widetilde{\mathbf{Z}}$ is created as follows: 4531

• If accum = GrB_NULL, then Z is defined as
4533
$$\widetilde{\mathbf{Z}} = \langle \mathbf{D}(\mathbf{C}), \mathbf{nrows}(\widetilde{\mathbf{C}}), \mathbf{ncols}(\widetilde{\mathbf{C}}),$$

4534 $\{(i, j, Z_{ij}) \forall (i, j) \in (\mathbf{ind}(\widetilde{\mathbf{C}}) - (\{(\widetilde{I}[k], \widetilde{J}[l]), \forall k, l\} \cap \mathbf{ind}(\widetilde{\mathbf{C}}))) \cup \mathbf{ind}(\widetilde{\mathbf{T}})\} \rangle.$

The above expression defines the structure of matrix $\widetilde{\mathbf{Z}}$ as follows: We start with the structure 4535 of \mathbf{C} (ind(\mathbf{C})) and remove from it all the indices of \mathbf{C} that are in the set of indices being 4536 assigned $(\{(\widetilde{I}[k], \widetilde{J}[l]), \forall k, l\} \cap \operatorname{ind}(\widetilde{\mathbf{C}}))$. Finally, we add the structure of $\widetilde{\mathbf{T}}$ (ind($\widetilde{\mathbf{T}}$)). 4537

The values of the elements of $\widetilde{\mathbf{Z}}$ are computed based on the relationships between the sets of 4538 indices in $\tilde{\mathbf{C}}$ and $\tilde{\mathbf{T}}$. 4539

$$Z_{ij} = \widetilde{\mathbf{C}}(i,j), \text{ if } (i,j) \in (\mathbf{ind}(\widetilde{\mathbf{C}}) - (\{(\widetilde{\boldsymbol{I}}[k], \widetilde{\boldsymbol{J}}[l]), \forall k, l\} \cap \mathbf{ind}(\widetilde{\mathbf{C}}))),$$

4540 4541 4542

4546

4533

$$Z_{ij} = \widetilde{\mathbf{T}}(i, j), \text{ if } (i, j) \in \mathbf{ind}(\widetilde{\mathbf{T}}),$$

where the difference operator refers to set difference. We note that, in this particular case of 4543 assigning a constant to a matrix, the sets $\{(I[k], J[l]), \forall k, l\}$ and ind(T) are identical. 4544

• If accum is a binary operator, then $\widetilde{\mathbf{Z}}$ is defined as 4545

$$\langle \mathbf{D}_{out}(\mathsf{accum}), \mathbf{nrows}(\mathbf{\hat{C}}), \mathbf{ncols}(\mathbf{\hat{C}}), \{(i, j, Z_{ij}) \forall (i, j) \in \mathbf{ind}(\mathbf{\hat{C}}) \cup \mathbf{ind}(\mathbf{\hat{T}}) \} \rangle$$

The values of the elements of $\widetilde{\mathbf{Z}}$ are computed based on the relationships between the sets of 4547 indices in \mathbf{C} and \mathbf{T} . 4548

$$Z_{ij} = \widetilde{\mathbf{C}}(i,j) \odot \widetilde{\mathbf{T}}(i,j), \text{ if } (i,j) \in (\mathbf{ind}(\widetilde{\mathbf{T}}) \cap \mathbf{ind}(\widetilde{\mathbf{C}})),$$

- $Z_{ij} = \widetilde{\mathbf{C}}(i,j), \text{ if } (i,j) \in (\mathbf{ind}(\widetilde{\mathbf{C}}) (\mathbf{ind}(\widetilde{\mathbf{T}}) \cap \mathbf{ind}(\widetilde{\mathbf{C}}))),$
- $Z_{ij} = \widetilde{\mathbf{T}}(i,j), \text{ if } (i,j) \in (\mathbf{ind}(\widetilde{\mathbf{T}}) (\mathbf{ind}(\widetilde{\mathbf{T}}) \cap \mathbf{ind}(\widetilde{\mathbf{C}}))),$

where $\odot = \bigcirc (\mathsf{accum})$, and the difference operator refers to set difference.

Finally, the set of output values that make up matrix $\tilde{\mathbf{Z}}$ are written into the final result matrix C, using what is called a *standard matrix mask and replace*. This is carried out under control of the mask which acts as a "write mask".

• If desc[GrB_OUTP].GrB_REPLACE is set, then any values in C on input to this operation are deleted and the content of the new output matrix, C, is defined as,

$$\mathbf{L}(\mathsf{C}) = \{(i, j, Z_{ij}) : (i, j) \in (\mathbf{ind}(\mathbf{Z}) \cap \mathbf{ind}(\mathbf{M}))\}$$

• If desc[GrB_OUTP].GrB_REPLACE is not set, the elements of $\widetilde{\mathbf{Z}}$ indicated by the mask are copied into the result matrix, C, and elements of C that fall outside the set indicated by the mask are unchanged:

4564

4560

$$\mathbf{L}(\mathsf{C}) = \{(i, j, C_{ij}) : (i, j) \in (\mathbf{ind}(\mathsf{C}) \cap \mathbf{ind}(\neg \widetilde{\mathbf{M}}))\} \cup \{(i, j, Z_{ij}) : (i, j) \in (\mathbf{ind}(\widetilde{\mathbf{Z}}) \cap \mathbf{ind}(\widetilde{\mathbf{M}}))\}.$$

In GrB_BLOCKING mode, the method exits with return value GrB_SUCCESS and the new content of matrix C is as defined above and fully computed. In GrB_NONBLOCKING mode, the method exits with return value GrB_SUCCESS and the new content of matrix C is as defined above but may not be fully computed. However, it can be used in the next GraphBLAS method call in a sequence.

4570 4.3.8 apply: Apply a function to the elements of an object

⁴⁵⁷¹ Computes the transformation of the values of the elements of a vector or a matrix using a unary ⁴⁵⁷² function, or a binary function where one argument is bound to a scalar.

4573 4.3.8.1 apply: Vector variant

4574 Computes the transformation of the values of the elements of a vector using a unary function.

4575 C Syntax

4576	GrB_Info Gr	rB_apply(GrB_Ve	ector	W,
4577		const	GrB_Vector	mask,
4578		const	GrB_BinaryOp	accum,
4579		const	GrB_UnaryOp	op,
4580		const	GrB_Vector	u,
4581		const	GrB_Descriptor	desc);

4582 Parameters

4583	w	(INO	UT) An exist	ing GraphBLAS vec	etor. On input, the vector provides values
4584		that	may be accun	nulated with the rest	ult of the apply operation. On output, this
4585		vecto	or holds the re	esults of the operatio	n.
4586	mask	(IN) .	An optional "	write" mask that con	ntrols which results from this operation are
4587		store	d into the ou	tput vector w. The	mask dimensions must match those of the
4588		vecto	or w. If the G	rB_STRUCTURE des	criptor is <i>not</i> set for the mask, the domain
4589		of the	e mask vector	must be of type bo	ol or any of the predefined "built-in" types
4590		in Ta	able 2.2 . If th	e default mask is de	sired (i.e., a mask that is all true with the
4591		dime	nsions of w), (GrB_NULL should be	e specified.
4592	accum	(IN)	An optional	binary operator use	d for accumulating entries into existing ${\sf w}$
4593		entrie	es. If assignm	nent rather than acc	umulation is desired, $GrBNULL$ should be
4594		speci	fied.		
4595	ор	(IN) .	A unary operation	ator applied to each	element of input vector u.
4596	u	(IN) '	The GraphBI	LAS vector to which	the unary function is applied.
4597	desc	(IN) .	An optional of	peration descriptor.	If a <i>default</i> descriptor is desired, GrB_NULL
4598		shoul	ld be specified	l. Non-default field/	value pairs are listed as follows:
4599					
	Par	ram	Field	Value	Description
	W		GrB_OUTP	GrB_REPLACE	Output vector w is cleared (all elements removed) before the result is stored in it.
4600	ma	sk	GrB_MASK	GrB_STRUCTURE	The write mask is constructed from the structure (pattern of stored values) of the input mask vector. The stored values are not examined.
	ma	sk	GrB_MASK	GrB_COMP	Use the complement of mask.

4601 Return Values

4602	GrB_SUCCESS	In blocking mode, the operation completed successfully. In non-
4603		blocking mode, this indicates that the compatibility tests on di-
4604		mensions and domains for the input arguments passed successfully.
4605		Either way, output vector w is ready to be used in the next method
4606		of the sequence.
4607	GrB_PANIC	Unknown internal error.
4608	GrB_INVALID_OBJECT	This is returned in any execution mode whenever one of the opaque
4609		GraphBLAS objects (input or output) is in an invalid state caused
4610		by a previous execution error. Call GrB_error() to access any error
4611		messages generated by the implementation.

4612	GrB_OUT_OF_MEMORY	Not enough memory available for operation.
4613 4614	GrB_UNINITIALIZED_OBJECT	One or more of the GraphBLAS objects has not been initialized by a call to new (or dup for vector parameters).
4615	GrB_DIMENSION_MISMATCH	mask,w and/or u dimensions are incompatible.
4616	GrB_DOMAIN_MISMATCH	The domains of the various vectors are incompatible with the corre-
4617		sponding domains of the accumulation operator or unary function,
4618		or the mask's domain is not compatible with $bool$ (in the case where
4619		desc[GrB_MASK].GrB_STRUCTURE is not set).

4620 Description

⁴⁶²¹ This variant of GrB_apply computes the result of applying a unary function to the elements of a ⁴⁶²² GraphBLAS vector: w = f(u); or, if an optional binary accumulation operator (\odot) is provided, ⁴⁶²³ $w = w \odot f(u)$.

- ⁴⁶²⁴ Logically, this operation occurs in three steps:
- 4625 **Setup** The internal vectors and mask used in the computation are formed and their domains 4626 and dimensions are tested for compatibility.
- 4627 **Compute** The indicated computations are carried out.
- 4628 **Output** The result is written into the output vector, possibly under control of a mask.

⁴⁶²⁹ Up to three argument vectors are used in this GrB_apply operation:

4630 1.
$$\mathsf{w} = \langle \mathbf{D}(\mathsf{w}), \mathbf{size}(\mathsf{w}), \mathbf{L}(\mathsf{w}) = \{(i, w_i)\} \rangle$$

4631 2. mask =
$$\langle \mathbf{D}(\mathsf{mask}), \mathsf{size}(\mathsf{mask}), \mathbf{L}(\mathsf{mask}) = \{(i, m_i)\}\rangle$$
 (optional)

4632 3. $u = \langle \mathbf{D}(u), \mathbf{size}(u), \mathbf{L}(u) = \{(i, u_i)\} \rangle$

The argument vectors, unary operator and the accumulation operator (if provided) are tested for domain compatibility as follows:

- If mask is not GrB_NULL, and desc[GrB_MASK].GrB_STRUCTURE is not set, then D(mask)
 must be from one of the pre-defined types of Table 2.2.
- 4637 2. $\mathbf{D}(w)$ must be compatible with $\mathbf{D}_{out}(\mathsf{op})$ of the unary operator.
- 4638 3. If accum is not GrB_NULL, then $\mathbf{D}(\mathbf{w})$ must be compatible with $\mathbf{D}_{in_1}(\operatorname{accum})$ and $\mathbf{D}_{out}(\operatorname{accum})$ 4639 of the accumulation operator and $\mathbf{D}_{out}(\operatorname{op})$ of the unary operator must be compatible with 4640 $\mathbf{D}_{in_2}(\operatorname{accum})$ of the accumulation operator.
- 4641 4. $\mathbf{D}(\mathbf{u})$ must be compatible with $\mathbf{D}_{in}(\mathsf{op})$.

Two domains are compatible with each other if values from one domain can be cast to values in the other domain as per the rules of the C language. In particular, domains from Table 2.2 are all compatible with each other. A domain from a user-defined type is only compatible with itself. If any compatibility rule above is violated, execution of GrB_apply ends and the domain mismatch error listed above is returned.

From the argument vectors, the internal vectors and mask used in the computation are formed (\leftarrow denotes copy):

4649 1. Vector $\widetilde{\mathbf{w}} \leftarrow \mathbf{w}$.

4650 2. One-dimensional mask, $\widetilde{\mathbf{m}}$, is computed from argument mask as follows:

(a) If mask = GrB_NULL, then $\widetilde{\mathbf{m}} = \langle \mathbf{size}(\mathsf{w}), \{i, \forall i : 0 \le i < \mathbf{size}(\mathsf{w})\} \rangle$.

- (b) If mask \neq GrB_NULL,
- i. If desc[GrB_MASK].GrB_STRUCTURE is set, then $\widetilde{\mathbf{m}} = \langle \mathbf{size}(\mathsf{mask}), \{i : i \in \mathbf{ind}(\mathsf{mask})\} \rangle$,
 - ii. Otherwise, $\widetilde{\mathbf{m}} = \langle \mathbf{size}(\mathsf{mask}), \{i : i \in \mathbf{ind}(\mathsf{mask}) \land (\mathsf{bool})\mathsf{mask}(i) = \mathsf{true}\} \rangle$.
- 4655 (c) If desc[GrB_MASK].GrB_COMP is set, then $\widetilde{\mathbf{m}} \leftarrow \neg \widetilde{\mathbf{m}}$.

4656 3. Vector
$$\widetilde{\mathbf{u}} \leftarrow \mathbf{u}$$
.

4654

The internal vectors and masks are checked for dimension compatibility. The following conditionsmust hold:

4659 1.
$$\operatorname{size}(\widetilde{\mathbf{w}}) = \operatorname{size}(\widetilde{\mathbf{m}})$$

4660 2.
$$\operatorname{size}(\widetilde{\mathbf{u}}) = \operatorname{size}(\widetilde{\mathbf{w}}).$$

If any compatibility rule above is violated, execution of GrB_apply ends and the dimension mismatch error listed above is returned.

From this point forward, in $GrB_NONBLOCKING$ mode, the method can optionally exit with $GrB_SUCCESS$ return code and defer any computation and/or execution error codes.

We are now ready to carry out the apply and any additional associated operations. We describe this in terms of two intermediate vectors:

• $\tilde{\mathbf{t}}$: The vector holding the result from applying the unary operator to the input vector $\tilde{\mathbf{u}}$.

• $\tilde{\mathbf{z}}$: The vector holding the result after application of the (optional) accumulation operator.

4669 The intermediate vector, $\tilde{\mathbf{t}}$, is created as follows:

$$\widetilde{\mathbf{t}} = \langle \mathbf{D}_{out}(\mathsf{op}), \mathbf{size}(\widetilde{\mathbf{u}}), \mathbf{L}(\widetilde{\mathbf{t}}) = \{(i, f(\widetilde{\mathbf{u}}(i))) \forall i \in \mathbf{ind}(\widetilde{\mathbf{u}})\} \rangle,$$

4671 where f = f(op).

⁴⁶⁷² The intermediate vector $\tilde{\mathbf{z}}$ is created as follows, using what is called a *standard vector accumulate*:

• If accum = GrB_NULL, then $\widetilde{\mathbf{z}} = \widetilde{\mathbf{t}}$.

4675

4689

4693

• If accum is a binary operator, then $\tilde{\mathbf{z}}$ is defined as

$$\widetilde{\mathbf{z}} = \langle \mathbf{D}_{out}(\mathsf{accum}), \mathbf{size}(\widetilde{\mathbf{w}}), \{(i, z_i) \ \forall \ i \in \mathbf{ind}(\widetilde{\mathbf{w}}) \cup \mathbf{ind}(\widetilde{\mathbf{t}})\} \rangle.$$

The values of the elements of $\tilde{\mathbf{z}}$ are computed based on the relationships between the sets of indices in $\tilde{\mathbf{w}}$ and $\tilde{\mathbf{t}}$.

where $\odot = \bigcirc(\mathsf{accum})$, and the difference operator refers to set difference.

Finally, the set of output values that make up vector $\tilde{\mathbf{z}}$ are written into the final result vector w, using what is called a *standard vector mask and replace*. This is carried out under control of the mask which acts as a "write mask".

• If desc[GrB_OUTP].GrB_REPLACE is set, then any values in w on input to this operation are deleted and the content of the new output vector, w, is defined as,

$$\mathbf{L}(\mathsf{w}) = \{(i, z_i) : i \in (\mathbf{ind}(\widetilde{\mathbf{z}}) \cap \mathbf{ind}(\widetilde{\mathbf{m}}))\}.$$

• If desc[GrB_OUTP].GrB_REPLACE is not set, the elements of \tilde{z} indicated by the mask are 4691 copied into the result vector, w, and elements of w that fall outside the set indicated by the 4692 mask are unchanged:

$$\mathbf{L}(\mathbf{w})$$

$$\mathbf{L}(\mathsf{w}) = \{(i, w_i) : i \in (\mathbf{ind}(\mathsf{w}) \cap \mathbf{ind}(\neg \widetilde{\mathbf{m}}))\} \cup \{(i, z_i) : i \in (\mathbf{ind}(\widetilde{\mathbf{z}}) \cap \mathbf{ind}(\widetilde{\mathbf{m}}))\}$$

⁴⁶⁹⁴ In GrB_BLOCKING mode, the method exits with return value GrB_SUCCESS and the new content of ⁴⁶⁹⁵ vector w is as defined above and fully computed. In GrB_NONBLOCKING mode, the method exits ⁴⁶⁹⁶ with return value GrB_SUCCESS and the new content of vector w is as defined above but may not ⁴⁶⁹⁷ be fully computed. However, it can be used in the next GraphBLAS method call in a sequence.

4698 4.3.8.2 apply: Matrix variant

4699 Computes the transformation of the values of the elements of a matrix using a unary function.

4700 C Syntax

4701	GrB_Info GrB_apply(GrB_Matrix	С,
4702	const GrB_Matrix	Mask,
4703	const GrB_BinaryOp	accum,
4704	const GrB_UnaryOp	op,
4705	const GrB_Matrix	A,
4706	const GrB_Descriptor	desc);

Parameters

4708 4709 4710	C (I th m	(INOUT) An existing GraphBLAS matrix. On input, the matrix provides values that may be accumulated with the result of the apply operation. On output, the matrix holds the results of the operation.		
4711 4712 4713 4714 4715 4716	Mask (I st of im di	(IN) An optional "write" mask that controls which results from this operation are stored into the output matrix C. The mask dimensions must match those of the matrix C. If the GrB_STRUCTURE descriptor is <i>not</i> set for the mask, the domain of the Mask matrix must be of type bool or any of the predefined "built-in" types in Table 2.2. If the default mask is desired (i.e., a mask that is all true with the dimensions of C), GrB_NULL should be specified.		
4717 4718 4719	accum (I er sr	N) An optional atries. If assignment becified.	binary operator use nent rather than acc	d for accumulating entries into existing C umulation is desired, GrB_NULL should be
4720	op (l	(IN) A unary operator applied to each element of input matrix A.		
4721	A (I	(IN) The GraphBLAS matrix to which the unary function is applied.		
4722 4723	desc (I)	(IN) An optional operation descriptor. If a <i>default</i> descriptor is desired, GrB_NULL should be specified. Non-default field/value pairs are listed as follows:		
4724	Para	m Field	Value	Description
4725	C Mask	GrB_OUTP	GrB_REPLACE GrB_STRUCTURE	Output matrix C is cleared (all elements removed) before the result is stored in it. The write mask is constructed from the structure (pattern of stored values) of the input Mask matrix. The stored values are not examined.
	A	GrB_INP0		Use transpose of A for the operation.

4726 Return Values

4727	GrB_SUCCESS	In blocking mode, the operation completed successfully. In non-
4728		blocking mode, this indicates that the compatibility tests on di-
4729		mensions and domains for the input arguments passed successfully.
4730		Either way, output matrix ${\sf C}$ is ready to be used in the next method
4731		of the sequence.
4732	GrB_PANIC	Unknown internal error.
4733	GrB_INVALID_OBJECT	This is returned in any execution mode whenever one of the opaque
4734		GraphBLAS objects (input or output) is in an invalid state caused
4735		by a previous execution error. Call $GrB_error()$ to access any error
4736		messages generated by the implementation.

4737	GrB_OUT_OF_MEMORY	Not enough memory available for the operation.
4738 4739	GrB_UNINITIALIZED_OBJECT	One or more of the GraphBLAS objects has not been initialized by a call to new (or Matrix_dup for matrix parameters).
4740	GrB_INDEX_OUT_OF_BOUNDS	A value in $\mathbf{row_indices}$ is greater than or equal to $\mathbf{nrows}(A),$ or a
4741		value in $col_indices$ is greater than or equal to $ncols(A)$. In non-
4742		blocking mode, this can be reported as an execution error.
4743 4744	GrB_DIMENSION_MISMATCH	Mask and C dimensions are incompatible, $nrows \neq nrows(C),$ or $ncols \neq ncols(C).$
4745	GrB_DOMAIN_MISMATCH	The domains of the various matrices are incompatible with the cor-
4746		responding domains of the accumulation operator or unary func-
4747		tion, or the mask's domain is not compatible with $bool$ (in the case
4748		where desc[GrB_MASK].GrB_STRUCTURE is not set).

4749 Description

This variant of GrB_apply computes the result of applying a unary function to the elements of a GraphBLAS matrix: C = f(A); or, if an optional binary accumulation operator (\odot) is provided, $C = C \odot f(A)$.

4753 Logically, this operation occurs in three steps:

4754 **Setup** The internal matrices and mask used in the computation are formed and their domains 4755 and dimensions are tested for compatibility.

4756 **Compute** The indicated computations are carried out.

4757 **Output** The result is written into the output matrix, possibly under control of a mask.

 $_{4758}$ Up to three argument matrices are used in the $\mathsf{GrB}_{-}\mathsf{apply}$ operation:

4759 1. $\mathsf{C} = \langle \mathbf{D}(\mathsf{C}), \mathbf{nrows}(\mathsf{C}), \mathbf{ncols}(\mathsf{C}), \mathbf{L}(\mathsf{C}) = \{(i, j, C_{ij})\} \rangle$

4760 2. $\mathsf{Mask} = \langle \mathbf{D}(\mathsf{Mask}), \mathbf{nrows}(\mathsf{Mask}), \mathbf{ncols}(\mathsf{Mask}), \mathbf{L}(\mathsf{Mask}) = \{(i, j, M_{ij})\} \rangle \text{ (optional)}$

4761 3. $A = \langle \mathbf{D}(A), \mathbf{nrows}(A), \mathbf{ncols}(A), \mathbf{L}(A) = \{(i, j, A_{ij})\} \rangle$

The argument matrices, unary operator and the accumulation operator (if provided) are tested for domain compatibility as follows:

- 1. If Mask is not GrB_NULL, and desc[GrB_MASK].GrB_STRUCTURE is not set, then D(Mask) must be from one of the pre-defined types of Table 2.2.
- 4766 2. D(C) must be compatible with $D_{out}(op)$ of the unary operator.

3. If accum is not GrB_NULL, then D(C) must be compatible with $D_{in_1}(accum)$ and $D_{out}(accum)$ 4767 of the accumulation operator and $\mathbf{D}_{out}(\mathsf{op})$ of the unary operator must be compatible with 4768 $\mathbf{D}_{in_2}(\mathsf{accum})$ of the accumulation operator. 4769

4. D(A) must be compatible with $D_{in}(op)$ of the unary operator. 4770

Two domains are compatible with each other if values from one domain can be cast to values in 4771 the other domain as per the rules of the C language. In particular, domains from Table 2.2 are 4772 all compatible with each other. A domain from a user-defined type is only compatible with itself. 4773 If any compatibility rule above is violated, execution of GrB_apply ends and the domain mismatch 4774 error listed above is returned. 4775

From the argument matrices, the internal matrices, mask, and index arrays used in the computation 4776 are formed (\leftarrow denotes copy): 4777

- 1. Matrix $\widetilde{\mathbf{C}} \leftarrow \mathsf{C}$. 4778
- 2. Two-dimensional mask, $\widetilde{\mathbf{M}}$, is computed from argument Mask as follows: 4779

(a) If Mask = GrB_NULL, then
$$\widetilde{\mathbf{M}} = \langle \mathbf{nrows}(\mathsf{C}), \mathbf{ncols}(\mathsf{C}), \{(i,j), \forall i, j : 0 \le i < \mathbf{nrows}(\mathsf{C}), 0 \le j < \mathbf{ncols}(\mathsf{C}) \} \rangle$$
.

- (b) If Mask \neq GrB_NULL, 4782

4783

i. If desc[GrB_MASK].GrB_STRUCTURE is set, then $\widetilde{\mathbf{M}} = \langle \mathbf{nrows}(\mathsf{Mask}), \mathbf{ncols}(\mathsf{Mask}), \{(i, j) :$

4784

 $(i, j) \in \mathbf{ind}(\mathsf{Mask}) \} \rangle$, ii. Otherwise, $\mathbf{M} = \langle \mathbf{nrows}(\mathsf{Mask}), \mathbf{ncols}(\mathsf{Mask}), \rangle$ 4785

 $\{(i, j) : (i, j) \in \mathbf{ind}(\mathsf{Mask}) \land (\mathsf{bool})\mathsf{Mask}(i, j) = \mathsf{true}\}$. 4786

(c) If desc[GrB_MASK].GrB_COMP is set, then
$$\widetilde{\mathbf{M}} \leftarrow \neg \widetilde{\mathbf{M}}$$
.

3. Matrix $\widetilde{\mathbf{A}} \leftarrow \mathsf{desc}[\mathsf{GrB}_\mathsf{INP0}].\mathsf{GrB}_\mathsf{TRAN} ? \mathsf{A}^T : \mathsf{A}$. 4788

The internal matrices and mask are checked for dimension compatibility. The following conditions 4789 must hold: 4790

- 1. $\operatorname{nrows}(\widetilde{\mathbf{C}}) = \operatorname{nrows}(\widetilde{\mathbf{M}}).$ 4791
- 2. $\operatorname{ncols}(\widetilde{\mathbf{C}}) = \operatorname{ncols}(\widetilde{\mathbf{M}}).$ 4792
- 3. $\operatorname{\mathbf{nrows}}(\widetilde{\mathbf{C}}) = \operatorname{\mathbf{nrows}}(\widetilde{\mathbf{A}}).$ 4793
- 4. $\operatorname{ncols}(\widetilde{\mathbf{C}}) = \operatorname{ncols}(\widetilde{\mathbf{A}}).$ 4794

If any compatibility rule above is violated, execution of GrB_apply ends and the dimension mismatch 4795 error listed above is returned. 4796

From this point forward, in GrB_NONBLOCKING mode, the method can optionally exit with 4797 GrB_SUCCESS return code and defer any computation and/or execution error codes. 4798

We are now ready to carry out the apply and any additional associated operations. We describe 4799 this in terms of two intermediate matrices: 4800

• $\widetilde{\mathbf{T}}$: The matrix holding the result from applying the unary operator to the input matrix $\widetilde{\mathbf{A}}$. 4801 • Z: The matrix holding the result after application of the (optional) accumulation operator. 4802 The intermediate matrix, \mathbf{T} , is created as follows: 4803 $\widetilde{\mathbf{T}} = \langle \mathbf{D}_{out}(\mathsf{op}), \mathbf{nrows}(\widetilde{\mathbf{C}}), \mathbf{ncols}(\widetilde{\mathbf{C}}), \mathbf{L}(\widetilde{\mathbf{T}}) = \{(i, j, f(\widetilde{\mathbf{A}}(i, j))) \ \forall \ (i, j) \in \mathbf{ind}(\widetilde{\mathbf{A}})\} \rangle,$ 4804 where $f = \mathbf{f}(\mathsf{op})$. 4805 The intermediate matrix $\widetilde{\mathbf{Z}}$ is created as follows, using what is called a *standard matrix accumulate*: 4806 • If accum = GrB_NULL, then $\widetilde{\mathbf{Z}} = \widetilde{\mathbf{T}}$. 4807 • If accum is a binary operator, then **Z** is defined as 4808 $\widetilde{\mathbf{Z}} = \langle \mathbf{D}_{out}(\mathsf{accum}), \mathbf{nrows}(\widetilde{\mathbf{C}}), \mathbf{ncols}(\widetilde{\mathbf{C}}), \{(i, j, Z_{ij}) \forall (i, j) \in \mathbf{ind}(\widetilde{\mathbf{C}}) \cup \mathbf{ind}(\widetilde{\mathbf{T}}) \} \rangle.$ 4809 The values of the elements of $\mathbf{\hat{Z}}$ are computed based on the relationships between the sets of 4810 indices in \mathbf{C} and \mathbf{T} . 4811 $Z_{ij} = \widetilde{\mathbf{C}}(i,j) \odot \widetilde{\mathbf{T}}(i,j), \text{ if } (i,j) \in (\mathbf{ind}(\widetilde{\mathbf{T}}) \cap \mathbf{ind}(\widetilde{\mathbf{C}})),$ 4812 4813 $Z_{ij} = \widetilde{\mathbf{C}}(i,j), \text{ if } (i,j) \in (\mathbf{ind}(\widetilde{\mathbf{C}}) - (\mathbf{ind}(\widetilde{\mathbf{T}}) \cap \mathbf{ind}(\widetilde{\mathbf{C}}))),$ 4814 4815 $Z_{ij} = \widetilde{\mathbf{T}}(i, j), \text{ if } (i, j) \in (\mathbf{ind}(\widetilde{\mathbf{T}}) - (\mathbf{ind}(\widetilde{\mathbf{T}}) \cap \mathbf{ind}(\widetilde{\mathbf{C}}))),$ 4816 where $\odot = \bigcirc (\operatorname{accum})$, and the difference operator refers to set difference. 4817 Finally, the set of output values that make up matrix $\tilde{\mathbf{Z}}$ are written into the final result matrix C , 4818 using what is called a *standard matrix mask and replace*. This is carried out under control of the 4819

• If desc[GrB_OUTP].GrB_REPLACE is set, then any values in C on input to this operation are deleted and the content of the new output matrix, C, is defined as,

4823
$$\mathbf{L}(\mathsf{C}) = \{(i, j, Z_{ij}) : (i, j) \in (\mathbf{ind}(\widetilde{\mathbf{Z}}) \cap \mathbf{ind}(\widetilde{\mathbf{M}}))\}.$$

mask which acts as a "write mask".

4820

• If desc[GrB_OUTP].GrB_REPLACE is not set, the elements of $\tilde{\mathbf{Z}}$ indicated by the mask are copied into the result matrix, C, and elements of C that fall outside the set indicated by the mask are unchanged:

$$\mathbf{L}(\mathsf{C}) = \{(i, j, C_{ij}) : (i, j) \in (\mathbf{ind}(\mathsf{C}) \cap \mathbf{ind}(\neg \widetilde{\mathbf{M}}))\} \cup \{(i, j, Z_{ij}) : (i, j) \in (\mathbf{ind}(\widetilde{\mathbf{Z}}) \cap \mathbf{ind}(\widetilde{\mathbf{M}}))\}.$$

In GrB_BLOCKING mode, the method exits with return value GrB_SUCCESS and the new content of matrix C is as defined above and fully computed. In GrB_NONBLOCKING mode, the method exits with return value GrB_SUCCESS and the new content of matrix C is as defined above but may not be fully computed. However, it can be used in the next GraphBLAS method call in a sequence.

4833 4.3.8.3 apply: Vector-BinaryOp variants

4834 Computes the transformation of the values of the stored elements of a vector using a binary operator 4835 and a scalar value. In the *bind-first* variant, the specified scalar value is passed as the first argument 4836 to the binary operator and stored elements of the vector are passed as the second argument. In the 4837 *bind-second* variant, the elements of the vector are passed as the first argument and the specified 4838 scalar value is passed as the second argument.

4839 C Syntax

4840	// bind-first			
4841	GrB_Info GrB_apply((GrB_Ve	ector	W,
4842		const	GrB_Vector	mask,
4843		const	GrB_BinaryOp	accum,
4844		const	GrB_BinaryOp	op,
4845		<type></type>	>	val,
4846		const	GrB_Vector	u,
4847		const	GrB_Descriptor	desc);
4848				
4849	// bind-second			
4850	GrB_Info GrB_apply([GrB_Ve	ector	w,
4851		const	GrB Vector	maalr
		CONSU	did_vector	mask,
4852		const	GrB_BinaryOp	accum,
4852 4853		const const	GrB_BinaryOp GrB_BinaryOp	accum, op,
4852 4853 4854		const const const	GrB_BinaryOp GrB_BinaryOp GrB_Vector	accum, op, u,
4852 4853 4854 4855		const const const <type></type>	GrB_BinaryOp GrB_BinaryOp GrB_Vector	<pre>mask, accum, op, u, val,</pre>

4857 Parameters

4858 4859 4860	w	(INOUT) An existing GraphBLAS vector. On input, the vector provides values that may be accumulated with the result of the apply operation. On output, this vector holds the results of the operation.
4861 4862 4863 4864 4865 4866	mask	(IN) An optional "write" mask that controls which results from this operation are stored into the output vector w. The mask dimensions must match those of the vector w. If the GrB_STRUCTURE descriptor is <i>not</i> set for the mask, the domain of the mask vector must be of type bool or any of the predefined "built-in" types in Table 2.2. If the default mask is desired (i.e., a mask that is all true with the dimensions of w), GrB_NULL should be specified.
4867 4868 4869	accum	(IN) An optional binary operator used for accumulating entries into existing w entries. If assignment rather than accumulation is desired, GrB_NULL should be specified.

4870 4871	op (IN) valu) A binary ope 1e, val.	erator applied to each	\boldsymbol{u} element of input vector, $\boldsymbol{u},$ and the scalar
4872	u (IN) The GraphBl	LAS vector whose ele	ements are passed to the binary operator as
4873	the	right-hand (se	cond) argument in t	he <i>bind-first</i> variant, or the left-hand (first)
4874	arg	argument in the <i>bind-second</i> variant.		
4875	val (IN) Scalar value	that is passed to the	he binary operator as the left-hand (first)
4876	arg	ument in the	bind-first variant, or	• the right-hand (second) argument in the
4877	bin	bind-second variant.		
4878	desc (IN)) An optional o	operation descriptor.	If a <i>default</i> descriptor is desired, GrB_NULL
4879	sho	uld be specifie	d. Non-default field/	value pairs are listed as follows:
4880				
	Param	Field	Value	Description
	W	GrB_OUTP	GrB_REPLACE	Output vector w is cleared (all elements
				removed) before the result is stored in it.
	mask	GrB_MASK	GrB_STRUCTURE	The write mask is constructed from the
4881				structure (pattern of stored values) of the
				input mask vector. The stored values are
				not examined.
	mask	GrB_MASK	GrB_COMP	Use the complement of mask.

4882 Return Values

4883	GrB_SUCCESS	In blocking mode, the operation completed successfully. In non-
4884		blocking mode, this indicates that the compatibility tests on di-
4885		mensions and domains for the input arguments passed successfully.
4886		Either way, output vector w is ready to be used in the next method
4887		of the sequence.
4888	GrB_PANIC	Unknown internal error.
4889	GrB_INVALID_OBJECT	This is returned in any execution mode whenever one of the opaque
4890		GraphBLAS objects (input or output) is in an invalid state caused
4891		by a previous execution error. Call $GrB_error()$ to access any error
4892		messages generated by the implementation.
4893	GrB_OUT_OF_MEMORY	Not enough memory available for operation.
4894	GrB_UNINITIALIZED_OBJECT	One or more of the GraphBLAS objects has not been initialized by
4895		a call to new (or dup for vector parameters).
4896	$GrB_{-}DIMENSION_{-}MISMATCH$	mask,w and/or u dimensions are incompatible.
4897	GrB_DOMAIN_MISMATCH	The domains of the various vectors and scalar are incompatible with
4898		the corresponding domains of the binary operator or accumulation
4899		operator, or the mask's domain is not compatible with $bool$ (in the
4900		case where $desc[GrB_MASK].GrB_STRUCTURE$ is not set).

4901 Description

⁴⁹⁰² This variant of GrB_apply computes the result of applying a binary operator to the elements of a ⁴⁹⁰³ GraphBLAS vector each composed with a scalar constant, val:

is provided:

4904	bind-first:	w = f(val,u)
4905	bind-second:	w=f(u,val),
4906	or if an optional binary accur	nulation operator (\odot)

4907	bind-first:	$w=w\odot f(val,u)$
4908	bind-second:	$w = w \odot f(u,val).$

⁴⁹⁰⁹ Logically, this operation occurs in three steps:

4910 Setup The internal vectors and mask used in the computation are formed and their domains
 4911 and dimensions are tested for compatibility.

⁴⁹¹² Compute The indicated computations are carried out.

⁴⁹¹³ **Output** The result is written into the output vector, possibly under control of a mask.

⁴⁹¹⁴ Up to three argument vectors are used in this GrB_apply operation:

```
4915 1. w = \langle \mathbf{D}(w), size(w), \mathbf{L}(w) = \{(i, w_i)\} \rangle
```

4916 2. mask = $\langle \mathbf{D}(\mathsf{mask}), \mathbf{size}(\mathsf{mask}), \mathbf{L}(\mathsf{mask}) = \{(i, m_i)\} \rangle$ (optional)

4917 3. $\mathbf{u} = \langle \mathbf{D}(\mathbf{u}), \mathbf{size}(\mathbf{u}), \mathbf{L}(\mathbf{u}) = \{(i, u_i)\} \rangle$

⁴⁹¹⁸ The argument scalar, vectors, binary operator and the accumulation operator (if provided) are ⁴⁹¹⁹ tested for domain compatibility as follows:

If mask is not GrB_NULL, and desc[GrB_MASK].GrB_STRUCTURE is not set, then D(mask)
 must be from one of the pre-defined types of Table 2.2.

4922 2. $\mathbf{D}(w)$ must be compatible with $\mathbf{D}_{out}(\mathsf{op})$ of the binary operator.

- 4923 3. If accum is not GrB_NULL, then $\mathbf{D}(\mathbf{w})$ must be compatible with $\mathbf{D}_{in_1}(\operatorname{accum})$ and $\mathbf{D}_{out}(\operatorname{accum})$ 4924 of the accumulation operator and $\mathbf{D}_{out}(\operatorname{op})$ of the binary operator must be compatible with 4925 $\mathbf{D}_{in_2}(\operatorname{accum})$ of the accumulation operator.
- 4926 4. $\mathbf{D}(\mathbf{u})$ must be compatible with $\mathbf{D}_{in_1}(\mathsf{op})$ of the binary operator.
- 4927 5. $\mathbf{D}(val)$ must be compatible with $\mathbf{D}_{in_2}(\mathsf{op})$ of the binary operator.

Two domains are compatible with each other if values from one domain can be cast to values in 4928 the other domain as per the rules of the C language. In particular, domains from Table 2.2 are 4929 all compatible with each other. A domain from a user-defined type is only compatible with itself. 4930 If any compatibility rule above is violated, execution of GrB_apply ends and the domain mismatch 4931 error listed above is returned. 4932

From the argument vectors, the internal vectors and mask used in the computation are formed (\leftarrow 4933 denotes copy): 4934

1. Vector $\widetilde{\mathbf{w}} \leftarrow \mathbf{w}$. 4935

2. One-dimensional mask, $\widetilde{\mathbf{m}}$, is computed from argument mask as follows: 4936

(a) If mask = GrB_NULL, then $\widetilde{\mathbf{m}} = \langle \mathbf{size}(\mathbf{w}), \{i, \forall i : 0 \le i < \mathbf{size}(\mathbf{w})\} \rangle$. 4937

- (b) If mask \neq GrB_NULL, 4938
- 4939 4940

```
i. If desc[GrB_MASK].GrB_STRUCTURE is set, then \widetilde{\mathbf{m}} = \langle \mathbf{size}(\mathsf{mask}), \{i : i \in \mathbf{ind}(\mathsf{mask})\} \rangle.
```

```
ii. Otherwise, \widetilde{\mathbf{m}} = \langle \mathbf{size}(\mathsf{mask}), \{i : i \in \mathbf{ind}(\mathsf{mask}) \land (\mathsf{bool})\mathsf{mask}(i) = \mathsf{true} \} \rangle.
```

(c) If desc[GrB_MASK].GrB_COMP is set, then $\widetilde{\mathbf{m}} \leftarrow \neg \widetilde{\mathbf{m}}$. 4941

```
3. Vector \widetilde{\mathbf{u}} \leftarrow \mathbf{u}.
4942
```

The internal vectors and masks are checked for dimension compatibility. The following conditions 4943 must hold: 4944

4945 1.
$$\operatorname{size}(\widetilde{\mathbf{w}}) = \operatorname{size}(\widetilde{\mathbf{m}})$$

4946 2.
$$\operatorname{size}(\widetilde{\mathbf{u}}) = \operatorname{size}(\widetilde{\mathbf{w}}).$$

If any compatibility rule above is violated, execution of GrB_apply ends and the dimension mismatch 4947 error listed above is returned. 4948

From this point forward, in GrB_NONBLOCKING mode, the method can optionally exit with 4949 GrB_SUCCESS return code and defer any computation and/or execution error codes. 4950

We are now ready to carry out the apply and any additional associated operations. We describe 4951 this in terms of two intermediate vectors: 4952

• $\tilde{\mathbf{t}}$: The vector holding the result from applying the binary operator to the input vector $\tilde{\mathbf{u}}$. 4953

• $\tilde{\mathbf{z}}$: The vector holding the result after application of the (optional) accumulation operator. 4954

The intermediate vector, $\mathbf{\tilde{t}}$, is created as one of the following: 4955

 $\widetilde{\mathbf{t}} = \langle \mathbf{D}_{out}(\mathsf{op}), \mathbf{size}(\widetilde{\mathbf{u}}), \mathbf{L}(\widetilde{\mathbf{t}}) = \{ (i, f(\mathsf{val}, \widetilde{\mathbf{u}}(i))) \forall i \in \mathbf{ind}(\widetilde{\mathbf{u}}) \} \rangle,$ bind-first: 4956 $\widetilde{\mathbf{t}} = \langle \mathbf{D}_{out}(\mathsf{op}), \operatorname{size}(\widetilde{\mathbf{u}}), \mathbf{L}(\widetilde{\mathbf{t}}) = \{ (i, f(\widetilde{\mathbf{u}}(i), \mathsf{val})) \forall i \in \operatorname{ind}(\widetilde{\mathbf{u}}) \} \rangle,$ bind-second: 4957

4958 where f = f(op).

⁴⁹⁵⁹ The intermediate vector $\tilde{\mathbf{z}}$ is created as follows, using what is called a *standard vector accumulate*:

• If accum = GrB_NULL, then $\widetilde{\mathbf{z}} = \widetilde{\mathbf{t}}$.

• If accum is a binary operator, then $\tilde{\mathbf{z}}$ is defined as

4962

$$\widetilde{\mathbf{z}} = \langle \mathbf{D}_{out}(\mathsf{accum}), \mathbf{size}(\widetilde{\mathbf{w}}), \{(i, z_i) \ \forall \ i \in \mathbf{ind}(\widetilde{\mathbf{w}}) \cup \mathbf{ind}(\widetilde{\mathbf{t}}) \} \rangle.$$

The values of the elements of $\tilde{\mathbf{z}}$ are computed based on the relationships between the sets of indices in $\tilde{\mathbf{w}}$ and $\tilde{\mathbf{t}}$.

4970 where $\odot = \bigcirc(\mathsf{accum})$, and the difference operator refers to set difference.

Finally, the set of output values that make up vector $\tilde{\mathbf{z}}$ are written into the final result vector w, using what is called a *standard vector mask and replace*. This is carried out under control of the mask which acts as a "write mask".

• If desc[GrB_OUTP].GrB_REPLACE is set, then any values in w on input to this operation are deleted and the content of the new output vector, w, is defined as,

4976
$$\mathbf{L}(\mathsf{w}) = \{(i, z_i) : i \in (\mathbf{ind}(\widetilde{\mathbf{z}}) \cap \mathbf{ind}(\widetilde{\mathbf{m}}))\}.$$

• If desc[GrB_OUTP].GrB_REPLACE is not set, the elements of \tilde{z} indicated by the mask are copied into the result vector, w, and elements of w that fall outside the set indicated by the mask are unchanged:

4980

$$\mathbf{L}(\mathsf{w}) = \{(i, w_i) : i \in (\mathbf{ind}(\mathsf{w}) \cap \mathbf{ind}(\neg \widetilde{\mathbf{m}}))\} \cup \{(i, z_i) : i \in (\mathbf{ind}(\widetilde{\mathbf{z}}) \cap \mathbf{ind}(\widetilde{\mathbf{m}}))\}$$

In GrB_BLOCKING mode, the method exits with return value GrB_SUCCESS and the new content of vector w is as defined above and fully computed. In GrB_NONBLOCKING mode, the method exits with return value GrB_SUCCESS and the new content of vector w is as defined above but may not be fully computed. However, it can be used in the next GraphBLAS method call in a sequence.

4985 4.3.8.4 apply: Matrix-BinaryOp variants

Computes the transformation of the values of the stored elements of a matrix using a binary operator and a scalar value. In the *bind-first* variant, the specified scalar value is passed as the first argument to the binary operator and stored elements of the matrix are passed as the second argument. In the *bind-second* variant, the elements of the matrix are passed as the first argument and the specified scalar value is passed as the second argument.
4991 C Syntax

4992	// bind-first			
4993	GrB_Info GrB_apply	(GrB_Ma	atrix	С,
4994		const	GrB_Matrix	Mask,
4995		const	GrB_BinaryOp	accum,
4996		const	GrB_BinaryOp	op,
4997		<type< td=""><td>></td><td>val,</td></type<>	>	val,
4998		const	GrB_Matrix	A,
4999		const	GrB_Descriptor	desc);
5000				
5001	// bind-second			
	GrB Info GrB apply	(GrB Ma	atrix	С.
5002	arp_into arp_appry		AOTIN	ς,
5002 5003	dip_inio_dip_appiy	const	GrB_Matrix	Mask,
5002 5003 5004	arp_inio arp_appry	const const	GrB_Matrix GrB_BinaryOp	Mask, accum,
5002 5003 5004 5005	GID_INIO GID_appiy	const const const	GrB_Matrix GrB_BinaryOp GrB_BinaryOp	Mask, accum, op,
5002 5003 5004 5005 5006	GID_INIO GID_appiy	const const const const	GrB_Matrix GrB_BinaryOp GrB_BinaryOp GrB_Matrix	Mask, accum, op, A,
5002 5003 5004 5005 5006 5007	GID_INIO GID_appiy	const const const const const <type< td=""><td>GrB_Matrix GrB_BinaryOp GrB_BinaryOp GrB_Matrix</td><td>Mask, accum, op, A, val,</td></type<>	GrB_Matrix GrB_BinaryOp GrB_BinaryOp GrB_Matrix	Mask, accum, op, A, val,

5009 Parameters

5010	C	(INOUT) An existing GraphBLAS matrix. On input, the matrix provides values
5011		that may be accumulated with the result of the apply operation. On output, the
5012		matrix holds the results of the operation.
5013	Mask	(IN) An optional "write" mask that controls which results from this operation are
5014		stored into the output matrix C. The mask dimensions must match those of the
5015		matrix C. If the GrB_STRUCTURE descriptor is <i>not</i> set for the mask, the domain
5016		of the Mask matrix must be of type boo l or any of the predefined "built-in" types
5017		in Table 2.2. If the default mask is desired (i.e., a mask that is all true with the
5018		dimensions of C), GrB_NULL should be specified.
5019 5020	accum	(IN) An optional binary operator used for accumulating entries into existing C entries. If assignment rather than accumulation is desired, GrB_NULL should be
5021		specified.
5022	ор	(IN) A binary operator applied to each element of input matrix, A, with the element of the input matrix used as the left hand argument, and the scalar value, values and
5023		of the night hand argument
5024		as the right-hand argument.
5025	А	(IN) The GraphBLAS matrix whose elements are passed to the binary operator as
5026		the right-hand (second) argument in the <i>bind-first</i> variant, or the left-hand (first)
5027		argument in the <i>bind-second</i> variant.
5028	val	$\left(IN\right)$ Scalar value that is passed to the binary operator as the left-hand (first)
5029		argument in the <i>bind-first</i> variant, or the right-hand (second) argument in the

5030	bind	-second varian	nt.	
5031	desc~(IN)	An optional o	peration descriptor.	If a <i>default</i> descriptor is desired, GrB_NULL
5032	shou	ld be specified	d. Non-default field/	value pairs are listed as follows:
5033				
	Param	Field	Value	Description
	С	GrB_OUTP	GrB_REPLACE	Output matrix C is cleared (all elements removed) before the result is stored in it.
5024	Mask	GrB_MASK	GrB_STRUCTURE	The write mask is constructed from the structure (pattern of stored values) of the input Mask matrix. The stored values are
5034				not examined.
	Mask	GrB_MASK	GrB_COMP	Use the complement of Mask.
	А	GrB_INP0	GrB_TRAN	Use transpose of A for the operation (<i>bind-second</i> variant only).
	А	GrB_INP1	GrB_TRAN	Use transpose of A for the operation (<i>bind-first</i> variant only).

5035 Return Values

5036 5037 5038 5039	GrB_SUCCESS	In blocking mode, the operation completed successfully. In non- blocking mode, this indicates that the compatibility tests on di- mensions and domains for the input arguments passed successfully. Either way, output matrix ${\sf C}$ is ready to be used in the next method
5040	GrB PANIC	of the sequence.
5041 5042 5043 5044 5045	GrB_INVALID_OBJECT	This is returned in any execution mode whenever one of the opaque GraphBLAS objects (input or output) is in an invalid state caused by a previous execution error. Call GrB_error() to access any error messages generated by the implementation.
5046	GrB_OUT_OF_MEMORY	Not enough memory available for the operation.
5047 5048	GrB_UNINITIALIZED_OBJECT	One or more of the GraphBLAS objects has not been initialized by a call to new (or Matrix_dup for matrix parameters).
5049 5050 5051	GrB_INDEX_OUT_OF_BOUNDS	A value in row_indices is greater than or equal to $nrows(A)$, or a value in col_indices is greater than or equal to $ncols(A)$. In non- blocking mode, this can be reported as an execution error.
5052 5053	GrB_DIMENSION_MISMATCH	Mask and C dimensions are incompatible, $nrows \neq \mathbf{nrows}(C),$ or $ncols \neq \mathbf{ncols}(C).$
5054 5055 5056 5057	GrB_DOMAIN_MISMATCH	The domains of the various matrices and scalar are incompatible with the corresponding domains of the binary operator or accumu- lation operator, or the mask's domain is not compatible with bool (in the case where desc[GrB_MASK].GrB_STRUCTURE is not set).

This variant of GrB_apply computes the result of applying a binary operator to the elements of a 5059 GraphBLAS matrix each composed with a scalar constant, $\mathsf{val}:$ 5060

5061	bind-first:	C = f(val,A)
5062	bind-second:	C = f(A, val);
5063	or if an optional binary accum	ulation operator (\odot) is provided:
5064	bind-first:	$C=C\odot f(val,A)$
5065	bind-second:	$C=C\odot f(A,val).$
5066	Logically, this operation occur	s in three steps:
5067 5068	Setup The internal matr and dimensions a	ices and mask used in the computation are formed and their domains re tested for compatibility.
5069	Compute The indicated cor	nputations are carried out.
5070	Output The result is writ	ten into the output matrix, possibly under control of a mask.
5071	Up to three argument matrice	s are used in the GrB_-apply operation:
5072	1. $C = \langle \mathbf{D}(C), \mathbf{nrows}(C), \mathbf{nc} \rangle$	$\mathbf{cols}(C), \mathbf{L}(C) = \{(i, j, C_{ij})\}\rangle$
5073	2. $Mask = \langle \mathbf{D}(Mask), \mathbf{nrow} \rangle$	$\mathbf{s}(Mask), \mathbf{ncols}(Mask), \mathbf{L}(Mask) = \{(i, j, M_{ij})\} $ (optional)
5074	3. $A = \langle \mathbf{D}(A), \mathbf{nrows}(A), \mathbf{n} \rangle$	$\mathbf{cols}(A), \mathbf{L}(A) = \{(i, j, A_{ij})\}\rangle$
5075 5076	The argument scalar, matrices tested for domain compatibilit	s, binary operator and the accumulation operator (if provided) are y as follows:
5077 5078	1. If Mask is not GrB_NULI must be from one of the	-, and desc[GrB_MASK].GrB_STRUCTURE is not set, then $D(Mask)$ pre-defined types of Table 2.2.
5079	2. $\mathbf{D}(C)$ must be compatible	e with $\mathbf{D}_{out}(op)$ of the binary operator.
5080 5081 5082	3. If accum is not GrB_NULI of the accumulation open $D_{in_2}(accum)$ of the accum	, then $\mathbf{D}(C)$ must be compatible with $\mathbf{D}_{in_1}(accum)$ and $\mathbf{D}_{out}(accum)$ rator and $\mathbf{D}_{out}(op)$ of the binary operator must be compatible with mulation operator.
5083	4. $\mathbf{D}(A)$ must be compatible	e with $\mathbf{D}_{in_1}(op)$ of the binary operator.
5084	5. $\mathbf{D}(val)$ must be compatil	ble with $\mathbf{D}_{in_2}(op)$ of the binary operator.

Two domains are compatible with each other if values from one domain can be cast to values in the other domain as per the rules of the C language. In particular, domains from Table 2.2 are all compatible with each other. A domain from a user-defined type is only compatible with itself. If any compatibility rule above is violated, execution of GrB_apply ends and the domain mismatch error listed above is returned.

From the argument matrices, the internal matrices, mask, and index arrays used in the computation are formed (\leftarrow denotes copy):

5092 1. Matrix $\widetilde{\mathbf{C}} \leftarrow \mathsf{C}$.

5093 2. Two-dimensional mask, $\widetilde{\mathbf{M}}$, is computed from argument Mask as follows:

5094	(a) If $Mask = GrB_NULL$, then $\mathbf{M} = \langle \mathbf{nrows}(C), \mathbf{ncols}(C), \{(i, j), \forall i, j : 0 \le i < \mathbf{nrows}(C), 0 \le $
5095	$j < \mathbf{ncols}(C) \} angle.$
5096	(b) If $Mask \neq GrB_NULL$,
5097	i. If desc[GrB_MASK].GrB_STRUCTURE is set, then $\widetilde{\mathbf{M}} = \langle \mathbf{nrows}(Mask), \mathbf{ncols}(Mask), \{(i, j) : $
5098	$(i,j) \in \mathbf{ind}(Mask) \} angle,$
5099	ii. Otherwise, $\widetilde{\mathbf{M}} = \langle \mathbf{nrows}(Mask), \mathbf{ncols}(Mask),$
5100	$\{(i,j):(i,j)\in \mathbf{ind}(Mask)\wedge(bool)Mask(i,j)=true\} angle.$
5101	(c) If desc[GrB_MASK].GrB_COMP is set, then $\widetilde{\mathbf{M}} \leftarrow \neg \widetilde{\mathbf{M}}$.
5102	3. Matrix $\widetilde{\mathbf{A}}$ is computed from argument A as follows:
5103	bind-first: $\widetilde{\mathbf{A}} \leftarrow desc[GrB_INP1].GrB_TRAN ? A^T : A$
5104	bind-second: $\widetilde{\mathbf{A}} \leftarrow desc[GrB_INP0].GrB_TRAN ? A^T : A$

The internal matrices and mask are checked for dimension compatibility. The following conditions must hold:

5107 1. $\operatorname{\mathbf{nrows}}(\widetilde{\mathbf{C}}) = \operatorname{\mathbf{nrows}}(\widetilde{\mathbf{M}}).$

5108 2. $\mathbf{ncols}(\widetilde{\mathbf{C}}) = \mathbf{ncols}(\widetilde{\mathbf{M}}).$

5109 3. $\operatorname{\mathbf{nrows}}(\widetilde{\mathbf{C}}) = \operatorname{\mathbf{nrows}}(\widetilde{\mathbf{A}}).$

5110 4.
$$\mathbf{ncols}(\mathbf{C}) = \mathbf{ncols}(\mathbf{A}).$$

If any compatibility rule above is violated, execution of GrB_apply ends and the dimension mismatch error listed above is returned.

⁵¹¹³ From this point forward, in GrB_NONBLOCKING mode, the method can optionally exit with ⁵¹¹⁴ GrB_SUCCESS return code and defer any computation and/or execution error codes.

⁵¹¹⁵ We are now ready to carry out the apply and any additional associated operations. We describe ⁵¹¹⁶ this in terms of two intermediate matrices:

• $\widetilde{\mathbf{T}}$: The matrix holding the result from applying the binary operator to the input matrix $\widetilde{\mathbf{A}}$.

• $\widetilde{\mathbf{Z}}$: The matrix holding the result after application of the (optional) accumulation operator. 5118 The intermediate matrix, $\widetilde{\mathbf{T}}$, is created as one of the following: 5119 $\widetilde{\mathbf{T}} = \langle \mathbf{D}_{out}(\mathsf{op}), \mathbf{nrows}(\widetilde{\mathbf{C}}), \mathbf{ncols}(\widetilde{\mathbf{C}}), \mathbf{L}(\widetilde{\mathbf{T}}) = \{(i, j, f(\mathsf{val}, \widetilde{\mathbf{A}}(i, j))) \forall (i, j) \in \mathbf{ind}(\widetilde{\mathbf{A}})\} \rangle,$ bind-first: 5120 $\widetilde{\mathbf{T}} = \langle \mathbf{D}_{out}(\mathsf{op}), \mathbf{nrows}(\widetilde{\mathbf{C}}), \mathbf{ncols}(\widetilde{\mathbf{C}}), \mathbf{L}(\widetilde{\mathbf{T}}) = \{(i, j, f(\widetilde{\mathbf{A}}(i, j), \mathsf{val})) \forall (i, j) \in \mathbf{ind}(\widetilde{\mathbf{A}})\} \rangle,$ bind-second: 5121 where $f = \mathbf{f}(\mathsf{op})$. 5122 The intermediate matrix $\widetilde{\mathbf{Z}}$ is created as follows, using what is called a *standard matrix accumulate*: 5123 • If accum = GrB_NULL, then $\widetilde{\mathbf{Z}} = \widetilde{\mathbf{T}}$. 5124 • If accum is a binary operator, then \mathbf{Z} is defined as 5125 $\widetilde{\mathbf{Z}} = \langle \mathbf{D}_{out}(\operatorname{accum}), \operatorname{\mathbf{nrows}}(\widetilde{\mathbf{C}}), \operatorname{\mathbf{ncols}}(\widetilde{\mathbf{C}}), \{(i, j, Z_{ij}) \forall (i, j) \in \operatorname{\mathbf{ind}}(\widetilde{\mathbf{C}}) \cup \operatorname{\mathbf{ind}}(\widetilde{\mathbf{T}})\} \rangle.$ 5126 The values of the elements of $\widetilde{\mathbf{Z}}$ are computed based on the relationships between the sets of 5127 indices in \mathbf{C} and \mathbf{T} . 5128 $Z_{ij} = \widetilde{\mathbf{C}}(i,j) \odot \widetilde{\mathbf{T}}(i,j), \text{ if } (i,j) \in (\mathbf{ind}(\widetilde{\mathbf{T}}) \cap \mathbf{ind}(\widetilde{\mathbf{C}})),$ 5129 5130 $Z_{ii} = \widetilde{\mathbf{C}}(i, j), \text{ if } (i, j) \in (\mathbf{ind}(\widetilde{\mathbf{C}}) - (\mathbf{ind}(\widetilde{\mathbf{T}}) \cap \mathbf{ind}(\widetilde{\mathbf{C}}))),$ 5131 5132 $Z_{ij} = \widetilde{\mathbf{T}}(i,j), \text{ if } (i,j) \in (\mathbf{ind}(\widetilde{\mathbf{T}}) - (\mathbf{ind}(\widetilde{\mathbf{T}}) \cap \mathbf{ind}(\widetilde{\mathbf{C}}))),$ 5133 where $\odot = \bigcirc(\mathsf{accum})$, and the difference operator refers to set difference. 5134 Finally, the set of output values that make up matrix $\tilde{\mathbf{Z}}$ are written into the final result matrix C. 5135 using what is called a *standard matrix mask and replace*. This is carried out under control of the 5136 mask which acts as a "write mask". 5137 • If desc[GrB_OUTP].GrB_REPLACE is set, then any values in C on input to this operation are 5138 deleted and the content of the new output matrix, C, is defined as, 5139 $\mathbf{L}(\mathsf{C}) = \{(i, j, Z_{ij}) : (i, j) \in (\mathbf{ind}(\widetilde{\mathbf{Z}}) \cap \mathbf{ind}(\widetilde{\mathbf{M}}))\}.$ 5140

• If desc[GrB_OUTP].GrB_REPLACE is not set, the elements of $\tilde{\mathbf{Z}}$ indicated by the mask are copied into the result matrix, C, and elements of C that fall outside the set indicated by the mask are unchanged:

$$\mathbf{L}(\mathsf{C}) = \{(i, j, C_{ij}) : (i, j) \in (\mathbf{ind}(\mathsf{C}) \cap \mathbf{ind}(\neg \widetilde{\mathbf{M}}))\} \cup \{(i, j, Z_{ij}) : (i, j) \in (\mathbf{ind}(\widetilde{\mathbf{Z}}) \cap \mathbf{ind}(\widetilde{\mathbf{M}}))\}.$$

In GrB_BLOCKING mode, the method exits with return value GrB_SUCCESS and the new content of matrix C is as defined above and fully computed. In GrB_NONBLOCKING mode, the method exits with return value GrB_SUCCESS and the new content of matrix C is as defined above but may not be fully computed. However, it can be used in the next GraphBLAS method call in a sequence.

5150 4.3.9 reduce: Perform a reduction across the elements of an object

⁵¹⁵¹ Computes the reduction of the values of the elements of a vector or matrix.

5152 4.3.9.1 reduce: Standard matrix to vector variant

This performs a reduction across rows of a matrix to produce a vector. If column reduction across columns is desired, the input matrix should be transposed which can be specified using the descriptor.

5156 C Syntax

5157	GrB_Info GrB_reduce	(GrB_Ve	ector	W,
5158		const	GrB_Vector	mask,
5159		const	GrB_BinaryOp	accum,
5160		const	GrB_Monoid	op,
5161		const	GrB_Matrix	A,
5162		const	GrB_Descriptor	desc);
5163				
5163 5164	GrB_Info GrB_reduce	(GrB_Ve	ector	W,
5163 5164 5165	GrB_Info GrB_reduce	(GrB_Ve const	ector GrB_Vector	w, mask,
5163 5164 5165 5166	GrB_Info GrB_reduce	(GrB_Ve const const	ector GrB_Vector GrB_BinaryOp	w, mask, accum,
5163 5164 5165 5166 5167	GrB_Info GrB_reduce	(GrB_Ve const const const	ector GrB_Vector GrB_BinaryOp GrB_BinaryOp	w, mask, accum, op,
5163 5164 5165 5166 5167 5168	GrB_Info GrB_reduce	(GrB_Ve const const const const	ector GrB_Vector GrB_BinaryOp GrB_BinaryOp GrB_Matrix	w, mask, accum, op, A,

5170 Parameters

5171	W	(INOUT) An existing GraphBLAS vector. On input, the vector provides values
5172		that may be accumulated with the result of the reduction operation. On output,
5173		this vector holds the results of the operation.
5174	mask	(IN) An optional "write" mask that controls which results from this operation are
5175		stored into the output vector w. The mask dimensions must match those of the
5176		vector w. If the $GrB_STRUCTURE$ descriptor is <i>not</i> set for the mask, the domain
5177		of the mask vector must be of type bool or any of the predefined "built-in" types
5178		in Table 2.2. If the default mask is desired (i.e., a mask that is all true with the
5179		dimensions of w), GrB_NULL should be specified.
5180	accum	$\left(IN\right)$ An optional binary operator used for accumulating entries into existing w
5181		entries. If assignment rather than accumulation is desired, GrB_NULL should be
5182		specified.
5183	ор	(IN) The monoid or binary operator used in the element-wise reduction operation.
5184		Depending on which type is passed, the following defines the binary operator with

5185	one	domain, $F_b =$	$\langle D, D, D, \oplus \rangle$, that is	s used:
5186		BinaryOp: <i>F</i>	$F_b = \langle \mathbf{D}_{out}(op), \mathbf{D}_{in_1}(\mathbf{p}) \rangle$	$op), \mathbf{D}_{in_2}(op), \bigodot(op) angle.$
5187		Monoid: <i>F</i>	$F_b = \langle \mathbf{D}(op), \mathbf{D}(op), \mathbf{D}$	$D(op), \bigcirc (op) \rangle$, the identity element of the
5188		n	nonoid is ignored.	
5189	If op	o is a GrB_Bin	aryOp, then all its de	omains must be the same. Furthermore, in
5190	both	ı cases ⊙(op)	must be commutati	ve and associative. Otherwise, the outcome
5191	of th	ne operation is	s undefined.	
5192	A (IN)	The GraphB	LAS matrix on which	n reduction will be performed.
5193	desc~(IN)	An optional o	operation descriptor.	If a <i>default</i> descriptor is desired, GrB_NULL
5194	shou	ıld be specifie	d. Non-default field/	value pairs are listed as follows:
5195				
	Param	Field	Value	Description
	W	GrB_OUTP	GrB_REPLACE	Output vector w is cleared (all elements removed) before the result is stored in it.
	mask	GrB_MASK	GrB_STRUCTURE	The write mask is constructed from the
5196				structure (pattern of stored values) of the
				input mask vector. The stored values are
				not examined.
	mask	GrB_MASK	GrB_COMP	Use the complement of mask.
	А	GrB_INP0	GrB_TRAN	Use transpose of A for the operation.

5197 Return Values

5198	GrB_SUCCESS	In blocking mode, the operation completed successfully. In non- blocking mode, this indicates that the compatibility tests on di-
5199		mensions and domains for the input arguments passed successfully
5200		Either way, output vector w is ready to be used in the next method
5202		of the sequence.
5203	GrB_PANIC	Unknown internal error.
5204	GrB_INVALID_OBJECT	This is returned in any execution mode whenever one of the opaque
5205		GraphBLAS objects (input or output) is in an invalid state caused
5206		by a previous execution error. Call GrB_error() to access any error
5207		messages generated by the implementation.
5208	GrB_OUT_OF_MEMORY	Not enough memory available for the operation.
5209 5210	GrB_UNINITIALIZED_OBJECT	One or more of the GraphBLAS objects has not been initialized by a call to new (or dup for vector parameters).
5211	GrB_DIMENSION_MISMATCH	$mask, w \; \mathrm{and} / \mathrm{or} \; u \; \mathrm{dimensions}$ are incompatible.

5212	GrB_DOMAIN_MISMATCH	Either the domains of the various vectors and matrices are incom-
5213		patible with the corresponding domains of the accumulation oper-
5214		ator or reduce function, or the domains of the GraphBLAS binary
5215		operator op are not all the same, or the mask's domain is not com-
5216		patible with bool (in the case where $desc[GrB_MASK]$.GrB_STRUCTURE
5217		is not set).

This variant of GrB_reduce computes the result of performing a reduction across each of the rows of an input matrix: $w(i) = \bigoplus A(i,:)\forall i$; or, if an optional binary accumulation operator is provided, $w(i) = w(i) \odot (\bigoplus A(i,:))\forall i$, where $\bigoplus = \bigcirc (F_b)$ and $\odot = \bigcirc (\operatorname{accum})$.

⁵²²² Logically, this operation occurs in three steps:

5223 Setup The internal vector, matrix and mask used in the computation are formed and their 5224 domains and dimensions are tested for compatibility.

5225 **Compute** The indicated computations are carried out.

5226 **Output** The result is written into the output vector, possibly under control of a mask.

⁵²²⁷ Up to two vector and one matrix argument are used in this GrB_reduce operation:

5228 1.
$$w = \langle \mathbf{D}(w), \mathbf{size}(w), \mathbf{L}(w) = \{(i, w_i)\} \rangle$$

5229 2. mask = $\langle \mathbf{D}(\mathsf{mask}), \mathsf{size}(\mathsf{mask}), \mathbf{L}(\mathsf{mask}) = \{(i, m_i)\}\rangle$ (optional)

5230 3. $A = \langle \mathbf{D}(A), \mathbf{nrows}(A), \mathbf{ncols}(A), \mathbf{L}(A) = \{(i, j, A_{ij})\} \rangle$

The argument vector, matrix, reduction operator and accumulation operator (if provided) are tested for domain compatibility as follows:

- If mask is not GrB_NULL, and desc[GrB_MASK].GrB_STRUCTURE is not set, then D(mask)
 must be from one of the pre-defined types of Table 2.2.
- 5235 2. $\mathbf{D}(\mathbf{w})$ must be compatible with the domain of the reduction binary operator, $\mathbf{D}(F_b)$.
- 3. If accum is not GrB_NULL, then $\mathbf{D}(\mathbf{w})$ must be compatible with $\mathbf{D}_{in_1}(\operatorname{accum})$ and $\mathbf{D}_{out}(\operatorname{accum})$ of the accumulation operator and $\mathbf{D}(F_b)$, must be compatible with $\mathbf{D}_{in_2}(\operatorname{accum})$ of the accumulation operator.
- 5239 4. D(A) must be compatible with the domain of the binary reduction operator, $D(F_b)$.

Two domains are compatible with each other if values from one domain can be cast to values in the other domain as per the rules of the C language. In particular, domains from Table 2.2 are all compatible with each other. A domain from a user-defined type is only compatible with itself. If ⁵²⁴³ any compatibility rule above is violated, execution of GrB_reduce ends and the domain mismatch ⁵²⁴⁴ error listed above is returned.

From the argument vectors, the internal vectors and mask used in the computation are formed (\leftarrow denotes copy):

5247 1. Vector $\widetilde{\mathbf{w}} \leftarrow \mathbf{w}$.

5248 2. One-dimensional mask, $\widetilde{\mathbf{m}}$, is computed from argument mask as follows:

(a) If mask = GrB_NULL, then $\widetilde{\mathbf{m}} = \langle \mathbf{size}(\mathsf{w}), \{i, \forall i : 0 \le i < \mathbf{size}(\mathsf{w})\} \rangle$.

- 5250 (b) If mask \neq GrB_NULL,
- i. If desc[GrB_MASK].GrB_STRUCTURE is set, then $\widetilde{\mathbf{m}} = \langle \mathbf{size}(\mathsf{mask}), \{i : i \in \mathbf{ind}(\mathsf{mask})\} \rangle$,
 - ii. Otherwise, $\widetilde{\mathbf{m}} = \langle \mathbf{size}(\mathsf{mask}), \{i : i \in \mathbf{ind}(\mathsf{mask}) \land (\mathsf{bool})\mathsf{mask}(i) = \mathsf{true} \} \rangle$.
- ⁵²⁵³ (c) If desc[GrB_MASK].GrB_COMP is set, then $\widetilde{\mathbf{m}} \leftarrow \neg \widetilde{\mathbf{m}}$.

3. Matrix
$$\mathbf{A} \leftarrow \mathsf{desc}[\mathsf{GrB}_\mathsf{INP0}].\mathsf{GrB}_\mathsf{TRAN} ? \mathsf{A}^T : \mathsf{A}$$
.

⁵²⁵⁵ The internal vectors and masks are checked for dimension compatibility. The following conditions ⁵²⁵⁶ must hold:

5257 1. $\operatorname{size}(\widetilde{\mathbf{w}}) = \operatorname{size}(\widetilde{\mathbf{m}})$

5258 2. $\operatorname{size}(\widetilde{\mathbf{w}}) = \operatorname{\mathbf{nrows}}(\widetilde{\mathbf{A}}).$

If any compatibility rule above is violated, execution of GrB_reduce ends and the dimension mismatch error listed above is returned.

From this point forward, in $GrB_NONBLOCKING$ mode, the method can optionally exit with $GrB_SUCCESS$ return code and defer any computation and/or execution error codes.

⁵²⁶³ We carry out the reduce and any additional associated operations. We describe this in terms of ⁵²⁶⁴ two intermediate vectors:

• $\tilde{\mathbf{t}}$: The vector holding the result from reducing along the rows of input matrix $\tilde{\mathbf{A}}$.

• $\tilde{\mathbf{z}}$: The vector holding the result after application of the (optional) accumulation operator.

5267 The intermediate vector, $\mathbf{\tilde{t}}$, is created as follows:

5268
$$\widetilde{\mathbf{t}} = \langle \mathbf{D}(\mathsf{op}), \mathbf{size}(\widetilde{\mathbf{w}}), \mathbf{L}(\widetilde{\mathbf{t}}) = \{(i, t_i) : \mathbf{ind}(A(i, :)) \neq \emptyset\} \rangle$$

5269 The value of each of its elements is computed by

5270

 $t_i = \bigoplus_{j \in \mathbf{ind}(\widetilde{\mathbf{A}}(i,:))} \widetilde{\mathbf{A}}(i,j),$

⁵²⁷¹ where $\bigoplus = \bigcirc(F_b)$.

5272 The intermediate vector $\tilde{\mathbf{z}}$ is created as follows, using what is called a *standard vector accumulate*:

5273

5275

5289

• If accum = GrB_NULL, then $\widetilde{\mathbf{z}} = \widetilde{\mathbf{t}}$.

• If accum is a binary operator, then $\widetilde{\mathbf{z}}$ is defined as

$$\widetilde{\mathbf{z}} = \langle \mathbf{D}_{out}(\mathsf{accum}), \mathbf{size}(\widetilde{\mathbf{w}}), \{(i, z_i) \ \forall \ i \in \mathbf{ind}(\widetilde{\mathbf{w}}) \cup \mathbf{ind}(\widetilde{\mathbf{t}}) \} \rangle.$$

The values of the elements of $\tilde{\mathbf{z}}$ are computed based on the relationships between the sets of indices in $\tilde{\mathbf{w}}$ and $\tilde{\mathbf{t}}$.

$$\begin{aligned} z_i &= \widetilde{\mathbf{w}}(i) \odot \mathbf{t}(i), \text{ if } i \in (\mathbf{ind}(\mathbf{t}) \cap \mathbf{ind}(\widetilde{\mathbf{w}})), \\ z_i &= \widetilde{\mathbf{w}}(i), \text{ if } i \in (\mathbf{ind}(\widetilde{\mathbf{w}}) - (\mathbf{ind}(\widetilde{\mathbf{t}}) \cap \mathbf{ind}(\widetilde{\mathbf{w}}))), \\ z_i &= \widetilde{\mathbf{t}}(i), \text{ if } i \in (\mathbf{ind}(\widetilde{\mathbf{t}}) - (\mathbf{ind}(\widetilde{\mathbf{t}}) \cap \mathbf{ind}(\widetilde{\mathbf{w}}))), \\ z_i &= \widetilde{\mathbf{t}}(i), \text{ if } i \in (\mathbf{ind}(\widetilde{\mathbf{t}}) - (\mathbf{ind}(\widetilde{\mathbf{t}}) \cap \mathbf{ind}(\widetilde{\mathbf{w}}))), \end{aligned}$$

where $\odot = \bigcirc(\mathsf{accum})$, and the difference operator refers to set difference.

Finally, the set of output values that make up vector $\tilde{\mathbf{z}}$ are written into the final result vector w, using what is called a *standard vector mask and replace*. This is carried out under control of the mask which acts as a "write mask".

• If desc[GrB_OUTP].GrB_REPLACE is set, then any values in w on input to this operation are deleted and the content of the new output vector, w, is defined as,

$$\mathbf{L}(\mathsf{w}) = \{(i, z_i) : i \in (\mathbf{ind}(\widetilde{\mathbf{z}}) \cap \mathbf{ind}(\widetilde{\mathbf{m}}))\}.$$

• If desc[GrB_OUTP].GrB_REPLACE is not set, the elements of \tilde{z} indicated by the mask are copied into the result vector, w, and elements of w that fall outside the set indicated by the mask are unchanged:

5293
$$\mathbf{L}(\mathsf{w}) = \{(i, w_i) : i \in (\mathbf{ind}(\mathsf{w}) \cap \mathbf{ind}(\neg \widetilde{\mathbf{m}}))\} \cup \{(i, z_i) : i \in (\mathbf{ind}(\widetilde{\mathbf{z}}) \cap \mathbf{ind}(\widetilde{\mathbf{m}}))\}.$$

In GrB_BLOCKING mode, the method exits with return value GrB_SUCCESS and the new content of vector w is as defined above and fully computed. In GrB_NONBLOCKING mode, the method exits with return value GrB_SUCCESS and the new content of vector w is as defined above but may not be fully computed. However, it can be used in the next GraphBLAS method call in a sequence.

5298 4.3.9.2 reduce: Vector-scalar variant

5299 Reduce all stored values into a single scalar.

5300 C Syntax

5301	GrB_Info GrB_reduce(<type></type>	*val,
5302	const GrB_BinaryOp	accum,
5303	const GrB_Monoid	op,
5304	const GrB_Vector	u,
5305	const GrB_Descriptor	desc);

5306 Parameters

5307	val	(INOUT) Scalar to store final reduced value into. On input, the scalar provides
5308		a value that may be accumulated with the result of the reduction operation. On
5309		output, this scalar holds the results of the operation.
5310	accum	(IN) An optional binary operator used for accumulating entries into existing val
5311		value. If assignment rather than accumulation is desired, GrB_NULL should be
5312		specified.
5313	ор	(IN) The monoid used in the element-wise reduction operation, $M = \langle D, \oplus, 0 \rangle$.
5314		The binary operator, $\oplus,$ must be commutative and associative; otherwise, the
5315		outcome of the operation is undefined.
5316	u	(IN) The GraphBLAS vector on which reduction will be performed.
5317	desc	(IN) An optional operation descriptor. If a $\mathit{default}$ descriptor is desired, GrB_NULL
5318		should be specified. Non-default field/value pairs are listed as follows:
5319		
5320		Param Field Value Description
5321		$\it Note:$ This argument is defined for consistency with the other GraphBLAS opera-
5322		tions. There are currently no non-default field/value pairs that can be set for this
5323		operation.

5324 Return Values

5325 5326 5327	GrB_SUCCESS	In blocking or non-blocking mode, the operation completed successfully, and the output scalar val is ready to be used in the next method of the sequence.
5328	GrB_PANIC	Unknown internal error.
5329 5330 5331 5332	GrB_INVALID_OBJECT	This is returned in any execution mode whenever one of the opaque GraphBLAS objects (input or output) is in an invalid state caused by a previous execution error. Call GrB_error() to access any error messages generated by the implementation.
5333	GrB_OUT_OF_MEMORY	Not enough memory available for the operation.
5334 5335	GrB_UNINITIALIZED_OBJECT	One or more of the GraphBLAS objects has not been initialized by a call to new (or Vector_dup for vector parameters).
5336 5337 5338	GrB_DOMAIN_MISMATCH	The domains of input and output arguments are incompatible with the corresponding domains of the accumulation operator, or reduce operator.
5339	GrB_NULL_POINTER	val pointer is NULL.

This variant of GrB_reduce computes the result of performing a reduction across each of the elements of an input vector: $val = \bigoplus u(:)$; or, if an optional binary accumulation operator is provided, $val = val \odot (\bigoplus u(:))$, where $\bigoplus = \bigodot (op)$ and $\odot = \bigcirc (accum)$.

⁵³⁴⁴ Logically, this operation occurs in three steps:

5345 Setup The internal vector used in the computation is formed and its domain is tested for 5346 compatibility.

5347 **Compute** The indicated computations are carried out.

- 5348 **Output** The result is written into the output scalar.
- ⁵³⁴⁹ One vector argument is used in this GrB_reduce operation:

5350 1. $\mathbf{u} = \langle \mathbf{D}(\mathbf{u}), \mathbf{size}(\mathbf{u}), \mathbf{L}(\mathbf{u}) = \{(i, u_i)\} \rangle$

The output scalar, argument vector, reduction operator and accumulation operator (if provided) are tested for domain compatibility as follows:

- ⁵³⁵³ 1. If accum is GrB_NULL , then D(val) must be compatible with D(op) of the reduction binary ⁵³⁵⁴ operator.
- 2. If accum is not GrB_NULL, then $\mathbf{D}(val)$ must be compatible with $\mathbf{D}_{in_1}(accum)$ and $\mathbf{D}_{out}(accum)$ of the accumulation operator and $\mathbf{D}(op)$ of the reduction binary operator must be compatible with $\mathbf{D}_{in_2}(accum)$ of the accumulation operator.
- $_{5358}$ 3. D(u) must be compatible with D(op) of the binary reduction operator.

Two domains are compatible with each other if values from one domain can be cast to values in the other domain as per the rules of the C language. In particular, domains from Table 2.2 are all compatible with each other. A domain from a user-defined type is only compatible with itself. If any compatibility rule above is violated, execution of GrB_reduce ends and the domain mismatch error listed above is returned.

From the argument vector, the internal vector used in the computation is formed (\leftarrow denotes copy):

5365 1. Vector $\widetilde{\mathbf{u}} \leftarrow \mathbf{u}$.

53

We are now ready to carry out the reduce and any additional associated operations. First, an intermediate scalar result t is computed using the recurrence:

$$t = \begin{cases} \mathbf{0}(\mathsf{op}), & \text{if } \mathbf{ind}(\widetilde{\mathbf{u}}) = \emptyset, \\ \bigoplus_{i \in \mathbf{ind}(\widetilde{\mathbf{u}})} \widetilde{\mathbf{u}}(i), & \text{otherwise.} \end{cases}$$

- ⁵³⁶⁹ Where $\oplus = \bigcirc(\mathsf{op})$, and $\mathbf{0}(\mathsf{op})$ is the identity of the monoid.
- 5370 The final reduction value val is computed as follows:
- If accum = GrB_NULL, then val $\leftarrow t$.
- If accum is a binary operator, then val \leftarrow val \odot t, where $\odot = \bigcirc$ (accum).

 $_{5373}$ In both GrB_BLOCKING and GrB_NONBLOCKING modes, the method exits with return value $_{5374}$ GrB_SUCCESS and the new contents of val is as defined above.

5375 4.3.9.3 reduce: Matrix-scalar variant

5376 Reduce all stored values into a single scalar.

5377 C Syntax

5378	GrB_Info GrB_reduce(<type></type>	*val,
5379	const GrB_BinaryOp	accum,
5380	const GrB_Monoid	op,
5381	const GrB_Matrix	A,
5382	const GrB_Descriptor	desc);

5383 Parameters

5384	val	(INOUT) Scalar to store final reduced value into. On input, the scalar provides
5385		a value that may be accumulated with the result of the reduction operation. On
5386		output, this scalar holds the results of the operation.
5387	accum	(IN) An optional binary operator used for accumulating entries into existing val
5388		value. If assignment rather than accumulation is desired, GrB_NULL should be
5389		specified.
5390	ор	(IN) The monoid used in the element-wise reduction operation, $M = \langle D, \oplus, 0 \rangle$.
5391		The binary operator, \oplus , must be commutative and associative; otherwise, the
5392		outcome of the operation is undefined.
5393	А	(IN) The GraphBLAS matrix on which reduction will be performed.
5394	desc	(IN) An optional operation descriptor. If a $\mathit{default}$ descriptor is desired, GrB_NULL
5395		should be specified. Non-default field/value pairs are listed as follows:
5396		
5397		Param Field Value Description
5398		$\it Note:$ This argument is defined for consistency with the other GraphBLAS opera-
5399		tions. There are currently no non-default field/value pairs that can be set for this
5400		operation.

5401 Return Values

5402 5403 5404	GrB_SUCCESS	In blocking or non-blocking mode, the operation completed successfully, and the output scalar val is ready to be used in the next method of the sequence.
5405	GrB_PANIC	Unknown internal error.
5406 5407 5408 5409	GrB_INVALID_OBJECT	This is returned in any execution mode whenever one of the opaque GraphBLAS objects (input or output) is in an invalid state caused by a previous execution error. Call GrB_error() to access any error messages generated by the implementation.
5410	GrB_OUT_OF_MEMORY	Not enough memory available for the operation.
5411 5412	GrB_UNINITIALIZED_OBJECT	One or more of the GraphBLAS objects has not been initialized by a call to new (or Matrix_dup for matrix parameters).
5413 5414 5415	GrB_DOMAIN_MISMATCH	The domains of input and output arguments are incompatible with the corresponding domains of the accumulation operator, or reduce operator.
5416	GrB_NULL_POINTER	val pointer is NULL.

5417 Description

This variant of GrB_reduce computes the result of performing a reduction across each of the elements of an input matrix: $val = \bigoplus A(:,:)$; or, if an optional binary accumulation operator is provided, $val = val \odot (\bigoplus A(:,:))$, where $\bigoplus = \bigcirc (op)$ and $\odot = \bigcirc (accum)$.

- 5421 Logically, this operation occurs in three steps:
- 5422 Setup The internal matrix used in the computation is formed and its domain is tested for 5423 compatibility.
- 5424 **Compute** The indicated computations are carried out.
- 5425 **Output** The result is written into the output scalar.

⁵⁴²⁶ One matrix argument is used in this GrB_reduce operation:

5427 1. $A = \langle \mathbf{D}(A), \mathbf{size}(A), \mathbf{L}(A) = \{(i, j, A_{i,j})\} \rangle$

The output scalar, argument matrix, reduction operator and accumulation operator (if provided)
 are tested for domain compatibility as follows:

⁵⁴³⁰ 1. If accum is GrB_NULL , then D(val) must be compatible with D(op) of the reduction binary ⁵⁴³¹ operator. ⁵⁴³² 2. If accum is not GrB_NULL, then D(val) must be compatible with $D_{in_1}(accum)$ and $D_{out}(accum)$ ⁵⁴³³ of the accumulation operator and D(op) of the reduction binary operator must be compatible ⁵⁴³⁴ with $D_{in_2}(accum)$ of the accumulation operator.

Two domains are compatible with each other if values from one domain can be cast to values in the other domain as per the rules of the C language. In particular, domains from Table 2.2 are all compatible with each other. A domain from a user-defined type is only compatible with itself. If any compatibility rule above is violated, execution of GrB_reduce ends and the domain mismatch error listed above is returned.

From the argument matrix, the internal matrix used in the computation is formed (\leftarrow denotes copy):

5443 1. Matrix $\widetilde{\mathbf{A}} \leftarrow \mathsf{A}$.

5446

We are now ready to carry out the reduce and any additional associated operations. First, an intermediate scalar result t is computed using the recurrence:

$$t = \begin{cases} \mathbf{0}(\mathsf{op}), & \text{if } \mathbf{ind}(\mathbf{A}) = \varnothing, \\ \\ \bigoplus_{(i,j)\in\mathbf{ind}(\widetilde{\mathbf{A}})} \widetilde{\mathbf{A}}(i,j), & \text{otherwise.} \end{cases}$$

5447 Where $\oplus = \bigodot(\mathsf{op})$, and $\mathbf{0}(\mathsf{op})$ is the identity of the monoid.

5448 The final reduction value val is computed as follows:

• If accum = GrB_NULL, then val $\leftarrow t$.

• If accum is a binary operator, then val \leftarrow val $\odot t$, where $\odot = \bigcirc$ (accum).

In both $GrB_BLOCKING$ and $GrB_NONBLOCKING$ modes, the method exits with return value $GrB_SUCCESS$ and the new contents of val is as defined above.

5453 4.3.10 transpose: Transpose rows and columns of a matrix

⁵⁴⁵⁴ This version computes a new matrix that is the transpose of the source matrix.

5455 C Syntax

5456	GrB_Info GrB_transpose(GrB_Matrix	С,
5457	const GrB_Matrix	Mask,
5458	const GrB_BinaryOp	accum,
5459	const GrB_Matrix	A,
5460	const GrB_Descriptor	desc);

^{5435 3.} D(A) must be compatible with D(op) of the binary reduction operator.

Parameters

C	(INO) that	UT) An e may be a	xist: ccur	ing GraphBLAS ma nulated with the res	trix. On input, the matrix provides values ult of the transpose operation. On output	
	the n	natrix hol	ds the results of the operation.			
Mask	(IN) A stored matri of the in Ta dimen (IN) entrie specifi	An option d into the ix C. If the Mask ma ble 2.2. I nsions of An option es. If assi- fied.	al " e ou atriz If th C), ' nal gnm	write" mask that control tput matrix C. The rB_STRUCTURE des a must be of type bo e default mask is de GrB_NULL should be binary operator used that acc	ntrols which results from this operation are mask dimensions must match those of the criptor is <i>not</i> set for the mask, the domain ol or any of the predefined "built-in" types estired (i.e., a mask that is all true with the especified. d for accumulating entries into existing C umulation is desired, GrB_NULL should be	
А	(IN) [The Grap	hBI	LAS matrix on which	transposition will be performed.	
desc	(IN) A shoul	An option d be spec	al o ifiec	peration descriptor. l. Non-default field/	If a <i>default</i> descriptor is desired, GrB_NULL value pairs are listed as follows:	
Pa	ram	Field		Value	Description	
C		GrB_OU7	ΓР	GrB_REPLACE	Output matrix C is cleared (all elements removed) before the result is stored in it.	
Ma	isk	GrB_MAS	5K	GrB_STRUCTURE	The write mask is constructed from the structure (pattern of stored values) of the input Mask matrix. The stored values are not examined.	
Ma A	isk	GrB_MAS GrB_INP(5K 0	GrB_COMP GrB_TRAN	Use the complement of Mask. Use transpose of A for the operation.	
Return Values	5					
	GrB_S	UCCESS	In	blocking mode, the	operation completed successfully. In non-	
			blo	cking mode, this ind	dicates that the compatibility tests on di-	
			me	nsions and domains f	for the input arguments passed successfully.	
			Eit of t	her way, output mati he sequence.	rix C is ready to be used in the next method	
	Gr	B_PANIC	Un	known internal error		
GrB INV	ALID	OBJECT	Thi	is is returned in any e	execution mode whenever one of the opaque	
			Gra	aphBLAS objects (in	put or output) is in an invalid state caused	
			by	a previous execution	error. Call GrB_error() to access any error	
	C Mask accum A desc <u>Pa</u> C Ma A Return Values GrB_INV	C (INO that the n Mask (IN) A store matri of the in Ta dimer accum (IN) entric speci A (IN) A desc (IN) A shoul Param C Mask A Return Values GrB_S	C (INOUT) An er that may be a the matrix hol Mask (IN) An option stored into the matrix C. If the of the Mask m in Table 2.2. I dimensions of accum (IN) An option entries. If assi specified. A (IN) The Grap desc (IN) An option should be species $\frac{Param}{C} \frac{Field}{C} \frac{Field}{GrB_OUT}$ Mask GrB_MAS Mask GrB_MAS A GrB_INPO Return Values GrB_SUCCESS	C (INOUT) An exist that may be accur the matrix holds t Mask (IN) An optional " stored into the ou matrix C. If the G of the Mask matrix in Table 2.2. If th dimensions of C), 4 accum (IN) An optional entries. If assign specified. A (IN) The GraphBI desc (IN) An optional o should be specified Param Field C GrB_OUTP Mask GrB_MASK Mask GrB_MASK GrB_INPO Return Values GrB_SUCCESS In blo men Eit of t GrB_PANIC Uni	C (INOUT) An existing GraphBLAS mathat may be accumulated with the rest the matrix holds the results of the operative of the output matrix C. The matrix C. If the output matrix C. The matrix C. If the GrB_STRUCTURE dess of the Mask matrix must be of type boin Table 2.2. If the default mask is de dimensions of C), GrB_NULL should be accum (IN) An optional binary operator use entries. If assignment rather than acc specified. A (IN) The GraphBLAS matrix on which desc (IN) An optional operation descriptor. should be specified. Non-default field/ <u>Param Field Value</u> C GrB_OUTP GrB_REPLACE Mask GrB_MASK GrB_STRUCTURE Mask GrB_MASK GrB_STRUCTURE Mask GrB_INPO GrB_TRAN Return Values GrB_SUCCESS In blocking mode, the blocking mode, this immensions and domains i Either way, output matrix of the sequence. GrB_PANIC Unknown internal error GrB_INVALID_OBJECT This is returned in any of GraphBLAS objects (in by a previous execution by	

 $\mathsf{GrB_OUT_OF_MEMORY}$ Not enough memory available for the operation.

messages generated by the implementation.

5491	$GrB_{U}UNINITIALIZED_{U}OBJECT$	One or more of the GraphBLAS objects has not been initialized by
5492		a call to new (or Matrix_dup for matrix parameters).
5493	GrB_DIMENSION_MISMATCH	mask,C and/or A dimensions are incompatible.
5494	GrB_DOMAIN_MISMATCH	The domains of the various matrices are incompatible with the cor-
5495		responding domains of the accumulation operator, or the mask's do-
5496		main is not compatible with bool (in the case where $desc[GrB_MASK].GrB_STRUCT$
5497		is not set).

GrB_transpose computes the result of performing a transpose of the input matrix: $C = A^T$; or, if an optional binary accumulation operator (\odot) is provided, $C = C \odot A^T$. We note that the input matrix A can itself be optionally transposed before the operation, which would cause either an assignment from A to C or an accumulation of A into C.

⁵⁵⁰³ Logically, this operation occurs in three steps:

Setup The internal matrix and mask used in the computation are formed and their domains and dimensions are tested for compatibility.

- ⁵⁵⁰⁶ **Compute** The indicated computations are carried out.
- 5507 **Output** The result is written into the output matrix, possibly under control of a mask.

⁵⁵⁰⁸ Up to three matrix arguments are used in this GrB_transpose operation:

5509 1.
$$C = \langle \mathbf{D}(C), \mathbf{nrows}(C), \mathbf{ncols}(C), \mathbf{L}(C) = \{(i, j, C_{ij})\} \rangle$$

5510 2. $Mask = \langle \mathbf{D}(Mask), \mathbf{nrows}(Mask), \mathbf{ncols}(Mask), \mathbf{L}(Mask) = \{(i, j, M_{ij})\} \rangle$ (optional)

5511 3. $A = \langle \mathbf{D}(A), \mathbf{nrows}(A), \mathbf{ncols}(A), \mathbf{L}(A) = \{(i, j, A_{ij})\} \rangle$

The argument matrices and accumulation operator (if provided) are tested for domain compatibility as follows:

- If Mask is not GrB_NULL, and desc[GrB_MASK].GrB_STRUCTURE is not set, then D(Mask)
 must be from one of the pre-defined types of Table 2.2.
- 5516 2. D(C) must be compatible with D(A) of the input matrix.
- 3. If accum is not GrB_NULL, then D(C) must be compatible with $D_{in_1}(accum)$ and $D_{out}(accum)$ of the accumulation operator and D(A) of the input matrix must be compatible with $D_{in_2}(accum)$ of the accumulation operator.

Two domains are compatible with each other if values from one domain can be cast to values in the other domain as per the rules of the C language. In particular, domains from Table 2.2 are all compatible with each other. A domain from a user-defined type is only compatible with itself. If any compatibility rule above is violated, execution of GrB_transpose ends and the domain mismatch error listed above is returned.

From the argument matrices, the internal matrices and mask used in the computation are formed $(\leftarrow \text{ denotes copy})$:

5527 1. Matrix $\widetilde{\mathbf{C}} \leftarrow \mathsf{C}$.

5528 2. Two-dimensional mask, $\widetilde{\mathbf{M}}$, is computed from argument Mask as follows:

5529 $j < \mathbf{ncols}(\mathsf{C}) \} \rangle.$ 5530 (b) If Mask \neq GrB_NULL, 5531 i. If desc[GrB_MASK].GrB_STRUCTURE is set, then $\widetilde{\mathbf{M}} = \langle \mathbf{nrows}(\mathsf{Mask}), \mathbf{ncols}(\mathsf{Mask}), \{(i, j) : \}$ 5532 $(i, j) \in \mathbf{ind}(\mathsf{Mask})\}\rangle,\$ 5533 ii. Otherwise, $\mathbf{M} = \langle \mathbf{nrows}(\mathsf{Mask}), \mathbf{ncols}(\mathsf{Mask}), \rangle$ 5534 $\{(i, j) : (i, j) \in \mathbf{ind}(\mathsf{Mask}) \land (\mathsf{bool})\mathsf{Mask}(i, j) = \mathsf{true}\}$. 5535 (c) If desc[GrB_MASK].GrB_COMP is set, then $\widetilde{\mathbf{M}} \leftarrow \neg \widetilde{\mathbf{M}}$. 5536 3. Matrix $\widetilde{\mathbf{A}} \leftarrow \mathsf{desc}[\mathsf{GrB}_\mathsf{INP0}].\mathsf{GrB}_\mathsf{TRAN} ? \mathsf{A}^T : \mathsf{A}$. 5537

The internal matrices and masks are checked for dimension compatibility. The following conditions must hold:

5540 1. $\operatorname{nrows}(\widetilde{\mathbf{C}}) = \operatorname{nrows}(\widetilde{\mathbf{M}}).$

5541 2. $\mathbf{ncols}(\widetilde{\mathbf{C}}) = \mathbf{ncols}(\widetilde{\mathbf{M}}).$

- 5542 3. $\operatorname{\mathbf{nrows}}(\widetilde{\mathbf{C}}) = \operatorname{\mathbf{ncols}}(\widetilde{\mathbf{A}}).$
- 5543 4. $\operatorname{\mathbf{ncols}}(\widetilde{\mathbf{C}}) = \operatorname{\mathbf{nrows}}(\widetilde{\mathbf{A}}).$

If any compatibility rule above is violated, execution of $GrB_transpose$ ends and the dimension mismatch error listed above is returned.

 $_{5546}$ From this point forward, in GrB_NONBLOCKING mode, the method can optionally exit with $_{5547}$ GrB_SUCCESS return code and defer any computation and/or execution error codes.

We are now ready to carry out the matrix transposition and any additional associated operations. We describe this in terms of two intermediate matrices:

- $\widetilde{\mathbf{T}}$: The matrix holding the transpose of $\widetilde{\mathbf{A}}$.
- $\widetilde{\mathbf{Z}}$: The matrix holding the result after application of the (optional) accumulation operator.

The intermediate matrix 5552

5553

$$\widetilde{\mathbf{T}} = \langle \mathbf{D}(\mathsf{A}), \mathbf{ncols}(\widetilde{\mathbf{A}}), \mathbf{nrows}(\widetilde{\mathbf{A}}), \mathbf{L}(\widetilde{\mathbf{T}}) = \{(j, i, A_{ij}) \forall (i, j) \in \mathbf{ind}(\widetilde{\mathbf{A}}) \rangle$$

is created. 5554

The intermediate matrix $\tilde{\mathbf{Z}}$ is created as follows, using what is called a *standard matrix accumulate*: 5555

• If accum =
$$GrB_NULL$$
, then $\mathbf{Z} = \mathbf{T}$.

• If accum is a binary operator, then $\widetilde{\mathbf{Z}}$ is defined as 5557

5558

$$\widetilde{\mathbf{Z}} = \langle \mathbf{D}_{out}(\mathsf{accum}), \mathbf{nrows}(\widetilde{\mathbf{C}}), \mathbf{ncols}(\widetilde{\mathbf{C}}), \{(i, j, Z_{ij}) \forall (i, j) \in \mathbf{ind}(\widetilde{\mathbf{C}}) \cup \mathbf{ind}(\widetilde{\mathbf{T}}) \} \rangle.$$

The values of the elements of $\tilde{\mathbf{Z}}$ are computed based on the relationships between the sets of 5559 indices in $\tilde{\mathbf{C}}$ and $\tilde{\mathbf{T}}$. 5560

- $Z_{ij} = \widetilde{\mathbf{C}}(i,j) \odot \widetilde{\mathbf{T}}(i,j), \text{ if } (i,j) \in (\mathbf{ind}(\widetilde{\mathbf{T}}) \cap \mathbf{ind}(\widetilde{\mathbf{C}})),$ 5561 5562 $Z_{ii} = \widetilde{\mathbf{C}}(i,j), \text{ if } (i,j) \in (\mathbf{ind}(\widetilde{\mathbf{C}}) - (\mathbf{ind}(\widetilde{\mathbf{T}}) \cap \mathbf{ind}(\widetilde{\mathbf{C}}))),$ 5563 5564 $Z_{ii} = \widetilde{\mathbf{T}}(i, j), \text{ if } (i, j) \in (\mathbf{ind}(\widetilde{\mathbf{T}}) - (\mathbf{ind}(\widetilde{\mathbf{T}}) \cap \mathbf{ind}(\widetilde{\mathbf{C}}))),$
- 5565

where $\odot = \bigcirc (\operatorname{accum})$, and the difference operator refers to set difference. 5566

Finally, the set of output values that make up matrix $\tilde{\mathbf{Z}}$ are written into the final result matrix C, 5567 using what is called a *standard matrix mask and replace*. This is carried out under control of the 5568 mask which acts as a "write mask". 5560

• If desc[GrB_OUTP].GrB_REPLACE is set, then any values in C on input to this operation are 5570 deleted and the content of the new output matrix, C, is defined as, 5571

$$\mathbf{L}(\mathsf{C}) = \{(i, j, Z_{ij}) : (i, j) \in (\mathbf{ind}(\mathbf{Z}) \cap \mathbf{ind}(\mathbf{M}))\}.$$

• If desc[GrB_OUTP].GrB_REPLACE is not set, the elements of \mathbf{Z} indicated by the mask are 5573 copied into the result matrix, C, and elements of C that fall outside the set indicated by the 5574 mask are unchanged: 5575

5572

$$\mathbf{L}(\mathsf{C}) = \{(i, j, C_{ij}) : (i, j) \in (\mathbf{ind}(\mathsf{C}) \cap \mathbf{ind}(\neg \widetilde{\mathbf{M}}))\} \cup \{(i, j, Z_{ij}) : (i, j) \in (\mathbf{ind}(\widetilde{\mathbf{Z}}) \cap \mathbf{ind}(\widetilde{\mathbf{M}}))\}.$$

In GrB_BLOCKING mode, the method exits with return value GrB_SUCCESS and the new content 5577 of matrix C is as defined above and fully computed. In GrB_NONBLOCKING mode, the method 5578 exits with return value $GrB_SUCCESS$ and the new content of matrix C is as defined above but 5579 may not be fully computed. However, it can be used in the next GraphBLAS method call in a 5580 sequence. 5581

kronecker: Kronecker product of two matrices 4.3.115582

Computes the Kronecker product of two matrices. The result is a matrix. 5583

5584 C Syntax

5585	GrB_Info	GrB_kronecker(GrB_Ma	atrix	C,
5586		const	GrB_Matrix	Mask,
5587		const	GrB_BinaryOp	accum,
5588		const	GrB_Semiring	op,
5589		const	GrB_Matrix	A,
5590		const	GrB_Matrix	Β,
5591		const	GrB_Descriptor	desc);
5592				
5593	GrB_Info	GrB_kronecker(GrB_Ma	atrix	C,
5594		const	GrB_Matrix	Mask,
5595		const	GrB_BinaryOp	accum,
5596		const	GrB_Monoid	op,
5597		const	GrB_Matrix	A,
5598		const	GrB_Matrix	Β,
5599		const	GrB_Descriptor	desc);
5600				
5601	GrB_Info	GrB_kronecker(GrB_Ma	atrix	C,
5602		const	GrB_Matrix	Mask,
5603		const	GrB_BinaryOp	accum,
5604		const	GrB_BinaryOp	op,
5605		const	GrB_Matrix	A,
5606		const	GrB_Matrix	Β,
5607		const	GrB_Descriptor	desc);

5608 Parameters

5609	С	(INOUT) An existing GraphBLAS matrix. On input, the matrix provides values
5610		that may be accumulated with the result of the Kronecker product. On output,
5611		the matrix holds the results of the operation.
5612	Mask	(IN) An optional "write" mask that controls which results from this operation are
5613		stored into the output matrix $C.$ The mask dimensions must match those of the
5614		matrix C. If the $GrB_STRUCTURE$ descriptor is <i>not</i> set for the mask, the domain
5615		of the Mask matrix must be of type bool or any of the predefined "built-in" types
5616		in Table 2.2. If the default mask is desired (i.e., a mask that is all true with the
5617		dimensions of C), GrB_NULL should be specified.
5618	accum	$\left(IN\right)$ An optional binary operator used for accumulating entries into existing C
5619		entries. If assignment rather than accumulation is desired, GrB_NULL should be
5620		specified.
5621	ор	(IN) The semiring, monoid, or binary operator used in the element-wise "product"
5622		operation. Depending on which type is passed, the following defines the binary
5623		operator, $F_b = \langle \mathbf{D}_{out}(op), \mathbf{D}_{in_1}(op), \mathbf{D}_{in_2}(op), \otimes \rangle$, used:

5624		BinaryOp: <i>F</i>	$F_b = \langle \mathbf{D}_{out}(op), \mathbf{D}_{in_1}(\mathbf{op}) \rangle$	$(op), \mathbf{D}_{in_2}(op), \bigcirc (op) \rangle.$	
5625		Monoid: <i>F</i>	$F_b = \langle \mathbf{D}(op), \mathbf{D}(op), \mathbf{D}(op), \bigcirc (op) \rangle$; the identity element is ig-		
5626		n	ored.		
5627		Semiring: F	$F_b = \langle \mathbf{D}_{out}(op), \mathbf{D}_{in_1}(\mathbf{op}) \rangle$	$(op), \mathbf{D}_{in_2}(op), \bigotimes(op)\rangle;$ the additive monoid	
5628		is	s ignored.		
5629	A (IN)	The GraphB	LAS matrix holding	the values for the left-hand matrix in the	
5630	prod	uct.			
5631	B (IN)	The GraphB	LAS matrix holding	the values for the right-hand matrix in the	
5632	prod	luct.			
5633	desc (IN)	An optional o	operation descriptor.	If a <i>default</i> descriptor is desired, GrB_NULL	
5634	shou	ld be specifie	d. Non-default field/	value pairs are listed as follows:	
5635					
	Param	Field	Value	Description	
	С	GrB₋OUTP	GrB_REPLACE	Output matrix ${\sf C}$ is cleared (all elements	
				removed) before the result is stored in it.	
	Mask	GrB_MASK	GrB_STRUCTURE	The write mask is constructed from the	
5636				structure (pattern of stored values) of the	
5050				input $Mask$ matrix. The stored values are	
				not examined.	
	Mask	GrB_MASK	GrB_COMP	Use the complement of Mask.	
	A	GrB₋INP0	GrB_TRAN	Use transpose of A for the operation.	
	В	GrB_INP1	GrB_TRAN	Use transpose of B for the operation.	

Use transpose of ${\sf B}$ for the operation.

Return Values 5637

5638	GrB_SUCCESS	In blocking mode, the operation completed successfully. In non-
5639		blocking mode, this indicates that the compatibility tests on di-
5640		mensions and domains for the input arguments passed successfully.
5641		Either way, output matrix ${\sf C}$ is ready to be used in the next method
5642		of the sequence.
5643	GrB_PANIC	Unknown internal error.
5644	GrB_INVALID_OBJECT	This is returned in any execution mode whenever one of the opaque
5645		GraphBLAS objects (input or output) is in an invalid state caused
5646		by a previous execution error. Call $GrB_error()$ to access any error
5647		messages generated by the implementation.
5648	GrB_OUT_OF_MEMORY	Not enough memory available for the operation.
5649 5650	GrB_UNINITIALIZED_OBJECT	One or more of the GraphBLAS objects has not been initialized by a call to new (or Matrix_dup for matrix parameters).
5651	GrB_DIMENSION_MISMATCH	Mask and/or matrix dimensions are incompatible.

5652	GrB_DOMAIN_MISMATCH	The domains of the various matrices are incompatible with the
5653		corresponding domains of the binary operator (op) or accumulation
5654		operator, or the mask's domain is not compatible with bool (in the
5655		case where $desc[GrB_MASK]$.GrB_STRUCTURE is not set).

⁵⁶⁵⁷ GrB_kronecker computes the Kronecker product $C = A \otimes B$ or, if an optional binary accumulation ⁵⁶⁵⁸ operator (\odot) is provided, $C = C \odot (A \otimes B)$ (where matrices A and B can be optionally transposed). ⁵⁶⁵⁹ The Kronecker product is defined as follows: ⁵⁶⁶⁰

5661

 $\mathsf{C} = \mathsf{A} \ \otimes \ \mathsf{B} = \left[\begin{array}{cccc} A_{0,0} \otimes \mathsf{B} & A_{0,1} \otimes \mathsf{B} & \dots & A_{0,n_A-1} \otimes \mathsf{B} \\ A_{1,0} \otimes \mathsf{B} & A_{1,1} \otimes \mathsf{B} & \dots & A_{1,n_A-1} \otimes \mathsf{B} \\ \vdots & \vdots & \ddots & \vdots \\ A_{m_A-1,0} \otimes \mathsf{B} & A_{m_A-1,1} \otimes \mathsf{B} & \dots & A_{m_A-1,n_A-1} \otimes \mathsf{B} \end{array} \right]$

where $A : \mathbb{S}^{m_A \times n_A}$, $B : \mathbb{S}^{m_B \times n_B}$, and $C : \mathbb{S}^{m_A m_B \times n_A n_B}$. More explicitly, the elements of the Kronecker product are defined as

$$\mathsf{C}(i_A m_B + i_B, j_A n_B + j_B) = A_{i_A, j_A} \otimes B_{i_B, j_B},$$

 $_{5665}$ where \otimes is the multiplicative operator specified by the op parameter.

⁵⁶⁶⁶ Logically, this operation occurs in three steps:

- Setup The internal matrices and mask used in the computation are formed and their domains
 and dimensions are tested for compatibility.
- 5669 **Compute** The indicated computations are carried out.

5670 **Output** The result is written into the output matrix, possibly under control of a mask.

⁵⁶⁷¹ Up to four argument matrices are used in the GrB_kronecker operation:

5672 1.
$$C = \langle D(C), nrows(C), ncols(C), L(C) = \{(i, j, C_{ij})\} \rangle$$

5673 2. $Mask = \langle \mathbf{D}(Mask), \mathbf{nrows}(Mask), \mathbf{ncols}(Mask), \mathbf{L}(Mask) = \{(i, j, M_{ij})\} \rangle$ (optional)

5674 3. $A = \langle \mathbf{D}(\mathsf{A}), \mathbf{nrows}(\mathsf{A}), \mathbf{ncols}(\mathsf{A}), \mathbf{L}(\mathsf{A}) = \{(i, j, A_{ij})\} \rangle$

5675 4.
$$\mathsf{B} = \langle \mathbf{D}(\mathsf{B}), \mathbf{nrows}(\mathsf{B}), \mathbf{ncols}(\mathsf{B}), \mathbf{L}(\mathsf{B}) = \{(i, j, B_{ij})\} \rangle$$

The argument matrices, the "product" operator (op), and the accumulation operator (if provided) are tested for domain compatibility as follows:

If Mask is not GrB_NULL, and desc[GrB_MASK].GrB_STRUCTURE is not set, then D(Mask)
 must be from one of the pre-defined types of Table 2.2.

- 5680 2. $\mathbf{D}(\mathsf{A})$ must be compatible with $\mathbf{D}_{in_1}(\mathsf{op})$.
- 5681 3. $\mathbf{D}(\mathsf{B})$ must be compatible with $\mathbf{D}_{in_2}(\mathsf{op})$.

5682 4. $\mathbf{D}(\mathsf{C})$ must be compatible with $\mathbf{D}_{out}(\mathsf{op})$.

5. If accum is not GrB_NULL, then D(C) must be compatible with $D_{in_1}(accum)$ and $D_{out}(accum)$ of the accumulation operator and $D_{out}(op)$ of op must be compatible with $D_{in_2}(accum)$ of the accumulation operator.

Two domains are compatible with each other if values from one domain can be cast to values in the other domain as per the rules of the C language. In particular, domains from Table 2.2 are all compatible with each other. A domain from a user-defined type is only compatible with itself. If any compatibility rule above is violated, execution of GrB_kronecker ends and the domain mismatch error listed above is returned.

From the argument matrices, the internal matrices and mask used in the computation are formed $(\leftarrow \text{ denotes copy})$:

- 5693 1. Matrix $\widetilde{\mathbf{C}} \leftarrow \mathsf{C}$.
- 5694 2. Two-dimensional mask, $\widetilde{\mathbf{M}}$, is computed from argument Mask as follows:
- 5695 $j < \mathbf{ncols}(\mathsf{C}) \} \rangle.$ 5696 (b) If Mask \neq GrB_NULL, 5697 i. If desc[GrB_MASK].GrB_STRUCTURE is set, then $\mathbf{M} = \langle \mathbf{nrows}(\mathsf{Mask}), \mathbf{ncols}(\mathsf{Mask}), \{(i, j) : \}$ 5698 $(i, j) \in \mathbf{ind}(\mathsf{Mask})\}\rangle,\$ 5699 ii. Otherwise, $\mathbf{M} = \langle \mathbf{nrows}(\mathsf{Mask}), \mathbf{ncols}(\mathsf{Mask}), \rangle$ 5700 $\{(i, j) : (i, j) \in \mathbf{ind}(\mathsf{Mask}) \land (\mathsf{bool})\mathsf{Mask}(i, j) = \mathsf{true}\}$. 5701 (c) If desc[GrB_MASK].GrB_COMP is set, then $\widetilde{\mathbf{M}} \leftarrow \neg \widetilde{\mathbf{M}}$. 5702 3. Matrix $\widetilde{\mathbf{A}} \leftarrow \mathsf{desc}[\mathsf{GrB}_\mathsf{INP0}].\mathsf{GrB}_\mathsf{TRAN}$? A^T : A. 5703 4. Matrix $\widetilde{\mathbf{B}} \leftarrow \mathsf{desc}[\mathsf{GrB}_\mathsf{INP1}].\mathsf{GrB}_\mathsf{TRAN} ? \mathsf{B}^T : \mathsf{B}.$ 5704

The internal matrices and masks are checked for dimension compatibility. The following conditions must hold:

57071. $\mathbf{nrows}(\widetilde{\mathbf{C}}) = \mathbf{nrows}(\widetilde{\mathbf{M}}).$ 57082. $\mathbf{ncols}(\widetilde{\mathbf{C}}) = \mathbf{ncols}(\widetilde{\mathbf{M}}).$ 57093. $\mathbf{nrows}(\widetilde{\mathbf{C}}) = \mathbf{nrows}(\widetilde{\mathbf{A}}) \cdot \mathbf{nrows}(\widetilde{\mathbf{B}}).$ 57104. $\mathbf{ncols}(\widetilde{\mathbf{C}}) = \mathbf{ncols}(\widetilde{\mathbf{A}}) \cdot \mathbf{ncols}(\widetilde{\mathbf{B}}).$

⁵⁷¹¹ If any compatibility rule above is violated, execution of GrB_kronecker ends and the dimension ⁵⁷¹² mismatch error listed above is returned.

 $_{5713}$ From this point forward, in GrB_NONBLOCKING mode, the method can optionally exit with $_{5714}$ GrB_SUCCESS return code and defer any computation and/or execution error codes.

⁵⁷¹⁵ We are now ready to carry out the Kronecker product and any additional associated operations. ⁵⁷¹⁶ We describe this in terms of two intermediate matrices:

• $\widetilde{\mathbf{T}}$: The matrix holding the Kronecker product of matrices $\widetilde{\mathbf{A}}$ and $\widetilde{\mathbf{B}}$.

• $\widetilde{\mathbf{Z}}$: The matrix holding the result after application of the (optional) accumulation operator.

The intermediate matrix $\widetilde{\mathbf{T}} = \langle \mathbf{D}_{out}(\mathsf{op}), \mathbf{nrows}(\widetilde{\mathbf{A}}) \times \mathbf{nrows}(\widetilde{\mathbf{B}}), \mathbf{ncols}(\widetilde{\mathbf{A}}) \times \mathbf{ncols}(\widetilde{\mathbf{B}}), \{(i, j, T_{ij}) \text{ where } i = i_A \cdot m_B + i_B, \ j = j_A \cdot n_B + j_B, \ \forall \ (i_A, j_A) = \mathbf{ind}(\widetilde{\mathbf{A}}), \ (i_B, j_B) = \mathbf{ind}(\widetilde{\mathbf{B}}) \rangle$ is created. The value of each of its elements is computed by

$$T_{i_A \cdot m_B + i_B, \ j_A \cdot n_B + j_B} = \mathbf{A}(i_A, j_A) \otimes \mathbf{B}(i_B, j_B)),$$

where \otimes is the multiplicative operator specified by the op parameter.

The intermediate matrix $\widetilde{\mathbf{Z}}$ is created as follows, using what is called a *standard matrix accumulate*:

• If accum = GrB_NULL, then
$$\mathbf{Z} = \mathbf{T}$$

• If accum is a binary operator, then $\widetilde{\mathbf{Z}}$ is defined as

5733

$$\widetilde{\mathbf{Z}} = \langle \mathbf{D}_{out}(\mathsf{accum}), \mathbf{nrows}(\widetilde{\mathbf{C}}), \mathbf{ncols}(\widetilde{\mathbf{C}}), \{(i, j, Z_{ij}) \forall (i, j) \in \mathbf{ind}(\widetilde{\mathbf{C}}) \cup \mathbf{ind}(\widetilde{\mathbf{T}}) \} \rangle$$

The values of the elements of $\widetilde{\mathbf{Z}}$ are computed based on the relationships between the sets of indices in $\widetilde{\mathbf{C}}$ and $\widetilde{\mathbf{T}}$.

- 5730 $Z_{ij} = \widetilde{\mathbf{C}}(i,j) \odot \widetilde{\mathbf{T}}(i,j), \text{ if } (i,j) \in (\mathbf{ind}(\widetilde{\mathbf{T}}) \cap \mathbf{ind}(\widetilde{\mathbf{C}})),$
- $Z_{ij} = \widetilde{\mathbf{C}}(i,j), \text{ if } (i,j) \in (\mathbf{ind}(\widetilde{\mathbf{C}}) (\mathbf{ind}(\widetilde{\mathbf{T}}) \cap \mathbf{ind}(\widetilde{\mathbf{C}}))),$

$$Z_{ij} = \widetilde{\mathbf{T}}(i,j), \text{ if } (i,j) \in (\mathbf{ind}(\widetilde{\mathbf{T}}) - (\mathbf{ind}(\widetilde{\mathbf{T}}) \cap \mathbf{ind}(\widetilde{\mathbf{C}})))$$

where $\odot = \bigcirc(\mathsf{accum})$, and the difference operator refers to set difference.

Finally, the set of output values that make up matrix \mathbf{Z} are written into the final result matrix C, using what is called a *standard matrix mask and replace*. This is carried out under control of the mask which acts as a "write mask".

• If desc[GrB_OUTP].GrB_REPLACE is set, then any values in C on input to this operation are deleted and the content of the new output matrix, C, is defined as,

5741
$$\mathbf{L}(\mathsf{C}) = \{(i, j, Z_{ij}) : (i, j) \in (\mathbf{ind}(\widetilde{\mathbf{Z}}) \cap \mathbf{ind}(\widetilde{\mathbf{M}}))\}$$

• If desc[GrB_OUTP].GrB_REPLACE is not set, the elements of $\widetilde{\mathbf{Z}}$ indicated by the mask are copied into the result matrix, C, and elements of C that fall outside the set indicated by the mask are unchanged:

5745

$$\mathbf{L}(\mathsf{C}) = \{(i, j, C_{ij}) : (i, j) \in (\mathbf{ind}(\mathsf{C}) \cap \mathbf{ind}(\neg \widetilde{\mathbf{M}}))\} \cup \{(i, j, Z_{ij}) : (i, j) \in (\mathbf{ind}(\widetilde{\mathbf{Z}}) \cap \mathbf{ind}(\widetilde{\mathbf{M}}))\}$$

In GrB_BLOCKING mode, the method exits with return value GrB_SUCCESS and the new content of matrix C is as defined above and fully computed. In GrB_NONBLOCKING mode, the method exits with return value GrB_SUCCESS and the new content of matrix C is as defined above but may not be fully computed. However, it can be used in the next GraphBLAS method call in a sequence. S

5751 4.4 Sequence Termination

5752 4.4.1 wait: Wait for pending operations to complete

Waits for a collection of pending operations to complete. Two variants are supported, one that waits on all pending operations and one that waits on pending operations with a particular output object.

5756 4.4.1.1 wait: Waits until all pending operations complete variant

When running in non-blocking mode, this function guarantees that all pending GraphBLAS operations are fully executed. Note that this can be called in blocking mode without an error, but there should be no pending GraphBLAS operations to complete.

5760 C Syntax

5761 GrB_Info GrB_wait();

- 5762 Parameters
- 5763 Return values

5764	GrB_SUCCESS	operation completed successfully.
5765 5766	GrB_INDEX_OUT_OF_BOUNDS	an index out-of-bounds execution error happened during comple- tion of pending operations.
5767 5768	GrB_OUT_OF_MEMORY	and out-of-memory execution error happened during completion of pending operations.
5769	GrB_PANIC	unknown internal error.

⁵⁷⁷¹ Upon successful return, all previously called GraphBLAS methods have fully completed their exe-⁵⁷⁷² cution, and any (transparent or opaque) data structures produced or manipulated by those methods ⁵⁷⁷³ can be safely touched. If an error occured in any pending GraphBLAS operations, GrB_error() can ⁵⁷⁷⁴ be used to retrieve implementation defined error information about the problem encountered.

5775 4.4.1.2 wait: Waits until pending operations on a specific object complete variant

When running in non-blocking mode, this function guarantees that all pending GraphBLAS operations that have a specific GraphBLAS object as output are fully executed. Note that this can be called in blocking mode without an error, but there should be no pending GraphBLAS operations to complete.

5780 C Syntax

5781 GrB_Info GrB_wait(GrB_Object *obj);

5782 Parameters

5783	obj (IN) An existing GraphBLAS object. The object must have been created by an
5784	explicit call to a GraphBLAS constructor. Can be any of the opaque GraphBLAS
5785	objects such as matrix, vector, descriptor, semiring, monoid, binary op, unary op,
5786	or type. On successful return of GrB_wait, all GraphBLAS operations that produce
5787	obj as output have fully completed.

5788 Return values

5789	GrB_SUCCESS	operation completed successfully.
5790 5791	GrB_INDEX_OUT_OF_BOUNDS	an index out-of-bounds execution error happened during comple- tion of pending operations.
5792 5793	GrB_OUT_OF_MEMORY	and out-of-memory execution error happened during completion of pending operations.
5794 5795	GrB_UNINITIALIZED_OBJECT	object has not been initialized by a call to the respective $*_new$ method.
5796	GrB_PANIC	unknown internal error.

5797 Description

⁵⁷⁹⁸ Upon successful return, all previously called GraphBLAS methods that have obj as an OUT or ⁵⁷⁹⁹ INOUT parameter have fully completed their execution, and any (transparent or opaque) data structures produced or manipulated by those methods can be safely touched. If an error occured in any of those GraphBLAS operations, GrB_error() can be used to retrieve implementation defined error information about the problem encountered.

In non-blocking mode, a call to GrB_wait(obj) does not necessarily end the current GraphBLAS sequence. If there are other pending methods in the sequence, producing other objects, there is no guarantee that those methods have completed. Those methods can still produce errors and/or consume execution time.

⁵⁸⁰⁷ 4.4.2 error: Get an error message regarding internal errors

5808 const char *GrB_error();

- 5809 Parameters
- 5810 **Return value**

5811

• A pointer to a null-terminated string (owned by the library).

5812 Description

After a call to any GraphBLAS method, the program can retrieve additional error information (beyond the error code returned by the method) though a call to the function GrB_error(). The function returns a pointer to a null terminated string and the contents of that string are implementation dependent. In particular, a null string (not a NULL pointer) is always a valid error string. The pointer is valid until the next call to any GraphBLAS method by the same thread. GrB_error() is a thread-safe function, in the sense that multiple threads can call it simultaneously and each will get its own error string back, referring to the last GraphBLAS method it called.

Chapter 5 5820

Nonpolymorphic Interface 5821

Each polymorphic GraphBLAS method (those with multiple parameter signatures under the same 5822 name) has a corresponding set of long-name forms that are specific to each parameter signature. 5823

That is show in Tables 5.1 through 5.8. 5824

Polymorphic signature	Nonpolymorphic signature
GrB_Monoid_new(GrB_Monoid*,,bool)	GrB_Monoid_new_BOOL(GrB_Monoid*,GrB_BinaryOp,bool)
$GrB_Monoid_new(GrB_Monoid^*,,int8_t)$	$GrB_Monoid_new_INT8(GrB_Monoid^*,GrB_BinaryOp,int8_t)$
$GrB_Monoid_new(GrB_Monoid^*, \dots, uint8_t)$	$GrB_Monoid_new_UINT8(GrB_Monoid^*,GrB_BinaryOp,uint8_t)$
$GrB_Monoid_new(GrB_Monoid^*,,int16_t)$	GrB_Monoid_new_INT16(GrB_Monoid*,GrB_BinaryOp,int16_t)
$GrB_Monoid_new(GrB_Monoid^*, \dots, uint16_t)$	GrB_Monoid_new_UINT16(GrB_Monoid*,GrB_BinaryOp,uint16_t)
$GrB_Monoid_new(GrB_Monoid^*,,int32_t)$	GrB_Monoid_new_INT32(GrB_Monoid*,GrB_BinaryOp,int32_t)
$GrB_Monoid_new(GrB_Monoid^*, \dots, uint32_t)$	GrB_Monoid_new_UINT32(GrB_Monoid*,GrB_BinaryOp,uint32_t)
$GrB_Monoid_new(GrB_Monoid^*,,int64_t)$	GrB_Monoid_new_INT64(GrB_Monoid*,GrB_BinaryOp,int64_t)
$GrB_Monoid_new(GrB_Monoid^*, \dots, uint64_t)$	$GrB_Monoid_new_UINT64(GrB_Monoid^*,GrB_BinaryOp,uint64_t)$
$GrB_Monoid_new(GrB_Monoid^*, \dots, float)$	GrB_Monoid_new_FP32(GrB_Monoid*,GrB_BinaryOp,float)
GrB_Monoid_new(GrB_Monoid*,,double)	GrB_Monoid_new_FP64(GrB_Monoid*,GrB_BinaryOp,double)
GrB_Monoid_new(GrB_Monoid*,,other)	GrB_Monoid_new_UDT(GrB_Monoid*,GrB_BinaryOp,void*)

Table 5.1: Long-name, nonpolymorphic form of GraphBLAS methods.

Table 5.2: Long-name, nonpolymorphic form of GraphBLAS methods (continued).Polymorphic signatureNonpolymorphic signature

GrB_Vector_build(,const bool*,)	GrB_Vector_build_BOOL(,const bool*,)
GrB_Vector_build(,const int8_t*,)	GrB_Vector_build_INT8(,const int8_t*,)
GrB_Vector_build(,const uint8_t*,)	GrB_Vector_build_UINT8(,const uint8_t*,)
GrB_Vector_build(,const int16_t*,)	GrB_Vector_build_INT16(,const int16_t*,)
GrB_Vector_build(,const uint16_t*,)	GrB_Vector_build_UINT16(,const_uint16_t*,)
GrB_Vector_build(,const int32_t*,)	GrB_Vector_build_INT32(,const int32_t*,)
GrB_Vector_build(const_uint32_t*)	GrB_Vector_build_UINT32(const_uint32_t*)
GrB Vector build(, const int64 t^*)	GrB Vector build INT64(const int64 t*)
GrB Vector build(const uint64 t*)	GrB Vector build UINT64(const uint64 t*)
GrB Vector build (const float*)	GrB Vector build EP32(const float*)
GrB Vector build(const double*)	GrB Vector build EP64(const double*)
GrB Vector build(other)	GrB Vector build UDT(const void*)
GrB Vector setElement(bool)	GrB Vector setElement BOOL (bool)
GrB Vector setElement(int8 t)	GrB Vector setElement INT8(int8 t)
GID_Vector_setElement(, into_t,)	GID_Vector_setElement_INVIO(, into_t,)
$GID_Vector_setElement(, unito_t,)$	$GID_Vector_setElement_OINTO(, unito_t,)$
GIB_Vector_setElement(, intro_t,)	GID_Vector_setElement_INVI0(, Intio_t,) CrB_Vector_setElement_INVI0(, intio_t,)
$GID_Vector_setElement(\dots, ullitIO_t,\dots)$	$GrD_Vector_setElement_OINTIO(, ullito_t,)$
GrD_vector_setElement(, IntS2_t,)	GrD_vector_setElement_INTS2(, IntS2_t,)
$GrB_Vector_setElement(\dots, ullts2_t, \dots)$	$GrD_Vector_setElement_OINTS2(, ullis2_t,)$
$GrB_Vector_setElement(\dots, Into4_t, \dots)$	$GrD_Vector_setElement_INTO4(, Into4_t,)$
$GrB_Vector_setElement(, uinto4_t,)$	$GrB_vector_setElement_UINIO4(, uinto4_t,)$
GrB_vector_setElement(, float,)	GrB_vector_setElement_FP32(, float,)
GrB_Vector_setElement(, double,)	GrB_Vector_setElement_FP64(, double,)
GrB_Vector_setElement(,other,)	GrB_Vector_setElement_UDT(,const void*,)
GrB_Vector_extractElement(bool*,)	GrB_Vector_extractElement_BOOL(bool ⁺ ,)
GrB_Vector_extractElement(int8_t*,)	GrB_Vector_extractElement_INT8(int8_t*,)
GrB_Vector_extractElement(uint8_t*,)	GrB_Vector_extractElement_UINT8(uint8_t*,)
GrB_Vector_extractElement(int16_t*,)	GrB_Vector_extractElement_INT16(int16_t*,)
GrB_Vector_extractElement(uint16_t*,)	GrB_Vector_extractElement_UINT16(uint16_t*,)
GrB_Vector_extractElement(int32_t*,)	GrB_Vector_extractElement_INT32(int32_t*,)
GrB_Vector_extractElement(uint32_t*,)	GrB_Vector_extractElement_UINT32(uint32_t*,)
GrB_Vector_extractElement(int64_t*,)	$GrB_Vector_extractElement_INT64(int64_t^*,)$
GrB_Vector_extractElement(uint64_t*,)	GrB_Vector_extractElement_UINT64(uint64_t*,)
GrB_Vector_extractElement(float*,)	GrB_Vector_extractElement_FP32(float*,)
$GrB_Vector_extractElement(double^*,)$	$GrB_Vector_extractElement_FP64(double*,)$
GrB_Vector_extractElement(<i>other</i> ,)	$GrB_Vector_extractElement_UDT(void*,)$
GrB_Vector_extractTuples(, bool*,)	GrB_Vector_extractTuples_BOOL(, bool*,)
GrB_Vector_extractTuples(, int8_t*,)	GrB_Vector_extractTuples_INT8(, int8_t*,)
GrB_Vector_extractTuples(, uint8_t*,)	GrB_Vector_extractTuples_UINT8(, uint8_t*,)
GrB_Vector_extractTuples(, int16_t*,)	GrB_Vector_extractTuples_INT16(, int16_t*,)
GrB_Vector_extractTuples(, uint16_t*,)	GrB_Vector_extractTuples_UINT16(, uint16_t*,)
GrB_Vector_extractTuples(, int32_t*,)	GrB_Vector_extractTuples_INT32(, int32_t*,)
GrB_Vector_extractTuples(, uint32_t*,)	GrB_Vector_extractTuples_UINT32(, uint32_t*,)
GrB_Vector_extractTuples(, int64_t*)	GrB_Vector_extractTuples_INT64(, int64_t*)
GrB_Vector_extractTuples(, uint64_t*)	GrB_Vector_extractTuples_UINT64(, uint64_t*)
GrB_Vector_extractTuples(float*)	GrB_Vector_extractTuples_FP32(float*)
GrB_Vector_extractTuples(double*)	GrB_Vector_extractTuples_FP64(double*)
GrB Vector extractTuples(other)	GrB Vector extractTuples UDT(void*)
(,oo,,)	

Table 5.3: Long-name, nonpolymorphic form of GraphBLAS methods (continued).Polymorphic signature| Nonpolymorphic signature

GrB_Matrix_build(,const bool*,)	GrB_Matrix_build_BOOL(,const bool*,)
GrB_Matrix_build(,const int8_t*,)	GrB_Matrix_build_INT8(,const int8_t*,)
GrB_Matrix_build(,const_uint8_t*,)	GrB_Matrix_build_UINT8(,const_uint8_t*,)
GrB_Matrix_build(,const int16_t*,)	GrB_Matrix_build_INT16(,const int16_t*,)
$GrB_Matrix_build(\dots,const uint16_t^*,\dots)$	GrB_Matrix_build_UINT16(,const uint16_t*,)
GrB_Matrix_build(,const int32_t*,)	GrB_Matrix_build_INT32(,const int32_t*,)
GrB_Matrix_build(,const_uint32_t*,)	GrB_Matrix_build_UINT32(,const uint32_t*,)
GrB_Matrix_build(,const int64_t*,)	$GrB_Matrix_build_INT64(,const int64_t^*,)$
GrB_Matrix_build(,const_uint64_t*,)	GrB_Matrix_build_UINT64(,const uint64_t*,)
GrB_Matrix_build(,const float*,)	GrB_Matrix_build_FP32(,const float*,)
GrB_Matrix_build(,const double*,)	$GrB_Matrix_build_FP64(\dots,const double^*,\dots)$
GrB_Matrix_build(, <i>other</i> ,)	$GrB_Matrix_build_UDT(\dots,const void^*,\dots)$
GrB_Matrix_setElement(, bool,)	$GrB_Matrix_setElement_BOOL(, bool,)$
$GrB_Matrix_setElement(, int8_t,)$	$GrB_Matrix_setElement_INT8(, int8_t,)$
GrB_Matrix_setElement(, uint8_t,)	GrB_Matrix_setElement_UINT8(, uint8_t,)
GrB_Matrix_setElement(, int16_t,)	GrB_Matrix_setElement_INT16(, int16_t,)
GrB_Matrix_setElement(, uint16_t,)	GrB_Matrix_setElement_UINT16(, uint16_t,)
GrB_Matrix_setElement(, int32_t,)	$GrB_Matrix_setElement_INT32(, int32_t,)$
GrB_Matrix_setElement(, uint32_t,)	GrB_Matrix_setElement_UINT32(, uint32_t,)
GrB_Matrix_setElement(, int64_t,)	GrB_Matrix_setElement_INT64(, int64_t,)
GrB_Matrix_setElement(, uint64_t,)	$GrB_Matrix_setElement_UINT64(, uint64_t,)$
$GrB_Matrix_setElement(, float,)$	$GrB_Matrix_setElement_FP32(, float,)$
$GrB_Matrix_setElement(, double,)$	$GrB_Matrix_setElement_FP64(, double,)$
GrB_Matrix_setElement(, <i>other</i> ,)	$GrB_Matrix_setElement_UDT(\dots,const void*,\dots)$
GrB_Matrix_extractElement(bool*,)	GrB_Matrix_extractElement_BOOL(bool*,)
GrB_Matrix_extractElement(int8_t*,)	GrB_Matrix_extractElement_INT8(int8_t*,)
$GrB_Matrix_extractElement(uint8_t^*,)$	$GrB_Matrix_extractElement_UINT8(uint8_t^*,)$
GrB_Matrix_extractElement(int16_t*,)	$GrB_Matrix_extractElement_INT16(int16_t^*,)$
$GrB_Matrix_extractElement(uint16_t^*,)$	$GrB_Matrix_extractElement_UINT16(uint16_t^*,)$
GrB_Matrix_extractElement(int32_t*,)	GrB_Matrix_extractElement_INT32(int32_t*,)
$GrB_Matrix_extractElement(uint32_t^*,)$	$GrB_Matrix_extractElement_UINT32(uint32_t^*,)$
GrB_Matrix_extractElement(int64_t*,)	$GrB_Matrix_extractElement_INT64(int64_t^*,)$
GrB_Matrix_extractElement(uint64_t*,)	$GrB_Matrix_extractElement_UINT64(uint64_t^*,)$
GrB_Matrix_extractElement(float*,)	GrB_Matrix_extractElement_FP32(float*,)
$GrB_Matrix_extractElement(double^*,)$	$GrB_Matrix_extractElement_FP64(double*,)$
GrB_Matrix_extractElement(<i>other</i> ,)	$GrB_Matrix_extractElement_UDT(void^*,)$
GrB_Matrix_extractTuples(, bool*,)	GrB_Matrix_extractTuples_BOOL(, bool*,)
GrB_Matrix_extractTuples(, int8_t*,)	GrB_Matrix_extractTuples_INT8(, int8_t*,)
GrB_Matrix_extractTuples(, uint8_t*,)	GrB_Matrix_extractTuples_UINT8(, uint8_t*,)
GrB_Matrix_extractTuples(, int16_t*,)	GrB_Matrix_extractTuples_INT16(, int16_t*,)
GrB_Matrix_extractTuples(, uint16_t*,)	GrB_Matrix_extractTuples_UINT16(, uint16_t*,)
GrB_Matrix_extractTuples(, int32_t*,)	GrB_Matrix_extractTuples_INT32(, int32_t*,)
$GrB_Matrix_extractTuples(, uint32_t^*,)$	GrB_Matrix_extractTuples_UINT32(, uint32_t*,)
GrB_Matrix_extractTuples(, int64_t*,)	$GrB_Matrix_extractTuples_INT64(, int64_t^*,)$
$GrB_Matrix_extractTuples(, uint64_t^*,)$	$GrB_Matrix_extractTuples_UINT64(, uint64_t^*,)$
$GrB_Matrix_extractTuples(, float*,)$	GrB_Matrix_extractTuples_FP32(, float*,)
$GrB_Matrix_extractTuples(, double*,)$	GrB_Matrix_extractTuples_FP64(, double*,)
GrB_Matrix_extractTuples(, other,)	GrB_Matrix_extractTuples_UDT(, void*,)

Table 5.4: Long-name, nonpolymorphic form of GraphBLAS methods (continued).

Polymorphic signature	Nonpolymorphic signature		
GrB_free(GrB_Type*)	GrB_Type_free(GrB_Type*)		
$GrB_free(GrB_UnaryOp^*)$	GrB_UnaryOp_free(GrB_UnaryOp*)		
$GrB_free(GrB_BinaryOp^*)$	$GrB_BinaryOp_free(GrB_BinaryOp^*)$		
GrB_free(GrB_Monoid*)	GrB_Monoid_free(GrB_Monoid*)		
GrB_free(GrB_Semiring*)	GrB_Semiring_free(GrB_Semiring*)		
$GrB_free(GrB_Vector^*)$	$GrB_Vector_free(GrB_Vector^*)$		
$GrB_free(GrB_Matrix^*)$	$GrB_Matrix_free(GrB_Matrix^*)$		
GrB_free(GrB_Descriptor*)	GrB_Descriptor_free(GrB_Descriptor*)		
$GrB_wait(GrB_Type^*)$	GrB_Type_wait(GrB_Type*)		
GrB_wait(GrB_UnaryOp*)	GrB_UnaryOp_wait(GrB_UnaryOp*)		
GrB_wait(GrB_BinaryOp*)	GrB_BinaryOp_wait(GrB_BinaryOp*)		
$GrB_wait(GrB_Monoid^*)$	GrB_Monoid_wait(GrB_Monoid*)		
$GrB_wait(GrB_Semiring^*)$	GrB_Semiring_wait(GrB_Semiring*)		
$GrB_wait(GrB_Vector^*)$	$GrB_Vector_wait(GrB_Vector^*)$		
GrB_wait(GrB_Matrix*)	GrB_Matrix_wait(GrB_Matrix*)		
$GrB_wait(GrB_Descriptor^*)$	GrB_Descriptor_wait(GrB_Descriptor*)		

Table 5.5 :	Long-name,	nonpolymorphic	form	of	GraphBLAS	methods	(continued).	
•			ът	1	1 • • •			

Polymorphic signature	Nonpolymorphic signature
GrB_eWiseMult(GrB_Vector, ,GrB_Semiring,)	$GrB_Vector_eWiseMult_Semiring(GrB_Vector,, GrB_Semiring,)$
$GrB_eWiseMult(GrB_Vector,, GrB_Monoid,)$	$GrB_Vector_eWiseMult_Monoid(GrB_Vector,, GrB_Monoid,)$
$GrB_eWiseMult(GrB_Vector,, GrB_BinaryOp,)$	GrB_Vector_eWiseMult_BinaryOp(GrB_Vector, ,GrB_BinaryOp,)
GrB_eWiseMult(GrB_Matrix,,GrB_Semiring,)	GrB_Matrix_eWiseMult_Semiring(GrB_Matrix,, GrB_Semiring,)
GrB_eWiseMult(GrB_Matrix,,GrB_Monoid,)	GrB_Matrix_eWiseMult_Monoid(GrB_Matrix,,GrB_Monoid,)
GrB_eWiseMult(GrB_Matrix,,GrB_BinaryOp,)	GrB_Matrix_eWiseMult_BinaryOp(GrB_Matrix,,GrB_BinaryOp,)
GrB_eWiseAdd(GrB_Vector,,GrB_Semiring,)	GrB_Vector_eWiseAdd_Semiring(GrB_Vector,,GrB_Semiring,)
$GrB_eWiseAdd(GrB_Vector, \dots, GrB_Monoid, \dots)$	GrB_Vector_eWiseAdd_Monoid(GrB_Vector, , GrB_Monoid,)
$GrB_eWiseAdd(GrB_Vector, \ldots, GrB_BinaryOp, \ldots)$	GrB_Vector_eWiseAdd_BinaryOp(GrB_Vector, ,GrB_BinaryOp,)
$GrB_eWiseAdd(GrB_Matrix, \dots, GrB_Semiring, \dots)$	GrB_Matrix_eWiseAdd_Semiring(GrB_Matrix,,GrB_Semiring,)
$GrB_eWiseAdd(GrB_Matrix, \dots, GrB_Monoid, \dots)$	$GrB_Matrix_eWiseAdd_Monoid(GrB_Matrix,, GrB_Monoid,)$
$GrB_eWiseAdd(GrB_Matrix, \dots, GrB_BinaryOp, \dots)$	GrB_Matrix_eWiseAdd_BinaryOp(GrB_Matrix, ,GrB_BinaryOp,)
GrB_extract(GrB_Vector,,GrB_Vector,)	GrB_Vector_extract(GrB_Vector, , GrB_Vector,)
$GrB_extract(GrB_Matrix, \dots, GrB_Matrix, \dots)$	$GrB_Matrix_extract(GrB_Matrix,, GrB_Matrix,)$
$GrB_extract(GrB_Vector, \dots, GrB_Matrix, \dots)$	GrB_Col_extract(GrB_Vector, ,GrB_Matrix,)
$GrB_assign(GrB_Vector,, GrB_Vector,)$	GrB_Vector_assign(GrB_Vector, , GrB_Vector,)
$GrB_assign(GrB_Matrix,, GrB_Matrix,)$	$GrB_Matrix_assign(GrB_Matrix,, GrB_Matrix,)$
GrB_assign(GrB_Matrix,,GrB_Vector,const GrB_Index*,)	GrB_Col_assign(GrB_Matrix,,GrB_Vector,const GrB_Index*,)
$GrB_assign(GrB_Matrix,, GrB_Vector, GrB_Index,)$	$GrB_Row_assign(GrB_Matrix,,GrB_Vector,GrB_Index,)$
GrB_assign(GrB_Vector,, bool,)	GrB_Vector_assign_BOOL(GrB_Vector,, bool,)
$GrB_assign(GrB_Vector,, int8_t,)$	GrB_Vector_assign_INT8(GrB_Vector, , int8_t,)
GrB_assign(GrB_Vector,, uint8_t,)	GrB_Vector_assign_UINT8(GrB_Vector, , uint8_t,)
GrB_assign(GrB_Vector, , int16_t,)	GrB_Vector_assign_INT16(GrB_Vector, , int16_t,)
GrB_assign(GrB_Vector,, uint16_t,)	GrB_Vector_assign_UINT16(GrB_Vector,, uint16_t,)
GrB_assign(GrB_Vector,, int32_t,)	GrB_Vector_assign_INT32(GrB_Vector, , int32_t,)
GrB_assign(GrB_Vector,, uint32_t,)	GrB_Vector_assign_UINT32(GrB_Vector,, uint32_t,)
GrB_assign(GrB_Vector, , int64_t,)	GrB_Vector_assign_INT64(GrB_Vector, , int64_t,)
GrB_assign(GrB_Vector,, uint64_t,)	GrB_Vector_assign_UINT64(GrB_Vector, , uint64_t,)
GrB_assign(GrB_Vector, , float,)	GrB_Vector_assign_FP32(GrB_Vector, , float,)
GrB_assign(GrB_Vector, , double,)	GrB_Vector_assign_FP64(GrB_Vector, , double,)
GrB_assign(GrB_Vector,, <i>other</i> ,)	GrB_Vector_assign_UDT(GrB_Vector, ,const void*,)
GrB_assign(GrB_Matrix,, bool,)	GrB_Matrix_assign_BOOL(GrB_Matrix,, bool,)
GrB_assign(GrB_Matrix,, int8_t,)	GrB_Matrix_assign_INT8(GrB_Matrix,, int8_t,)
GrB_assign(GrB_Matrix,, uint8_t,)	GrB_Matrix_assign_UINT8(GrB_Matrix,, uint8_t,)
GrB_assign(GrB_Matrix,, int16_t,)	GrB_Matrix_assign_INT16(GrB_Matrix,, int16_t,)
GrB_assign(GrB_Matrix,, uint16_t,)	GrB_Matrix_assign_UINT16(GrB_Matrix,, uint16_t,)
GrB_assign(GrB_Matrix,, int32_t,)	GrB_Matrix_assign_INT32(GrB_Matrix,, int32_t,)
GrB_assign(GrB_Matrix,, uint32_t,)	GrB_Matrix_assign_UINT32(GrB_Matrix,, uint32_t,)
GrB_assign(GrB_Matrix,, int64_t,)	$GrB_Matrix_assign_INT64(GrB_Matrix,, int64_t,)$
GrB_assign(GrB_Matrix,, uint64_t,)	GrB_Matrix_assign_UINT64(GrB_Matrix,, uint64_t,)
$GrB_assign(GrB_Matrix,, float,)$	GrB_Matrix_assign_FP32(GrB_Matrix,, float,)
$GrB_assign(GrB_Matrix,, double,)$	$GrB_Matrix_assign_FP64(GrB_Matrix,, double,)$
$GrB_assign(GrB_Matrix,, other,)$	GrB_Matrix_assign_UDT(GrB_Matrix,,const void*,)
GrB_apply(GrB_Vector,,GrB_UnaryOp,GrB_Vector,)	GrB_Vector_apply(GrB_Vector,,GrB_UnaryOp,GrB_Vector,)
$GrB_apply(GrB_Matrix,, GrB_UnaryOp, GrB_Matrix,)$	$\label{eq:GrB_Matrix_apply} GrB_Matrix, \ldots, GrB_UnaryOp, GrB_Matrix, \ldots)$

	Table 5.6: Long-name, nonpolymorphic form of GraphBLAS methods (continued).				
	Polymorphic signature	Nonpolymorphic signature			
	GrB_apply(GrB_Vector, , GrB_BinaryOp, bool, GrB_Vector,)	GrB_Vector_apply_BinaryOp1st_BOOL(GrB_Vector, ,GrB_BinaryOp,bool,GrB_Vector,)			
	$GrB_apply(GrB_Vector,, GrB_BinaryOp, int8_t, GrB_Vector,)$	$\label{eq:GrB_Vector_apply_BinaryOp1st_INT8} (GrB_Vector, \ldots, GrB_BinaryOp, int8_t, GrB_Vector, \ldots)$			
	$GrB_apply(GrB_Vector,, GrB_BinaryOp, uint8_t, GrB_Vector,)$	$eq:GrB_Vector_apply_BinaryOp1st_UINT8(GrB_Vector, \ldots, GrB_BinaryOp, uint8_t, GrB_Vector, \ldots)$			
	$GrB_apply(GrB_Vector,, GrB_BinaryOp, int16_t, GrB_Vector,)$	$eq:GrB_Vector_apply_BinaryOp1st_INT16(GrB_Vector, \ldots, GrB_BinaryOp, int16_t, GrB_Vector, \ldots)$			
	$GrB_apply(GrB_Vector,, GrB_BinaryOp, uint16_t, GrB_Vector,)$	$\label{eq:GrB_Vector_apply_BinaryOp1st_UINT16} (GrB_Vector, \ldots, GrB_BinaryOp, uint16_t, GrB_Vector, \ldots)$			
	$GrB_apply(GrB_Vector,, GrB_BinaryOp, int 32_t, GrB_Vector,)$	$eq:GrB_Vector_apply_BinaryOp1st_INT32(GrB_Vector, \ldots, GrB_BinaryOp, int 32_t, GrB_Vector, \ldots)$			
	$GrB_apply(GrB_Vector,, GrB_BinaryOp, uint32_t, GrB_Vector,)$	$\label{eq:GrB_Vector_apply_BinaryOp1st_UINT32} (GrB_Vector, \ldots, GrB_BinaryOp, uint32_t, GrB_Vector, \ldots)$			
	$GrB_apply(GrB_Vector,, GrB_BinaryOp, int64_t, GrB_Vector,)$	$\label{eq:GrB_Vector_apply_BinaryOp1st_INT64} (GrB_Vector, \ldots, GrB_BinaryOp, int64_t, GrB_Vector, \ldots)$			
	$GrB_apply(GrB_Vector,, GrB_BinaryOp, uint64_t, GrB_Vector,)$	$\label{eq:GrB_Vector_apply_BinaryOp1st_UINT64} (GrB_Vector, \ldots, GrB_BinaryOp, uint64_t, GrB_Vector, \ldots)$			
	$GrB_apply(GrB_Vector, \ldots, GrB_BinaryOp, float, GrB_Vector, \ldots)$	$\label{eq:GrB_Vector_apply_BinaryOp1st_FP32} (GrB_Vector, \ldots, GrB_BinaryOp, float, GrB_Vector, \ldots)$			
	$GrB_apply(GrB_Vector, \dots, GrB_BinaryOp, double, GrB_Vector, \dots)$	$\label{eq:GrB_Vector_apply_BinaryOp1st_FP64} (GrB_Vector, \ldots, GrB_BinaryOp, double, GrB_Vector, \ldots)$			
	GrB_apply(GrB_Vector,,GrB_BinaryOp, <i>other</i> ,GrB_Vector,)	$eq:GrB_Vector_apply_BinaryOp1st_UDT(GrB_Vector, \ldots, GrB_BinaryOp, const\ void*, GrB_Vector, \ldots)$			
	$GrB_apply(GrB_Vector, \dots, GrB_BinaryOp, GrB_Vector, bool, \dots)$	$GrB_Vector_apply_BinaryOp2nd_BOOL(GrB_Vector,\ldots,GrB_BinaryOp,GrB_Vector,bool,\ldots)$			
	$GrB_apply(GrB_Vector,, GrB_BinaryOp, GrB_Vector, int8_t,)$	$eq:GrB_Vector_apply_BinaryOp2nd_INT8(GrB_Vector, \ldots, GrB_BinaryOp, GrB_Vector, int8_t, \ldots)$			
	$GrB_apply(GrB_Vector,, GrB_BinaryOp, GrB_Vector, uint8_t,)$	$GrB_Vector_apply_BinaryOp2nd_UINT8(GrB_Vector,, GrB_BinaryOp, GrB_Vector, uint8_t,)$			
	GrB_apply(GrB_Vector, ,GrB_BinaryOp,GrB_Vector,int16_t,)	$eq:GrB_Vector_apply_BinaryOp2nd_INT16(GrB_Vector, \ldots, GrB_BinaryOp, GrB_Vector, int16_t, \ldots)$			
	$GrB_apply(GrB_Vector,, GrB_BinaryOp, GrB_Vector, uint16_t,)$	$eq:GrB_Vector_apply_BinaryOp2nd_UINT16(GrB_Vector, \ldots, GrB_BinaryOp, GrB_Vector, uint16_t, \ldots)$			
\mathbf{N}	$GrB_apply(GrB_Vector,, GrB_BinaryOp, GrB_Vector, int 32_t,)$	$eq:GrB_Vector_apply_BinaryOp2nd_INT32(GrB_Vector, \ldots, GrB_BinaryOp, GrB_Vector, int 32_t, \ldots)$			
14	$GrB_apply(GrB_Vector,, GrB_BinaryOp, GrB_Vector, uint32_t,)$	$eq:GrB_Vector_apply_BinaryOp2nd_UINT32(GrB_Vector, \ldots, GrB_BinaryOp, GrB_Vector, uint32_t, \ldots)$			
	GrB_apply(GrB_Vector, ,GrB_BinaryOp,GrB_Vector,int64_t,)	$eq:GrB_Vector_apply_BinaryOp2nd_INT64(GrB_Vector, \ldots, GrB_BinaryOp, GrB_Vector, int64_t, \ldots)$			
	$GrB_apply(GrB_Vector,, GrB_BinaryOp, GrB_Vector, uint64_t,)$	$eq:GrB_Vector_apply_BinaryOp2nd_UINT64(GrB_Vector,\ldots,GrB_BinaryOp,GrB_Vector,uint64_t,\ldots)$			
	$GrB_apply(GrB_Vector,, GrB_BinaryOp, GrB_Vector, float,)$	$eq:GrB_Vector_apply_BinaryOp2nd_FP32(GrB_Vector, \ldots, GrB_BinaryOp, GrB_Vector, float, \ldots)$			
	$GrB_apply(GrB_Vector,, GrB_BinaryOp, GrB_Vector, double,)$	$eq:Grb_Vector_apply_BinaryOp2nd_FP64(Grb_Vector, \ldots, Grb_BinaryOp, Grb_Vector, double, \ldots)$			
	GrB_apply(GrB_Vector, ,GrB_BinaryOp,GrB_Vector, <i>other</i> ,)	GrB_Vector_apply_BinaryOp2nd_UDT(GrB_Vector,,GrB_BinaryOp,GrB_Vector,const void*,)			

Table 5.6: Long-name,	nonpolymorphic	form of GraphBLAS	methods (continued)
0 /	1 1/ 1	1	· · · · · · · · · · · · · · · · · · ·

Polymorphic signature	Nonpolymorphic signature
GrB_apply(GrB_Matrix,,GrB_BinaryOp,bool,GrB_Matrix,)	GrB_Matrix_apply_BinaryOp1st_BOOL(GrB_Matrix, ,GrB_BinaryOp,bool,GrB_Matrix,)
GrB_apply(GrB_Matrix,,GrB_BinaryOp,int8_t,GrB_Matrix,)	GrB_Matrix_apply_BinaryOp1st_INT8(GrB_Matrix, ,GrB_BinaryOp, int8_t, GrB_Matrix,)
$GrB_apply(GrB_Matrix,, GrB_BinaryOp, uint8_t, GrB_Matrix,)$	GrB_Matrix_apply_BinaryOp1st_UINT8(GrB_Matrix,,GrB_BinaryOp,uint8_t,GrB_Matrix,)
GrB_apply(GrB_Matrix,,GrB_BinaryOp,int16_t,GrB_Matrix,)	GrB_Matrix_apply_BinaryOp1st_INT16(GrB_Matrix, ,GrB_BinaryOp, int16_t,GrB_Matrix,)
$GrB_apply(GrB_Matrix,, GrB_BinaryOp, uint16_t, GrB_Matrix,)$	GrB_Matrix_apply_BinaryOp1st_UINT16(GrB_Matrix,,GrB_BinaryOp,uint16_t,GrB_Matrix,)
GrB_apply(GrB_Matrix,,GrB_BinaryOp,int32_t,GrB_Matrix,)	GrB_Matrix_apply_BinaryOp1st_INT32(GrB_Matrix, ,GrB_BinaryOp, int32_t,GrB_Matrix,)
$GrB_apply(GrB_Matrix,, GrB_BinaryOp, uint32_t, GrB_Matrix,)$	GrB_Matrix_apply_BinaryOp1st_UINT32(GrB_Matrix,,GrB_BinaryOp,uint32_t,GrB_Matrix,)
GrB_apply(GrB_Matrix,,GrB_BinaryOp,int64_t,GrB_Matrix,)	$\label{eq:GrB_Matrix_apply_BinaryOp1st_INT64} (GrB_Matrix, \ldots, GrB_BinaryOp, int64_t, GrB_Matrix, \ldots)$
$GrB_apply(GrB_Matrix,, GrB_BinaryOp, uint64_t, GrB_Matrix,)$	$\label{eq:GrB_Matrix_apply_BinaryOp1st_UINT64} (GrB_Matrix, \ldots, GrB_BinaryOp, uint64_t, GrB_Matrix, \ldots)$
$GrB_apply(GrB_Matrix, \ldots, GrB_BinaryOp, float, GrB_Matrix, \ldots)$	GrB_Matrix_apply_BinaryOp1st_FP32(GrB_Matrix, ,GrB_BinaryOp,float,GrB_Matrix,)
$GrB_apply(GrB_Matrix, \ldots, GrB_BinaryOp, double, GrB_Matrix, \ldots)$	$\label{eq:GrB_Matrix_apply_BinaryOp1st_FP64} (GrB_Matrix, \ldots, GrB_BinaryOp, double, GrB_Matrix, \ldots)$
GrB_apply(GrB_Matrix,,GrB_BinaryOp, <i>other</i> ,GrB_Matrix,)	GrB_Matrix_apply_BinaryOp1st_UDT(GrB_Matrix,,GrB_BinaryOp,const void*,GrB_Matrix,)
GrB_apply(GrB_Matrix,,GrB_BinaryOp,GrB_Matrix,bool,)	$eq:GrB_Matrix_apply_BinaryOp2nd_BOOL(GrB_Matrix, \ldots, GrB_BinaryOp, GrB_Matrix, bool, \ldots)$
GrB_apply(GrB_Matrix,,GrB_BinaryOp,GrB_Matrix,int8_t,)	$eq:Grb_Matrix_apply_BinaryOp2nd_INT8(Grb_Matrix, \ldots, Grb_BinaryOp, Grb_Matrix, int8_t, \ldots)$
GrB_apply(GrB_Matrix,,GrB_BinaryOp,GrB_Matrix,uint8_t,)	$eq:GrB_Matrix_apply_BinaryOp2nd_UINT8(GrB_Matrix, \ldots, GrB_BinaryOp, GrB_Matrix, uint8_t, \ldots)$
GrB_apply(GrB_Matrix,,GrB_BinaryOp,GrB_Matrix,int16_t,)	$eq:Grb_Matrix_apply_BinaryOp2nd_INT16(Grb_Matrix, \ldots, Grb_BinaryOp, Grb_Matrix, int16_t, \ldots)$
$GrB_apply(GrB_Matrix,, GrB_BinaryOp, GrB_Matrix, uint16_t,)$	$eq:Grb_Matrix_apply_BinaryOp2nd_UINT16(GrB_Matrix, \ldots, GrB_BinaryOp, GrB_Matrix, uint16_t, \ldots)$
GrB_apply(GrB_Matrix,,GrB_BinaryOp,GrB_Matrix,int32_t,)	$eq:Grb_Matrix_apply_BinaryOp2nd_INT32(Grb_Matrix, \ldots, Grb_BinaryOp, Grb_Matrix, int 32_t, \ldots)$
$GrB_apply(GrB_Matrix,, GrB_BinaryOp, GrB_Matrix, uint32_t,)$	$eq:GrB_Matrix_apply_BinaryOp2nd_UINT32(GrB_Matrix, \ldots, GrB_BinaryOp, GrB_Matrix, uint32_t, \ldots)$
GrB_apply(GrB_Matrix,,GrB_BinaryOp,GrB_Matrix,int64_t,)	$eq:Grb_Matrix_apply_BinaryOp2nd_INT64(Grb_Matrix, \ldots, Grb_BinaryOp, Grb_Matrix, int64_t, \ldots)$
$GrB_apply(GrB_Matrix,, GrB_BinaryOp, GrB_Matrix, uint64_t,)$	$\label{eq:GrB_Matrix_apply_BinaryOp2nd_UINT64} (GrB_Matrix, \ldots, GrB_BinaryOp, GrB_Matrix, uint64_t, \ldots)$
GrB_apply(GrB_Matrix,,GrB_BinaryOp,GrB_Matrix,float,)	$\label{eq:GrB_Matrix_apply_BinaryOp2nd_FP32} (GrB_Matrix, \ldots, GrB_BinaryOp, GrB_Matrix, float, \ldots)$
$GrB_apply(GrB_Matrix, \ldots, GrB_BinaryOp, GrB_Matrix, double, \ldots)$	$\label{eq:GrB_Matrix_apply_BinaryOp2nd_FP64} (GrB_Matrix, \ldots, GrB_BinaryOp, GrB_Matrix, double, \ldots)$
GrB_apply(GrB_Matrix,,GrB_BinaryOp,GrB_Matrix, <i>other</i> ,)	GrB_Matrix_apply_BinaryOp2nd_UDT(GrB_Matrix,,GrB_BinaryOp,GrB_Matrix,const void*,)

Table 5.7: Long-name,	nonpolymorphic form	of GraphBLAS	methods	(continued).	
Nonnelymernhie signature					

Polymorphic signature	Nonpolymorphic signature
GrB_reduce(GrB_Vector, , GrB_Monoid,)	GrB_Matrix_reduce_Monoid(GrB_Vector, , GrB_Monoid,)
$GrB_reduce(GrB_Vector, \dots, GrB_BinaryOp, \dots)$	$GrB_Matrix_reduce_BinaryOp(GrB_Vector,, GrB_BinaryOp,)$
GrB_reduce(bool*,,GrB_Vector,)	GrB_Vector_reduce_BOOL(bool*,,GrB_Vector,)
$GrB_reduce(int8_t^*, \dots, GrB_Vector, \dots)$	GrB_Vector_reduce_INT8(int8_t*,,GrB_Vector,)
$GrB_reduce(uint8_t^*, \dots, GrB_Vector, \dots)$	$GrB_Vector_reduce_UINT8(uint8_t^*, \dots, GrB_Vector, \dots)$
$GrB_reduce(int16_t^*, \dots, GrB_Vector, \dots)$	GrB_Vector_reduce_INT16(int16_t*,,GrB_Vector,)
$GrB_reduce(uint16_t^*, \dots, GrB_Vector, \dots)$	GrB_Vector_reduce_UINT16(uint16_t*,,GrB_Vector,)
$GrB_reduce(int32_t^*,,GrB_Vector,)$	$GrB_Vector_reduce_INT32(int32_t^*,,GrB_Vector,)$
$GrB_reduce(uint32_t^*, \dots, GrB_Vector, \dots)$	GrB_Vector_reduce_UINT32(uint32_t*,,GrB_Vector,)
$GrB_reduce(int64_t^*, \dots, GrB_Vector, \dots)$	$GrB_Vector_reduce_INT64(int64_t^*, \dots, GrB_Vector, \dots)$
$GrB_reduce(uint64_t^*, \dots, GrB_Vector, \dots)$	$GrB_Vector_reduce_UINT64(uint64_t^*, \dots, GrB_Vector, \dots)$
$GrB_reduce(float^*, \dots, GrB_Vector, \dots)$	$GrB_Vector_reduce_FP32(float^*,, GrB_Vector,)$
$GrB_reduce(double^*, \dots, GrB_Vector, \dots)$	GrB_Vector_reduce_FP64(double*,,GrB_Vector,)
GrB_reduce(<i>other</i> ,,GrB_Vector,)	GrB_Vector_reduce_UDT(void*,,GrB_Vector,)
GrB_reduce(bool*,,GrB_Matrix,)	GrB_Matrix_reduce_BOOL(bool*,,GrB_Matrix,)
$GrB_reduce(int8_t^*, \dots, GrB_Matrix, \dots)$	GrB_Matrix_reduce_INT8(int8_t*,,GrB_Matrix,)
$GrB_reduce(uint8_t^*, \dots, GrB_Matrix, \dots)$	GrB_Matrix_reduce_UINT8(uint8_t*,,GrB_Matrix,)
$GrB_reduce(int16_t^*, \dots, GrB_Matrix, \dots)$	GrB_Matrix_reduce_INT16(int16_t*,,GrB_Matrix,)
$GrB_reduce(uint16_t^*, \dots, GrB_Matrix, \dots)$	GrB_Matrix_reduce_UINT16(uint16_t*,,GrB_Matrix,)
GrB_reduce(int32_t*,,GrB_Matrix,)	GrB_Matrix_reduce_INT32(int32_t*,,GrB_Matrix,)
$GrB_reduce(uint32_t^*, \dots, GrB_Matrix, \dots)$	GrB_Matrix_reduce_UINT32(uint32_t*,,GrB_Matrix,)
$GrB_reduce(int64_t^*, \dots, GrB_Matrix, \dots)$	GrB_Matrix_reduce_INT64(int64_t*,,GrB_Matrix,)
$GrB_reduce(uint64_t^*, \dots, GrB_Matrix, \dots)$	GrB_Matrix_reduce_UINT64(uint64_t*,,GrB_Matrix,)
GrB_reduce(float*,,GrB_Matrix,)	GrB_Matrix_reduce_FP32(float*,,GrB_Matrix,)
$GrB_reduce(double^*, \dots, GrB_Matrix, \dots)$	GrB_Matrix_reduce_FP64(double*,,GrB_Matrix,)
GrB_reduce(<i>other</i> ,,GrB_Matrix,)	GrB_Matrix_reduce_UDT(void*,,GrB_Matrix,)
$GrB_kronecker(GrB_Matrix,, GrB_Semiring,)$	GrB_Matrix_kronecker_Semiring(GrB_Matrix,,GrB_Semiring,)
$GrB_kronecker(GrB_Matrix, \dots, GrB_Monoid, \dots)$	GrB_Matrix_kronecker_Monoid(GrB_Matrix,,GrB_Monoid,)
$GrB_kronecker(GrB_Matrix, \dots, GrB_BinaryOp, \dots)$	GrB_Matrix_kronecker_BinaryOp(GrB_Matrix,,GrB_BinaryOp,)

Table 5.8: Long-name, nonpolymorphic form of GraphBLAS methods (continued).
5825 Appendix A

Revision History

⁵⁸²⁷ Changes in 1.3.0 (25 September 2019):

- (Issue 50) Changed definition of completion and added GrB_wait() that takes an opaque GraphBLAS object as an argument.
- (Issue 39) Added GrB_kronecker operation.
- (Issue 40) Added variants of the GrB_apply operation that take a binary function and a scalar.
- (Issue 59) Changed specification about how reductions to scalar (GrB_reduce) are to be performed (to minimize dependence on monoid identity).
- (Issue 24) Added methods to resize matrices and vectors (GrB_Matrix_resize and GrB_Vector_resize).
- (Issue 47) Added methods to remove single elements from matrices and vectors (GrB_Matrix_removeElement and GrB_Vector_removeElement).
- (Issue 41) Added GrB_STRUCTURE descriptor flag for masks (consider only the structure of the mask and not the values).
- (Issue 64) Deprecated GrB_SCMP in favor of new GrB_COMP for descriptor values.
- (Issue 46) Added predefined descriptors covering all possible combinations of field, value pairs.
- Added unary operators: absolute value (GrB_ABS_T) and bitwise complement of integers (GrB_BNOT_I).
- (Issues 42,62) Added binary operators: Added boolean exclusive-nor (GrB_LXNOR) and bitwise logical operators on integers (GrB_BOR_I, GrB_BAND_I, GrB_BXOR_I, GrB_BXNOR_I).
- (Issue 11) Added a set of predefined monoids and semirings.
- (Issue 57) Updated all examples in the appendix to take advantage of new capabilities and predefined objects.
- (Issue 43) Added parent-BFS example.

- (Issue 1) Fixed bug in the non-batch betweenness centrality algorithm in Appendix B.4 where source nodes were incorrectly assigned path counts.
- (Issue 3) Added compile-time preprocessor defines and runtime method for querying the GraphBLAS API version being used.
- (Issue 10) Clarified GrB_init() and GrB_finalize() errors.
- (Issue 16) Clarified behavior of boolean and integer division.
- (Issue 19) Clarified aliasing in user-defined operators.
- (Issue 20) Clarified language about behavior of GrB_free() with predefined objects (implementation defined)
- (Issue 55) Clarified that multiplication does not have to distribute over addition in a Graph-BLAS semiring.
- (Issue 45) Removed unnecessary language about annihilators.
- (Issue 61) Removed unnecessary language about implied zeros.
- (Issue 60) Added disclaimer against overspecification.
- Fixed miscellaneous typographical errors (such as $\otimes \oplus$).
- $_{5864}$ Changes in 1.2.0:
- Removed "provisional" clause.
- $_{5866}$ Changes in 1.1.0:
- Removed unnecessary const from nindices, nrows, and ncols parameters of both extract and assign operations.
- Signature of GrB_UnaryOp_new changed: order of input parameters changed.
- Signature of GrB_BinaryOp_new changed: order of input parameters changed.
- Signature of GrB_Monoid_new changed: removal of domain argument which is now inferred from the domains of the binary operator provided.
- Signature of GrB_Vector_extractTuples and GrB_Matrix_extractTuples to add an in/out argument, n, which indicates the size of the output arrays provided (in terms of number of elements, not number of bytes). Added new execution error, GrB_INSUFFICIENT_SPACE which is returned when the capacities of the output arrays are insufficient to hold all of the tuples.
- Changed GrB_Column_assign to GrB_Col_assign for consistency in non-polymorphic interface.
- Added replace flag (z) notation to Table 4.1.

- Updated the "Mathematical Description" of the assign operation in Table 4.1.
- Added triangle counting example.

• Added subsection headers for accumulate and mask/replace discussions in the Description sections of GraphBLAS operations when the respective text was the "standard" text (i.e., identical in a majority of the operations).

• Fixed typographical errors.

5885 Changes in 1.0.2:

- Expanded the definitions of Vector_build and Matrix_build to conceptually use intermediate matrices and avoid casting issues in certain implementations.
- Fixed the bug in the GrB_assign definition. Elements of the output object are no longer being erased outside the assigned area.
- Changes non-polymorphic interface:
- Renamed GrB_Row_extract to GrB_Col_extract.
- Renamed GrB_Vector_reduce_BinaryOp to GrB_Matrix_reduce_BinaryOp.
- Renamed GrB_Vector_reduce_Monoid to GrB_Matrix_reduce_Monoid.
- Fixed the bugs with respect to isolated vertices in the Maximal Independent Set example.
- Fixed numerous typographical errors.

5896 Appendix B

5897 Examples

B.1 Example: level breadth-first search (BFS) in GraphBLAS

```
#include <stdlib.h>
1
\mathbf{2}
   #include <stdio.h>
3
   #include <stdint.h>
   #include <stdbool.h>
4
   #include "GraphBLAS.h"
5
6
7
    /*
    * Given a boolean n x n adjacency matrix A and a source vertex s, performs a BFS traversal
8
     * of the graph and sets v[i] to the level in which vertex i is visited (v[s] == 1).
9
     * If i is not reacheable from s, then v[i] = 0. (Vector v should be empty on input.)
10
11
    */
12
    GrB_Info BFS(GrB_Vector *v, GrB_Matrix A, GrB_Index s)
13
    {
14
      GrB_Index n;
      GrB_Matrix_nrows(&n,A);
                                                        // n = \# of rows of A
15
16
                                                        // Vector < int 32_t > v(n)
17
      GrB_Vector_new(v,GrB_INT32,n);
18
                                                        // vertices visited in each level
19
      GrB_Vector q;
      GrB_Vector_new(\&q, GrB_BOOL, n);
20
                                                        // Vector<bool> q(n)
21
      GrB_Vector_setElement(q,(bool)true,s);
                                                        // q[s] = true, false everywhere else
22
23
       * BFS traversal and label the vertices.
24
25
       */
26
      int 32_t d = 0;
                                                        // d = level in BFS traversal
27
      bool succ = false;
                                                        // succ == true when some successor found
28
      do {
29
        ++d;
                                                        // next level (start with 1)
        GrB_assign(*v,q,GrB_NULL,d,GrB_ALL,n,GrB_NULL);
30
                                                              // v[q] = d
31
        GrB_vxm(q, *v, GrB_NULL, GrB_LOR_LAND_SEMIRING_BOOL,
                                                        // q[!v] = q ||.&& A ; finds all the 
// unvisited successors from current q
32
                 q, A, GrB_DESC_RC);
33
        GrB_reduce(&succ, GrB_NULL, GrB_LOR_MONOID_BOOL,
34
35
                   q,GrB_NULL);
                                                        // succ = ||(q)
      } while (succ);
36
                                                        // if there is no successor in q, we are done.
37
38
      GrB_free(\&q);
                                                        // q vector no longer needed
39
40
      return GrB_SUCCESS;
41
   }
```

B.2 Example: level BFS in GraphBLAS using apply

```
#include <stdlib.h>
1
\mathbf{2}
   #include <stdio.h>
3 #include <stdint.h>
4 #include <stdbool.h>
   #include "GraphBLAS.h"
5
6
7
   /*
    * Given a boolean n x n adjacency matrix A and a source vertex s, performs a BFS traversal
8
    * of the graph and sets v[i] to the level in which vertex i is visited (v[s] == 1).
9
    * If i is not reachable from s, then v[i] does not have a stored element.
10
11
    * Vector v should be uninitialized on input.
12
    */
    GrB_Info BFS(GrB_Vector *v, const GrB_Matrix A, GrB_Index s)
13
14
    {
      GrB_Index n:
15
                                                        // n = # of rows of A
16
      GrB_Matrix_nrows(&n,A);
17
                                                        // Vector < int 32_t > v(n) = 0
18
      GrB_Vector_new(v, GrB_INT32, n);
19
                                                        // vertices visited in each level
20
      GrB_Vector q;
                                                        // Vector<bool> q(n) = false
// q[s] = true, false everywhere else
21
      GrB_Vector_new(\&q, GrB_BOOL, n);
      GrB_Vector_setElement(q,(bool)true,s);
22
23
24
      * BFS traversal and label the vertices.
25
26
       */
                                                        // level = depth in BFS traversal
27
      int32_t level = 0;
28
      GrB_Index nvals;
29
      do {
30
        ++level;
                                                         // next level (start with 1)
        GrB_apply(*v,GrB_NULL,GrB_PLUS_INT32,
31
                   GrB\_SECOND\_INT32, q, level, GrB\_NULL); // v[q] = level
32
        GrB\_vxm(q, *v, GrB\_NULL, GrB\_LOR\_LAND\_SEMIRING\_BOOL,
33
                q, A, GrB_DESC_RC);
                                                         // q[!v] = q ||. & & A; finds all the
34
35
                                                         // unvisited successors from current q
36
        GrB_Vector_nvals(&nvals, q);
37
      } while (nvals);
                                                         // if there is no successor in q, we are done.
38
39
      GrB_free(&q);
                                                         // q vector no longer needed
40
41
      return GrB_SUCCESS;
42 }
```

B.3 Example: parent BFS in GraphBLAS

```
#include <stdlib.h>
1
   #include <stdio.h>
2
3
   #include <stdint.h>
4
   #include <stdbool.h>
   #include "GraphBLAS.h"
5
6
7
8
    * Given a binary n x n adjacency matrix A and a source vertex s, performs a BFS
    * traversal of the graph and sets parents [i] to the index of vertex i's parent.
9
10
     * The parent of the root vertex, s, will be set to itself (parents[s] = s). If
     * vertex i is not reachable from s, parents [i] will not contain a stored value.
11
12
     * /
    GrB_Info BFS(GrB_Vector *parents, const GrB_Matrix A, GrB_Index s)
13
14
   {
15
      GrB_Index N;
      GrB_Matrix_nrows(&N, A);
                                                      // N = # vertices
16
17
       / create index ramp for index_of() functionality
18
      GrB_Index *idx = (GrB_Index*)malloc(N*sizeof(GrB_Index));
19
      for (GrB_Index i = 0; i < N; ++i) idx[i] = i;
20
      GrB_Vector index_ramp;
21
22
      GrB_Vector_new(&index_ramp, GrB_UINT64, N);
23
      GrB_Vector_build_UINT64(index_ramp, idx, idx, N, GrB_PLUS_INT64);
24
      free(idx);
25
26
      GrB_Vector_new(parents, GrB_UINT64, N);
27
      GrB_Vector_setElement(*parents, s, s);
                                                      // parents[s] = s
28
29
      GrB_Vector wavefront;
      GrB_Vector_new(&wavefront, GrB_UINT64, N);
30
31
      GrB_Vector_setElement(wavefront, 1UL, s);
                                                      // wavefront[s] = 1
32
33
      * BFS traversal and label the vertices.
34
35
       */
36
      GrB_Index nvals;
37
      GrB_Vector_nvals(&nvals, wavefront);
38
      while (nvals > 0)
39
40
      {
        // convert all stored values in wavefront to their 0-based index
41
        GrB_eWiseMult(wavefront, GrB_NULL, GrB_NULL, GrB_FIRST_UINT64,
42
                      index_ramp, wavefront, GrB_NULL);
43
44
        // "FIRST" because left-multiplying wavefront rows. Masking out the parent
45
        // list ensures wavefront values do not overwrite parents already stored.
46
        GrB_vxm(wavefront, *parents, GrB_NULL, GrB_MIN_FIRST_SEMIRING_UINT64,
47
48
                wavefront, A, GrB_DESC_RSC);
49
        // Don't need to mask here since we did it in mxm. Merges new parents in
50
        // current wavefront with existing parents: parents += wavefront
51
        GrB_apply(*parents, GrB_NULL, GrB_PLUS_UINT64,
52
                  GrB_IDENTITY_UINT64, wavefront, GrB_NULL);
53
54
55
        GrB_Vector_nvals(&nvals, wavefront);
56
      }
57
      GrB_free(&wavefront);
58
59
      GrB_free(&index_ramp);
60
61
      return GrB_SUCCESS;
  }
62
```

B.4 Example: betweenness centrality (BC) in GraphBLAS

```
#include <stdlib.h>
1
   #include <stdio.h>
2
   #include <stdint.h>
3
4
   #include <stdbool.h>
   #include "GraphBLAS.h"
5
6
7
8
    * Given a boolean n \times n adjacency matrix A and a source vertex s,
    * compute the BC-metric vector delta, which should be empty on input.
9
10
     */
   GrB_Info BC(GrB_Vector *delta, GrB_Matrix A, GrB_Index s)
11
12
   {
13
      GrB_Index n;
      GrB_Matrix_nrows(&n,A);
                                                       // n = # of vertices in graph
14
15
      GrB_Vector_new(delta,GrB_FP32,n);
                                                       // Vector < float > delta(n)
16
17
18
      GrB_Matrix sigma;
                                                       // Matrix < int 32_t > sigma(n, n)
      GrB_Matrix_new(&sigma, GrB_INT32, n, n);
                                                       // sigma[d,k] = #shortest paths to node k at level d
19
20
21
      GrB_Vector q;
                                                       // Vector<int32_t > q(n) of path counts
22
      GrB_Vector_new(&q, GrB_INT32, n);
                                                       // q[s] = 1
23
      GrB_Vector_setElement(q, 1, s);
24
25
      GrB_Vector p;
                                                       // Vector<int32_t> p(n) shortest path counts so far
      GrB_Vector_dup(\&p, q);
26
                                                       // p = q
27
      GrB_vxm(q,p,GrB_NULL,GrB_PLUS_TIMES_SEMIRING_INT32,
28
29
              q, A, GrB_DESC_RC);
                                                       // get the first set of out neighbors
30
31
       * BFS phase
32
       */
33
      GrB_Index d = 0;
                                                       // BFS level number
34
      int 32_{-}t sum = 0;
                                                       // sum == 0 when BFS phase is complete
35
36
37
      do {
        GrB_assign (sigma, GrB_NULL, GrB_NULL, q, d, GrB_ALL, n, GrB_NULL); // sigma[d, :] = q
38
        GrB_eWiseAdd(p,GrB_NULL,GrB_NULL,GrB_PLUS_INT32,p,q,GrB_NULL); // accum path counts on this level
39
        GrB_vxm(q,p,GrB_NULL,GrB_PLUS_TIMES_SEMIRING_INT32,
40
41
                q, A, GrB_DESC_RC);
                                                                            // q = \# paths to nodes reachable
42
                                                                           11
                                                                                 from current level
        GrB_reduce(&sum, GrB_NULL, GrB_PLUS_MONOID_INT32, q, GrB_NULL);
                                                                            // sum path counts at this level
43
44
        ++d:
      } while (sum);
45
46
47
48
      * BC computation phase
49
       * (t1, t2, t3, t4) are temporary vectors
50
       */
      GrB_Vector t1; GrB_Vector_new(&t1,GrB_FP32,n);
51
      GrB_Vector t2; GrB_Vector_new(&t2,GrB_FP32,n);
52
      GrB_Vector t3; GrB_Vector_new(&t3, GrB_FP32, n);
53
54
      GrB_Vector t4; GrB_Vector_new(&t4, GrB_FP32, n);
55
      for(int i=d-1; i>0; i--)
56
57
      ł
        GrB_assign(t1,GrB_NULL,GrB_NULL,1.0f,GrB_ALL,n,GrB_NULL);
58
                                                                                // t1 = 1 + delta
        GrB_eWiseAdd(t1,GrB_NULL,GrB_NULL,GrB_PLUS_MONOID_FP32,t1,*delta,GrB_NULL);
59
                                                                               // t2 = sigma[i,:]
// t2 = (1+delta)/sigma[i,:]
60
        GrB_extract(t2,GrB_NULL,GrB_NULL,sigma,GrB_ALL,n,i,GrB_DESC_T0);
61
        GrB_eWiseMult(t2,GrB_NULL,GrB_NULL,GrB_DIV_FP32,t1,t2,GrB_NULL);
                                                                                // add contributions made by
        GrB_mxv(t3,GrB_NULL,GrB_NULL,GrB_PLUS_TIMES_SEMIRING_FP32,
62
```

```
63
64
65
66
67
   }
68
69
   GrB_free(&sigma);
   GrB_free(\&q); GrB_free(\&p);
70
71
   GrB_free(&t1); GrB_free(&t2); GrB_free(&t3); GrB_free(&t4);
72
73
   return GrB_SUCCESS;
74 }
```

B.5 Example: batched BC in GraphBLAS

```
1
   #include <stdlib.h>
   #include "GraphBLAS.h" // in addition to other required C headers
2
3
4
    // Compute partial BC metric for a subset of source vertices, s, in graph A
    GrB_Info BC_update(GrB_Vector *delta, GrB_Matrix A, GrB_Index *s, GrB_Index nsver)
5
6
   {
\overline{7}
      GrB_Index n:
8
      GrB_Matrix_nrows(&n, A);
                                                                // n = \# of vertices in graph
                                                                // Vector < float > delta(n)
9
      GrB_Vector_new(delta,GrB_FP32,n);
10
      /\!/ index and value arrays needed to build numsp
11
12
      GrB_Index *i_nsver = (GrB_Index*)malloc(sizeof(GrB_Index)*nsver);
13
      int32_t *ones = (int32_t*) malloc(sizeof(int32_t)*nsver);
      for(int i=0; i<nsver; ++i) {
14
15
        i_nsver[i] = i;
        ones [i] = 1;
16
17
      }
18
      // numsp: structure holds the number of shortest paths for each node and starting vertex
19
20
      // discovered so far. Initialized to source vertices: numsp[s[i], i]=1, i=[0, nsver)
21
      GrB_Matrix numsp;
22
      GrB_Matrix_new(&numsp, GrB_INT32, n, nsver);
23
      GrB_Matrix_build (numsp, s, i_nsver, ones, nsver, GrB_PLUS_INT32);
24
      free(i_nsver); free(ones);
25
26
      // frontier: Holds the current frontier where values are path counts.
27
      // Initialized to out vertices of each source node in s.
28
      GrB_Matrix frontier;
29
      GrB_Matrix_new(&frontier ,GrB_INT32,n,nsver);
30
      GrB_extract(frontier, numsp, GrB_NULL, A, GrB_ALL, n, s, nsver, GrB_DESC_RCT0);
31
      /\!/ sigma: stores frontier information for each level of BFS phase. The memory /\!/ for an entry in sigmas is only allocated within the do-while loop if needed.
32
33
      // n is an upper bound on diameter.
34
35
      GrB_Matrix *sigmas = (GrB_Matrix*)malloc(sizeof(GrB_Matrix)*n);
36
37
      int 32_t d = 0;
                                                                // BFS level number
                                                                // nvals == 0 when BFS phase is complete
      GrB_Index nvals = 0;
38
39
                            ----- The BFS phase (forward sweep) ------
40
      // -
41
      do {
        // sigmas [d](:,s) = d th level frontier from source vertex s
42
        GrB_Matrix_new(&(sigmas[d]),GrB_BOOL,n,nsver);
43
44
        GrB_apply(sigmas[d],GrB_NULL,GrB_NULL,
45
                                                               // sigmas[d](:,:) = (Boolean) frontier
                   GrB_IDENTITY_BOOL, frontier ,GrB_NULL);
46
        GrB\_eWiseAdd (numsp, GrB\_NULL, GrB\_NULL, GrB\_PLUS\_INT32
47
48
                      ,numsp, frontier, GrB_NULL);
                                                                // numsp += frontier (accum path counts)
        GrB_mxm(frontier, numsp, GrB_NULL, GrB_PLUS_TIMES_SEMIRING_INT32,
49
                                                                // f < !numsp > = A' + .* f (update frontier)
                 A, frontier, GrB_DESC_RCT0);
50
        GrB_Matrix_nvals(&nvals, frontier);
                                                                // number of nodes in frontier at this level
51
52
        d++;
53
      } while (nvals);
54
      // nspinv: the inverse of the number of shortest paths for each node and starting vertex.
55
      GrB_Matrix nspinv;
56
      GrB_Matrix_new(&nspinv, GrB_FP32, n, nsver);
57
      GrB_apply(nspinv,GrB_NULL,GrB_NULL,
58
                 GrB_MINV_FP32, numsp, GrB_NULL);
                                                               // nspinv = 1./numsp
59
60
61
      // bcu: BC updates for each vertex for each starting vertex in s
      GrB_Matrix bcu;
62
```

```
GrB_Matrix_new(&bcu,GrB_FP32,n,nsver);
63
64
                GrB_assign(bcu,GrB_NULL,GrB_NULL,
                                              1.0f, GrB_ALL, n, GrB_ALL, nsver, GrB_NULL); // filled with 1 to avoid sparsity issues
65
66
                                                                                                                                                                    // temporary workspace matrix
67
                GrB_Matrix w;
68
                GrB_Matrix_new(&w, GrB_FP32, n, nsver);
69
70
                                                                              - Tally phase (backward sweep) ----
                for (int i=d-1; i>0; i--) {
71
                     GrB_eWiseMult(w, sigmas[i], GrB_NULL,
72
                                                           GrB_TIMES_FP32, bcu, nspinv, GrB_DESC_R); // w<sigmas[i]>=(1 ./ nsp).*bcu
73
74
                      // add contributions by successors and mask with that BFS level's frontier % \mathcal{A} = \mathcal{A} = \mathcal{A}
75
76
                     GrB_mxm(w, sigmas [i -1], GrB_NULL, GrB_PLUS_TIMES_SEMIRING_FP32,
                     \label{eq:grb_loc_r} \begin{array}{ll} \label{eq:grb_loc_r} \label{eq:grb_loc_r} \label{eq:grb_loc_r} \label{eq:grb_loc_r} \label{eq:grb_loc_r} \label{eq:grb_loc_r} \label{eq:grb_loc_r} \label{eq:grb_loc_r} \label{eq:grb_loc_r} \begin{array}{ll} \label{eq:grb_loc_r} \begin{array}{ll} \label{eq:grb_loc_r} \label{eq:
77
78
79
                                                           w, numsp, GrB_NULL);
                                                                                                                                                                            // bcu \neq w .* numsp
80
               }
81
                // row reduce bcu and subtract "nsver" from every entry to account
82
83
                // for 1 extra value per bcu row element.
                GrB_reduce(*delta,GrB_NULL,GrB_NULL,GrB_PLUS_FP32,bcu,GrB_NULL);
84
                GrB_apply (* delta, GrB_NULL, GrB_NULL, GrB_MINUS_FP32, * delta, (float) nsver, GrB_NULL);
85
86
87
                // Release resources
88
                for(int i=0; i<d; i++) {
89
                     GrB_free(&(sigmas[i]));
90
91
                free(sigmas);
92
93
                GrB_free(&frontier);
                                                                                      GrB_free(&numsp);
94
                GrB_free(&nspinv);
                                                                                      GrB_free(&bcu);
                                                                                                                                                   GrB_free(&w);
95
96
                return GrB_SUCCESS;
97 }
```

B.6 Example: maximal independent set (MIS) in GraphBLAS

```
1 #include <stdlib.h>
2 #include <stdio.h>
   #include <stdint.h>
3
4 #include <stdbool.h>
5 #include "GraphBLAS.h"
6
      Assign a random number to each element scaled by the inverse of the node's degree.
7
8
   // This will increase the probability that low degree nodes are selected and larger
   // sets are selected.
9
10
   void setRandom(void *out, const void *in)
11
   {
12
      uint32_t degree = *(uint32_t*)in;
      *(float*)out = (0.0001f + random()/(1. + 2.*degree)); // add 1 to prevent divide by zero
13
   }
14
15
16
    * A variant of Luby's randomized algorithm [Luby 1985].
17
18
    * Given a numeric n x n adjacency matrix A of an unweighted and undirected graph (where
19
     * the value true represents an edge), compute a maximal set of independent vertices and
20
    * return it in a boolean n-vector, 'iset' where set[i] = true implies vertex i is a member
21
22
     * of the set (the iset vector should be uninitialized on input.)
23
    */
24
    GrB_Info MIS(GrB_Vector *iset, const GrB_Matrix A)
25
   {
26
      GrB_Index n:
27
      GrB_Matrix_nrows(&n,A);
                                                     // n = \# of rows of A
28
                                                      // holds random probabilities for each node
29
      GrB_Vector prob;
                                                      // holds value of max neighbor probability
30
      GrB_Vector neighbor_max;
31
      GrB_Vector new_members;
                                                      // holds set of new members to iset
                                                      // holds set of new neighbors to new iset mbrs.
      GrB_Vector new_neighbors;
32
                                                      // candidate members to iset
33
      GrB_Vector candidates;
34
      GrB_Vector_new(&prob, GrB_FP32, n);
35
36
      GrB_Vector_new(&neighbor_max, GrB_FP32, n);
37
      GrB_Vector_new(&new_members, GrB_BOOL, n);
38
      GrB_Vector_new(&new_neighbors,GrB_BOOL,n);
      GrB_Vector_new(&candidates,GrB_BOOL,n);
39
40
      GrB_Vector_new(iset,GrB_BOOL,n);
                                                      // Initialize independent set vector, bool
41
42
      GrB_UnaryOp set_random;
      GrB_UnaryOp_new(&set_random, setRandom, GrB_FP32, GrB_UINT32);
43
44
      // compute the degree of each vertex.
45
46
      GrB_Vector degrees;
47
      GrB_Vector_new(&degrees, GrB_FP64, n);
48
      GrB_reduce(degrees, GrB_NULL, GrB_NULL, GrB_PLUS_FP64, A, GrB_NULL);
49
50
      // Isolated vertices are not candidates: candidates [degrees != 0] = true
      GrB_assign (candidates, degrees, GrB_NULL, true, GrB_ALL, n, GrB_NULL);
51
52
      // add all singletons to iset: iset[degree == 0] = 1
53
54
      GrB_assign(*iset, degrees, GrB_NULL, true, GrB_ALL, n, GrB_DESC_RC);
55
56
      // Iterate while there are candidates to check.
57
      GrB_Index nvals;
      GrB_Vector_nvals(&nvals, candidates);
58
59
      while (nvals > 0) {
        // compute a random probability scaled by inverse of degree
60
61
        GrB_apply(prob, candidates, GrB_NULL, set_random, degrees, GrB_DESC_R);
62
```

```
63
        // compute the max probability of all neighbors
64
        GrB_mxv(neighbor_max, candidates, GrB_NULL, GrB_MAX_SECOND_SEMIRING_FP32, A, prob, GrB_DESC_R);
65
66
        /\!/ select vertex if its probability is larger than all its active neighbors,
        // and apply a "masked no-op" to remove stored falses
67
68
        GrB_eWiseAdd(new_members,GrB_NULL,GrB_NULL,GrB_GT_FP64,prob,neighbor_max,GrB_NULL);
69
        GrB_apply (new_members, new_members, GrB_NULL, GrB_IDENTITY_BOOL, new_members, GrB_DESC_R);
70
71
        // add new members to independent set.
        GrB_eWiseAdd(*iset,GrB_NULL,GrB_NULL,GrB_LOR,*iset,new_members,GrB_NULL);
72
73
74
        // remove new members from set of candidates c = c & !new
75
        GrB_eWiseMult (candidates, new_members, GrB_NULL,
76
                       GrB_LAND, candidates, candidates, GrB_DESC_RC);
77
        GrB_Vector_nvals(&nvals, candidates);
78
79
        if (nvals == 0) { break; }
                                                      // early exit condition
80
        // Neighbors of new members can also be removed from candidates
81
        GrB_mxv(new_neighbors, candidates, GrB_NULL, GrB_LOR_LAND_SEMIRING_BOOL,
82
83
                A, new_members, GrB_NULL);
        GrB_eWiseMult(candidates, new_neighbors, GrB_NULL, GrB_LAND,
84
                       candidates, candidates, GrB_DESC_RC);
85
86
87
        GrB_Vector_nvals(&nvals, candidates);
88
      }
89
      GrB_free(&neighbor_max);
                                                      // free all objects "new'ed"
90
91
      GrB_free(&new_members);
      GrB_free(&new_neighbors);
92
93
      GrB_free(&prob);
94
      GrB_free(&candidates);
      GrB_free(&set_random);
95
96
      GrB_free(& degrees);
97
98
     return GrB_SUCCESS;
99 }
```

B.7 Example: counting triangles in GraphBLAS

```
1
   #include <stdlib.h>
\mathbf{2}
   #include <stdio.h>
3 #include <stdint.h>
4 #include <stdbool.h>
5 #include "GraphBLAS.h"
\mathbf{6}
   /*
7
    * Given, L, the lower triangular portion of n \ x \ n adjacency matrix A (of and
8
9
    * undirected graph), computes the number of triangles in the graph.
10
    */
   uint64_t triangle_count(GrB_Matrix L)
                                                         // L: NxN, lower-triangular, bool
11
12
   {
      GrB_Index n;
13
      GrB_Matrix_nrows(&n, L);
14
                                                         // n = # of vertices
15
16
      GrB_Matrix C;
      GrB_Matrix_new(&C, GrB_UINT64, n, n);
17
18
      GrB\_mxm(C, L, GrB\_NULL, GrB\_PLUS\_TIMES\_SEMIRING\_UINT64, L, L, GrB\_DESC\_T1); // C <\!\!\! L > = L + .* L'
19
20
21
      uint64_t count;
22
      GrB_reduce(&count, GrB_NULL, GrB_PLUS_MONOID_UINT64, C, GrB_NULL);
                                                                                  // 1-norm of C
23
24
      GrB_free(\&C);
                                           // C matrix no longer needed
25
26
      return count;
27 }
```