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Introduction
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Website: http://graphblas.org
• Lists workshops and conferences
• Link to the latest C API Specification
• Lists teams developing implementations
• Other useful resources including the “The Math Document”

Mailing list: Graphblas@lists.lbl.gov
• Hosted by LBL  (mailto:abuluc@lbl.gov)
• Join the Forum by joining the list

Monthly teleconference:
• Second Friday of every month, 12pm Eastern Time
• Send email to Jeremy Kepner to receive the calendar invite and Zoom ID.

GraphBLAS Forum Information
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C++ Subcommittee: Aydın Buluç, Tim Mattson, Scott McMillan, José Moreira, Benjamin Brock.
• C++ API Specification: under development
• Future: Distributed computing

C Subcommittee:  Jim Kitchen, Erik Welch, Tim Mattson, Manoj Kumar, Will Kimmerer.
• C API Specification:  Version 2.1 with type introspection and enhancements to address 

the needs of emerging applications (such as GNNs, and graph database queries).

“Math” Subcommittee:  TBD.
• Defines the mathematical behaviour that should be implemented by a GraphBLAS 

library and can be referenced by any language API. 

Note: We are not planning to create committees/APIs for languages other than C/C++

GraphBLAS API Committees (we have reorganized)



5SC’22 BoF: HPC Graph Toolkits and 
The GraphBLAS Forum 15 November 2022 Distribution Statement A: 

Approved for Public Release; Distribution is Unlimited

• Language Bindings
• C
• Python
• C++
• Julia
• others on the way…Go, Java, etc.

• Reference implementation: SuiteSparse:GraphBLAS
• LAGraph Algorithms Repository
• Commercial endeavors

• Mathworks: MATLAB
• RedisLabs: RedisGraph database
• …and all the customers using those packages

GraphBLAS in the real world
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• Language Bindings
• C
• Python
• C++
• Julia
• others on the way…Go, Java, etc.

• Reference implementation: SuiteSparse:GraphBLAS
• LAGraph Algorithms Repository
• Commercial endeavors

• Mathworks: MATLAB
• RedisLabs: RedisGraph database
• …and all the customers using those packages

GraphBLAS in the real world

Not just a research 
project anymore.
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C API
Will Kimmerer, Jim Kitchen, Manoj Kumar, Tim Mattson, Erik Welch
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Expecting a new minor release in 2023, version 2.1

• Type introspection – the LAGraph work has shown this is essential for building 
libraries on top of the GraphBLAS.

Also considering numerous additional features including:

• Macros to identify library release information
• User defined Monoids with terminal values
• Query interface for monoids, semirings, operator domains, and execution modes.
• User-specified allocators/deallocators to use
• Miscellaneous refinements to existing operators and operations

C API Updates https://github.com/GraphBLAS/graphblas‐api‐c
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python-graphblas (was grblas)

• Python wrapper around SuiteSparse:GraphBLAS
with a more functional programming style

• Provides access to all GxB features in SuiteSparse
• Additional features:

• Call Recorder – automatically generate equivalent C calls from Python code
• Aggregators – advanced reductions (ex. avg, stdev, root mean square)
• selectk – select the [first|last|smallest|largest|random] k elements from each row

• Easy to install (win/mac/linux, x86/arm64, wheels or conda)

graphblas-algorithms
• Similar concept to LAGraph, but written using python-graphblas
• 40+ algorithms so far (goal to implement majority of Networkx algorithms)
• Will be used in NetworkX 3.0 fast-dispatching feature

https://python‐graphblas.readthedocs.io
https://github.com/python‐graphblas/python‐graphblas

while True:

w = v.dup()

v(binary.min) << semiring.min_plus(v @ M)

if v.isequal(w):

break

SSSP

https://github.com/python‐graphblas/graphblas‐algorithms
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C++ API Specification
Benjamin Brock, Scott McMillan,
Tim Mattson, José Moreira, and Aydın Buluç
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C++ Spec “Aspirations” (Design Goals)

- Better support for user-defined types
- First-class user-defined types 
- Non-memcpy-able scalar types
- User-defined index types
- First-class user-defined operators (including lambdas)

- Interoperability with Standard Template Library

- Pathway for advanced features
- Distributed memory
- GPU (device) support
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Generic Containers
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Matrix Data Structure

grb::matrix<float>

Type of stored 
values
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Matrix Data Structure

grb::matrix<float, int>

Type of stored 
values

(Integer) type 
used to store 
indices
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Matrix Data Structure

grb::matrix<float, int, grb::column>

Type of stored 
values

(Integer) type 
used to store 
indices

Compile-time 
hint about 
storage format
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Matrix Data Structure

grb::matrix<float, int, grb::column, my_alloc<float>>

Type of stored 
values

(Integer) type 
used to store 
indices

AllocatorCompile-time 
hint about 
storage format
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Matrix Data Structure

grb::matrix<float, int, grb::column, my_alloc<float>>

Type of stored 
values

(Integer) type 
used to store 
indices

AllocatorCompile-time 
hint about 
storage format

Optional
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Interoperability

● Allocators support
○ GPUs/device memory
○ Persistent memory
○ Any framework that wants to control 

memory allocation

● Concepts support interoperability with 
the C++ Standard Library and user 
applications
○ Matrices and vectors are Ranges
○ Views on matrices and vectors 

(transposes, rows, transforms, etc…)
○ Matrix concepts allow users to adapt 

their data structures to GraphBLAS

// Select a particular GPU
auto my_gpu = sycl::device(sycl::gpu_selector());

// Create allocator for `my_gpu`
auto alloc =
      sycl_tools::device_allocator<int>(my_gpu);

// Create matrix using GPU allocator
grb::matrix<float, int, grb::row,
            sycl_tools::device_allocator<int> >
       matrix({1024, 1024}, alloc);

// ...

// Using STL Algorithms
auto r = std::ranges::reduce(matrix);
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Algorithms (GraphBLAS Operations)
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GraphBLAS Operations – Overloading and Optional Arguments

Current draft introduces 
multiply, which multiplies 
vectors and/or matrices

Optional arguments and 
overloading results in 
cleaner syntax.

grb::matrix<float> a("chesapeake.mtx");

grb::vector<bool> x(a.shape()[1]);
x[5] = true;

// Default plus/times operators, "full mask"
auto b = grb::multiply(a, x);

// Equivalent, but explicitly declare operators
auto b_p = grb::multiply(a, x, grb::plus(), grb::times());

// Multiply with an explicit mask
auto next = grb::multiply(a, b, grb::plus(), grb::times(), x);
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Operators
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Binary Operators

Binary operators are implemented 
similarly to STL’s <functional>

Can specify one or more types, or 
leave them to be deduced

Allows use of inline specifications like 
lambdas (not shown)

// Automatically deduce types of plus, times
auto b_p = grb::multiply(a, x, grb::plus(),
                               grb::times());

// Everything in floating point
auto next = grb::multiply(a, b, grb::plus<float>(),
                                grb::times<float>());

// Multiply in float, reduce in double
auto next = grb::multiply(
               a, b,
               grb::plus<double>(),
               grb::times<float, float, double>());
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Draft spec is accessible…Feedback Welcome

Check out the spec:
https://github.com/GraphBLAS/graphblas-api-cpp

Check out the rgri reference implementation:
https://github.com/GraphBLAS/rgri
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SuiteSparse GraphBLAS

Timothy Davis, TAMU
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• Conforms to the v2.0 C API (Nov 2021)
• GrB_Scalar, GrB_IndexUnaryOp, GrB_serialize/deserialize with ZSTD compresssion

• New GxB features:  
• pack/unpack (O(1)-time move semantics)
• named types and operators (for future JIT)
• matrix and vector sort
• eWiseUnion (like eWiseAdd but with 2 scalars; all entries in output go through the operator)
• matrix and vector iterators
• matrix reshape

• Performance: 
• GrB_mxm, particularly with sparse-times-dense or dense-times-sparse.  AVX2 and AVX512 exploit
• faster MATLAB interface

• Port to Octave 7
• Supported by Intel, NVIDIA, Redis, MIT Lincoln Lab, MathWorks, Julia Computing

SuiteSparse:GraphBLAS v7.2.0.  Progress since 2021
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SuiteSparse versus the Intel MKL sparse library
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• Faster hypersparse matrices (the “hyperhash”, avoids binary search), in v7.3.0beta 
• CUDA acceleration (with J. Eaton and C. Nolet, NVIDIA): 3x to 9x speedup in GrB_mxm
• Julia integration (just announced v0.7), replacing Julia SparseArrays
• more MATLAB integration
• further Python integration
• RedisGraph future: faster, more features
• JIT for faster user-defined types and operations
• aggressive non-blocking mode, kernel fusion
• x=A\b over a field
• more built-in types (FP16, complex integers, …)
• faster kernels (GrB_mxm for sampled dense-dense matrix multiply)
• matrices with shallow components
• …

Work in progress and future work

https://github.com/DrTimothyAldenDavis/GraphBLAS
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LAGraph: graph algorithms library

Tim Davis, Scott McMillan, Gabor Szarnyas, Tim Mattson, 
Jim Kitchen, Eric Welch, David Bader, Roi Lipman, and contributors.
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Version 1.0 released in September 2022

6 polished, stable algorithms (the GAP benchmark):
• Breadth-first search
• Betweenness-centrality
• PageRank
• Connected Components
• Single-source Shortest-Path
• Triangle Counting

Stable utilities
• malloc/calloc/realloc/free wrappers
• create/destroy the LAGraph_Graph
• compute properties: degree, A’, # diag entries
• delete properties
• display graph
• Matrix Market file I/O (very slow)
• Sorting
• thread control
• timing
• type management

LAGraph: graph algorithm library

Many experimental algorithms to be curated
• K-truss, All K-truss
• Bellman-Ford single-source shortest path
• Maximal independent set
• Triangle Centrality
• Community detection w/ label propagation
• Deep Neural Network Inference
• Strongly Connected Components
• Minimum Spanning Forest
• Local Clustering Coefficient
• K-core
• Counting all size-4 graphlets
• Triangle polling
• Fiedler vector 

Experimental utilities
• random matrix, vector generators
• Binary matrix file I/O (very fast),

serialize/deserialize, parallel LZ4 comp.

https://github.com/GraphBLAS/LAGraph
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• Deep Neural Network Inference
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• Minimum Spanning Forest
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Roi Lipman
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Property Graph DB

Person Flight
isAboardName: Adam

Age: 42
Citizenship: Canadian

Airline: United
Origin: Toronto
Destination: Dallas

• Nodes represent entities
• Edges represent relations between entities
• Nodes & Edges associated with Attributes
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Query graphs

MATCH (f1:Flight)<-[:isAboard]-(:Person)-[:isAboard]->(f2:Flight)

Flight isAboard Person

T

* * * *

Person f2isAboardf1 isAboard

isAboard Flight
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RedisGraph Use Cases

• Social networks
• Supply chain optimization
• Fraud detection/prevention
• Resource management
• Access control

To learn more

https://redis.io/docs/stack/graph/
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Website: http://graphblas.org
• Lists workshops and conferences
• Links to the latest API Specifications
• Teams developing implementations
• Other useful resources

Mailing list: Graphblas@lists.lbl.gov
• Hosted by LBL  (mailto:abuluc@lbl.gov)
• Join the Forum by joining the list

Monthly teleconference:
• Second Friday of every month, 12pm Eastern Time
• Send email to Jeremy Kepner to receive the calendar invite and Zoom ID.

Questions? C API Specification: 
https://github.com/GraphBLAS/graphblas-api-c

SuiteSparse:GraphBLAS: 
https://github.com/DrTimothyAldenDavis/GraphBLAS

Python GraphBLAS bindings
https://github.com/python-graphblas/python-graphblas
https://github.com/python-graphblas/graphblas-algorithms

C++ API Specification: 
https://github.com/GraphBLAS/graphblas-api-cpp

C++ reference implementation: 
https://github.com/GraphBLAS/rgri

LAGraph Repository: 
https://github.com/GraphBLAS/LAGraph

RedisGraph: 
https://redis.io/docs/stack/graph


