
Distribution Statement A:
Approved for Public Release; Distribution is Unlimited15 November 2022SC’22 BoF: HPC Graph Toolkits and

The GraphBLAS Forum

GraphBLAS Forum Updates

Scott McMillan
Software Engineering Institute
Carnegie Mellon University

Content provided by Benjamin Brock (Intel), Tim Davis (TAMU), James Kitchen (Anaconda), Manoj Kumar (IBM),
Roi Lipman (Redis), Tim Mattson (Intel), Erik Welch (NVIDIA) and many others.

2SC’22 BoF: HPC Graph Toolkits and
The GraphBLAS Forum 15 November 2022 Distribution Statement A:

Approved for Public Release; Distribution is Unlimited

Introduction

6

4

3

21

57

A
1

3
2

4
5
6
7

4 5 6 7321

to
 v

er
te

x

from vertexT

=

v A vT

.

3SC’22 BoF: HPC Graph Toolkits and
The GraphBLAS Forum 15 November 2022 Distribution Statement A:

Approved for Public Release; Distribution is Unlimited

Website: http://graphblas.org
• Lists workshops and conferences
• Link to the latest C API Specification
• Lists teams developing implementations
• Other useful resources including the “The Math Document”

Mailing list: Graphblas@lists.lbl.gov
• Hosted by LBL (mailto:abuluc@lbl.gov)
• Join the Forum by joining the list

Monthly teleconference:
• Second Friday of every month, 12pm Eastern Time
• Send email to Jeremy Kepner to receive the calendar invite and Zoom ID.

GraphBLAS Forum Information

4SC’22 BoF: HPC Graph Toolkits and
The GraphBLAS Forum 15 November 2022 Distribution Statement A:

Approved for Public Release; Distribution is Unlimited

C++ Subcommittee: Aydın Buluç, Tim Mattson, Scott McMillan, José Moreira, Benjamin Brock.
• C++ API Specification: under development
• Future: Distributed computing

C Subcommittee: Jim Kitchen, Erik Welch, Tim Mattson, Manoj Kumar, Will Kimmerer.
• C API Specification: Version 2.1 with type introspection and enhancements to address

the needs of emerging applications (such as GNNs, and graph database queries).

“Math” Subcommittee: TBD.
• Defines the mathematical behaviour that should be implemented by a GraphBLAS

library and can be referenced by any language API.

Note: We are not planning to create committees/APIs for languages other than C/C++

GraphBLAS API Committees (we have reorganized)

5SC’22 BoF: HPC Graph Toolkits and
The GraphBLAS Forum 15 November 2022 Distribution Statement A:

Approved for Public Release; Distribution is Unlimited

• Language Bindings
• C
• Python
• C++
• Julia
• others on the way…Go, Java, etc.

• Reference implementation: SuiteSparse:GraphBLAS
• LAGraph Algorithms Repository
• Commercial endeavors

• Mathworks: MATLAB
• RedisLabs: RedisGraph database
• …and all the customers using those packages

GraphBLAS in the real world

6SC’22 BoF: HPC Graph Toolkits and
The GraphBLAS Forum 15 November 2022 Distribution Statement A:

Approved for Public Release; Distribution is Unlimited

• Language Bindings
• C
• Python
• C++
• Julia
• others on the way…Go, Java, etc.

• Reference implementation: SuiteSparse:GraphBLAS
• LAGraph Algorithms Repository
• Commercial endeavors

• Mathworks: MATLAB
• RedisLabs: RedisGraph database
• …and all the customers using those packages

GraphBLAS in the real world

Not just a research
project anymore.

Distribution Statement A:
Approved for Public Release; Distribution is Unlimited15 November 2022

SC’22 BoF: HPC Graph Toolkits and
The GraphBLAS Forum

C API
Will Kimmerer, Jim Kitchen, Manoj Kumar, Tim Mattson, Erik Welch

8SC’22 BoF: HPC Graph Toolkits and
The GraphBLAS Forum 15 November 2022 Distribution Statement A:

Approved for Public Release; Distribution is Unlimited

Expecting a new minor release in 2023, version 2.1

• Type introspection – the LAGraph work has shown this is essential for building
libraries on top of the GraphBLAS.

Also considering numerous additional features including:

• Macros to identify library release information
• User defined Monoids with terminal values
• Query interface for monoids, semirings, operator domains, and execution modes.
• User-specified allocators/deallocators to use
• Miscellaneous refinements to existing operators and operations

C API Updates https://github.com/GraphBLAS/graphblas‐api‐c

Distribution Statement A:
Approved for Public Release; Distribution is Unlimited15 November 2022

SC’22 BoF: HPC Graph Toolkits and
The GraphBLAS Forum

Python
Jim Kitchen, Eric Welch

10SC’22 BoF: HPC Graph Toolkits and
The GraphBLAS Forum 15 November 2022 Distribution Statement A:

Approved for Public Release; Distribution is Unlimited

python-graphblas (was grblas)

• Python wrapper around SuiteSparse:GraphBLAS
with a more functional programming style

• Provides access to all GxB features in SuiteSparse
• Additional features:

• Call Recorder – automatically generate equivalent C calls from Python code
• Aggregators – advanced reductions (ex. avg, stdev, root mean square)
• selectk – select the [first|last|smallest|largest|random] k elements from each row

• Easy to install (win/mac/linux, x86/arm64, wheels or conda)

graphblas-algorithms
• Similar concept to LAGraph, but written using python-graphblas
• 40+ algorithms so far (goal to implement majority of Networkx algorithms)
• Will be used in NetworkX 3.0 fast-dispatching feature

https://python‐graphblas.readthedocs.io
https://github.com/python‐graphblas/python‐graphblas

while True:

w = v.dup()

v(binary.min) << semiring.min_plus(v @ M)

if v.isequal(w):

break

SSSP

https://github.com/python‐graphblas/graphblas‐algorithms

Distribution Statement A:
Approved for Public Release; Distribution is Unlimited15 November 2022

SC’22 BoF: HPC Graph Toolkits and
The GraphBLAS Forum

C++ API Specification
Benjamin Brock, Scott McMillan,
Tim Mattson, José Moreira, and Aydın Buluç

12SC’22 BoF: HPC Graph Toolkits and
The GraphBLAS Forum 15 November 2022 Distribution Statement A:

Approved for Public Release; Distribution is Unlimited

C++ Spec “Aspirations” (Design Goals)

- Better support for user-defined types
- First-class user-defined types
- Non-memcpy-able scalar types
- User-defined index types
- First-class user-defined operators (including lambdas)

- Interoperability with Standard Template Library

- Pathway for advanced features
- Distributed memory
- GPU (device) support

13SC’22 BoF: HPC Graph Toolkits and
The GraphBLAS Forum 15 November 2022 Distribution Statement A:

Approved for Public Release; Distribution is Unlimited

Generic Containers

14SC’22 BoF: HPC Graph Toolkits and
The GraphBLAS Forum 15 November 2022 Distribution Statement A:

Approved for Public Release; Distribution is Unlimited

Matrix Data Structure

grb::matrix<float>

Type of stored
values

15SC’22 BoF: HPC Graph Toolkits and
The GraphBLAS Forum 15 November 2022 Distribution Statement A:

Approved for Public Release; Distribution is Unlimited

Matrix Data Structure

grb::matrix<float, int>

Type of stored
values

(Integer) type
used to store
indices

16SC’22 BoF: HPC Graph Toolkits and
The GraphBLAS Forum 15 November 2022 Distribution Statement A:

Approved for Public Release; Distribution is Unlimited

Matrix Data Structure

grb::matrix<float, int, grb::column>

Type of stored
values

(Integer) type
used to store
indices

Compile-time
hint about
storage format

17SC’22 BoF: HPC Graph Toolkits and
The GraphBLAS Forum 15 November 2022 Distribution Statement A:

Approved for Public Release; Distribution is Unlimited

Matrix Data Structure

grb::matrix<float, int, grb::column, my_alloc<float>>

Type of stored
values

(Integer) type
used to store
indices

AllocatorCompile-time
hint about
storage format

18SC’22 BoF: HPC Graph Toolkits and
The GraphBLAS Forum 15 November 2022 Distribution Statement A:

Approved for Public Release; Distribution is Unlimited

Matrix Data Structure

grb::matrix<float, int, grb::column, my_alloc<float>>

Type of stored
values

(Integer) type
used to store
indices

AllocatorCompile-time
hint about
storage format

Optional

19SC’22 BoF: HPC Graph Toolkits and
The GraphBLAS Forum 15 November 2022 Distribution Statement A:

Approved for Public Release; Distribution is Unlimited

Interoperability

● Allocators support
○ GPUs/device memory
○ Persistent memory
○ Any framework that wants to control

memory allocation

● Concepts support interoperability with
the C++ Standard Library and user
applications
○ Matrices and vectors are Ranges
○ Views on matrices and vectors

(transposes, rows, transforms, etc…)
○ Matrix concepts allow users to adapt

their data structures to GraphBLAS

// Select a particular GPU
auto my_gpu = sycl::device(sycl::gpu_selector());

// Create allocator for `my_gpu`
auto alloc =
 sycl_tools::device_allocator<int>(my_gpu);

// Create matrix using GPU allocator
grb::matrix<float, int, grb::row,
 sycl_tools::device_allocator<int> >
 matrix({1024, 1024}, alloc);

// ...

// Using STL Algorithms
auto r = std::ranges::reduce(matrix);

20SC’22 BoF: HPC Graph Toolkits and
The GraphBLAS Forum 15 November 2022 Distribution Statement A:

Approved for Public Release; Distribution is Unlimited

Algorithms (GraphBLAS Operations)

21SC’22 BoF: HPC Graph Toolkits and
The GraphBLAS Forum 15 November 2022 Distribution Statement A:

Approved for Public Release; Distribution is Unlimited

GraphBLAS Operations – Overloading and Optional Arguments

Current draft introduces
multiply, which multiplies
vectors and/or matrices

Optional arguments and
overloading results in
cleaner syntax.

grb::matrix<float> a("chesapeake.mtx");

grb::vector<bool> x(a.shape()[1]);
x[5] = true;

// Default plus/times operators, "full mask"
auto b = grb::multiply(a, x);

// Equivalent, but explicitly declare operators
auto b_p = grb::multiply(a, x, grb::plus(), grb::times());

// Multiply with an explicit mask
auto next = grb::multiply(a, b, grb::plus(), grb::times(), x);

22SC’22 BoF: HPC Graph Toolkits and
The GraphBLAS Forum 15 November 2022 Distribution Statement A:

Approved for Public Release; Distribution is Unlimited

Operators

23SC’22 BoF: HPC Graph Toolkits and
The GraphBLAS Forum 15 November 2022 Distribution Statement A:

Approved for Public Release; Distribution is Unlimited

Binary Operators

Binary operators are implemented
similarly to STL’s <functional>

Can specify one or more types, or
leave them to be deduced

Allows use of inline specifications like
lambdas (not shown)

// Automatically deduce types of plus, times
auto b_p = grb::multiply(a, x, grb::plus(),
 grb::times());

// Everything in floating point
auto next = grb::multiply(a, b, grb::plus<float>(),
 grb::times<float>());

// Multiply in float, reduce in double
auto next = grb::multiply(
 a, b,
 grb::plus<double>(),
 grb::times<float, float, double>());

24SC’22 BoF: HPC Graph Toolkits and
The GraphBLAS Forum 15 November 2022 Distribution Statement A:

Approved for Public Release; Distribution is Unlimited

Draft spec is accessible…Feedback Welcome

Check out the spec:
https://github.com/GraphBLAS/graphblas-api-cpp

Check out the rgri reference implementation:
https://github.com/GraphBLAS/rgri

Distribution Statement A:
Approved for Public Release; Distribution is Unlimited15 November 2022

SC’22 BoF: HPC Graph Toolkits and
The GraphBLAS Forum

SuiteSparse GraphBLAS

Timothy Davis, TAMU

26SC’22 BoF: HPC Graph Toolkits and
The GraphBLAS Forum 15 November 2022 Distribution Statement A:

Approved for Public Release; Distribution is Unlimited

• Conforms to the v2.0 C API (Nov 2021)
• GrB_Scalar, GrB_IndexUnaryOp, GrB_serialize/deserialize with ZSTD compresssion

• New GxB features:
• pack/unpack (O(1)-time move semantics)
• named types and operators (for future JIT)
• matrix and vector sort
• eWiseUnion (like eWiseAdd but with 2 scalars; all entries in output go through the operator)
• matrix and vector iterators
• matrix reshape

• Performance:
• GrB_mxm, particularly with sparse-times-dense or dense-times-sparse. AVX2 and AVX512 exploit
• faster MATLAB interface

• Port to Octave 7
• Supported by Intel, NVIDIA, Redis, MIT Lincoln Lab, MathWorks, Julia Computing

SuiteSparse:GraphBLAS v7.2.0. Progress since 2021

27SC’22 BoF: HPC Graph Toolkits and
The GraphBLAS Forum 15 November 2022 Distribution Statement A:

Approved for Public Release; Distribution is Unlimited

SuiteSparse versus the Intel MKL sparse library

28SC’22 BoF: HPC Graph Toolkits and
The GraphBLAS Forum 15 November 2022 Distribution Statement A:

Approved for Public Release; Distribution is Unlimited

• Faster hypersparse matrices (the “hyperhash”, avoids binary search), in v7.3.0beta
• CUDA acceleration (with J. Eaton and C. Nolet, NVIDIA): 3x to 9x speedup in GrB_mxm
• Julia integration (just announced v0.7), replacing Julia SparseArrays
• more MATLAB integration
• further Python integration
• RedisGraph future: faster, more features
• JIT for faster user-defined types and operations
• aggressive non-blocking mode, kernel fusion
• x=A\b over a field
• more built-in types (FP16, complex integers, …)
• faster kernels (GrB_mxm for sampled dense-dense matrix multiply)
• matrices with shallow components
• …

Work in progress and future work

https://github.com/DrTimothyAldenDavis/GraphBLAS

Distribution Statement A:
Approved for Public Release; Distribution is Unlimited15 November 2022

SC’22 BoF: HPC Graph Toolkits and
The GraphBLAS Forum

LAGraph: graph algorithms library

Tim Davis, Scott McMillan, Gabor Szarnyas, Tim Mattson,
Jim Kitchen, Eric Welch, David Bader, Roi Lipman, and contributors.

30SC’22 BoF: HPC Graph Toolkits and
The GraphBLAS Forum 15 November 2022 Distribution Statement A:

Approved for Public Release; Distribution is Unlimited

Version 1.0 released in September 2022

6 polished, stable algorithms (the GAP benchmark):
• Breadth-first search
• Betweenness-centrality
• PageRank
• Connected Components
• Single-source Shortest-Path
• Triangle Counting

Stable utilities
• malloc/calloc/realloc/free wrappers
• create/destroy the LAGraph_Graph
• compute properties: degree, A’, # diag entries
• delete properties
• display graph
• Matrix Market file I/O (very slow)
• Sorting
• thread control
• timing
• type management

LAGraph: graph algorithm library

Many experimental algorithms to be curated
• K-truss, All K-truss
• Bellman-Ford single-source shortest path
• Maximal independent set
• Triangle Centrality
• Community detection w/ label propagation
• Deep Neural Network Inference
• Strongly Connected Components
• Minimum Spanning Forest
• Local Clustering Coefficient
• K-core
• Counting all size-4 graphlets
• Triangle polling
• Fiedler vector

Experimental utilities
• random matrix, vector generators
• Binary matrix file I/O (very fast),

serialize/deserialize, parallel LZ4 comp.

https://github.com/GraphBLAS/LAGraph

31SC’22 BoF: HPC Graph Toolkits and
The GraphBLAS Forum 15 November 2022 Distribution Statement A:

Approved for Public Release; Distribution is Unlimited

Version 1.0 released in September 2022

6 polished, stable algorithms (the GAP benchmark):
• Breadth-first search
• Betweenness-centrality
• PageRank
• Connected Components
• Single-source Shortest-Path
• Triangle Counting

Stable utilities
• malloc/calloc/realloc/free wrappers
• create/destroy the LAGraph_Graph
• compute properties: degree, A’, # diag entries
• delete properties
• display graph
• Matrix Market file I/O (very slow)
• Sorting
• thread control
• timing
• type management

LAGraph: graph algorithm library

Many experimental algorithms to be curated
• K-truss, All K-truss
• Bellman-Ford single-source shortest path
• Maximal independent set
• Triangle Centrality
• Community detection w/ label propagation
• Deep Neural Network Inference
• Strongly Connected Components
• Minimum Spanning Forest
• Local Clustering Coefficient
• K-core
• Counting all size-4 graphlets
• Triangle polling
• Fiedler vector

Experimental utilities
• random matrix, vector generators
• Binary matrix file I/O (very fast),

serialize/deserialize, parallel LZ4 comp.

https://github.com/GraphBLAS/LAGraph

Distribution Statement A:
Approved for Public Release; Distribution is Unlimited15 November 2022

SC’22 BoF: HPC Graph Toolkits and
The GraphBLAS Forum

RedisGraph
Roi Lipman

33SC’22 BoF: HPC Graph Toolkits and
The GraphBLAS Forum 15 November 2022 Distribution Statement A:

Approved for Public Release; Distribution is Unlimited

Property Graph DB

Person Flight
isAboardName: Adam

Age: 42
Citizenship: Canadian

Airline: United
Origin: Toronto
Destination: Dallas

• Nodes represent entities
• Edges represent relations between entities
• Nodes & Edges associated with Attributes

34SC’22 BoF: HPC Graph Toolkits and
The GraphBLAS Forum 15 November 2022 Distribution Statement A:

Approved for Public Release; Distribution is Unlimited

Query graphs

MATCH (f1:Flight)<-[:isAboard]-(:Person)-[:isAboard]->(f2:Flight)

Flight isAboard Person

T

* * * *

Person f2isAboardf1 isAboard

isAboard Flight

35SC’22 BoF: HPC Graph Toolkits and
The GraphBLAS Forum 15 November 2022 Distribution Statement A:

Approved for Public Release; Distribution is Unlimited

RedisGraph Use Cases

• Social networks
• Supply chain optimization
• Fraud detection/prevention
• Resource management
• Access control

To learn more

https://redis.io/docs/stack/graph/

Distribution Statement A:
Approved for Public Release; Distribution is Unlimited15 November 2022

SC’22 BoF: HPC Graph Toolkits and
The GraphBLAS Forum

Website: http://graphblas.org
• Lists workshops and conferences
• Links to the latest API Specifications
• Teams developing implementations
• Other useful resources

Mailing list: Graphblas@lists.lbl.gov
• Hosted by LBL (mailto:abuluc@lbl.gov)
• Join the Forum by joining the list

Monthly teleconference:
• Second Friday of every month, 12pm Eastern Time
• Send email to Jeremy Kepner to receive the calendar invite and Zoom ID.

Questions? C API Specification:
https://github.com/GraphBLAS/graphblas-api-c

SuiteSparse:GraphBLAS:
https://github.com/DrTimothyAldenDavis/GraphBLAS

Python GraphBLAS bindings
https://github.com/python-graphblas/python-graphblas
https://github.com/python-graphblas/graphblas-algorithms

C++ API Specification:
https://github.com/GraphBLAS/graphblas-api-cpp

C++ reference implementation:
https://github.com/GraphBLAS/rgri

LAGraph Repository:
https://github.com/GraphBLAS/LAGraph

RedisGraph:
https://redis.io/docs/stack/graph

